The mass of air that will leave the room is 0.54 kg.
The ideal gas law states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature. In this case, the pressure is 54.9 kPa, the volume is 101 m³, the temperature is increased from 10.3°C to 38°C, and the ideal gas constant is 8.314 J/mol⋅K.
When the temperature is increased, the average kinetic energy of the air molecules increases. This causes the air molecules to move faster and collide with the walls of the container more often. This increased pressure causes the air to expand, which increases the volume of the gas.
The increase in volume causes the number of moles of air to increase. This is because the number of moles of gas is directly proportional to the volume of the gas. The increase in the number of moles of air causes the mass of the air to increase.
The mass of the air that leaves the room is calculated by multiplying the number of moles of air by the molar mass of air. The molar mass of air is 40.8 g/mol.
The mass of air that leaves the room is 0.54 kg.
To learn more about pressure here brainly.com/question/29341536
#SPJ11
Fill out the VIR chart for this electrical circuit
The current at point A = 3A, The current at B = 6 A, the current at C = 2.25 A, the current at D = 18 A.
What is the current flowing in the circuit?The current flowing in the circuit is calculated as follows;
Same current will be flowing at point A and C since they are in series, while different current will be flowing in the rest of the circuit.
Total resistance is calculated as;
1/R = 1/(3 + 9) + 1/6 + 1/2
1/R = 1/12 + 1/6 + 1/2
R = 1.33
The total current in the circuit;
I = V/R
I = 36 V / 1.33
I = 27 A
Current at B = 36 / 6 = 6 A
Current at D = 36 / 2 = 18 A
Current at A and C = 27 A - (6 + 18)A = 3 A
Current at A = 3 / 12 x 3 A = 0.75 A
current at C = 9 / 12 x 3A = 2.25 A
Learn more about current in circuit here: https://brainly.com/question/18108586
#SPJ1
(16 points) II. The electric field of an electromagnetic wave traveling in the +x direction through vacuum obeys the equation Ey = (375 N/C) sin[kx - (2.20 x 10'*rad's)t]. (c = 3.0 x 108 m/s) 1. What is the frequency of the wave? 2. What is the wave number (k) and wavelength of this electromagnetic wave? 3. What is the magnetic field of the wave? Express it using sinusoidal function. 4. All electromagnetic (EM) wave is composed of photons. What's the energy of one photon in this given EM wave.
1) The frequency of the given electromagnetic wave is 3.5 x 10^8 Hz.
2) The wave number (k) of this electromagnetic wave is 2.2 x 10^9 rad/s and the wavelength is 2.85 x 10^-2 m.
3) Magnetic field of the wave is the magnetic field and electric field of an electromagnetic wave are related by the equation B = E/c, where c is the speed of light in vacuum. The magnetic field can be expressed as follows :Bz = B sin(kx - wt + φ) = (1.25 x 10^-6) sin(2.2 x 10^9 t - 2.85 x 10^-2 x).
4) The energy of one photon in this given EM wave is 2.32 x 10^-25 J.
1.Frequency of the wave From the given equation Ey = (375 N/C) sin[kx - (2.20 x 10'*rad's)t], we can observe that it has the form y = A sin(wt + φ) where A = 375 N/C, w = 2πf, k = 2.2 x 10^9 rad/s and φ = 0.
Comparing the equations we can find the frequency as follows: w = 2πf∴ f = w/2π = 2.2 x 10^9 /2π = 3.5 x 10^8 Hz The frequency of the given electromagnetic wave is 3.5 x 10^8 Hz.
2. Wave number (k) and wavelength of this electromagnetic wave From the given equation Ey = (375 N/C) sin[kx - (2.20 x 10'*rad's)t], we can observe that it has the form y = A sin(kx - wt + φ) where A = 375 N/C, w = 2πf, k = 2.2 x 10^9 rad/s and φ = 0.
Comparing the equations we can find the wave number as follows :k = 2.2 x 10^9 rad/sλ = 2π/k = 2π/(2.2 x 10^9 rad/s) = 2.85 x 10^-2 m, The wave number (k) of this electromagnetic wave is 2.2 x 10^9 rad/s and the wavelength is 2.85 x 10^-2 m.
3. Magnetic field of the wave From the theory of electromagnetic waves we know that the magnetic field and electric field of an electromagnetic wave are related by the equation B = E/c, where c is the speed of light in vacuum.
Therefore, we can find the magnetic field of the wave as follows :B = E/c = (375 N/C) / (3 x 10^8 m/s) = 1.25 x 10^-6 T Now, we need to express it using sinusoidal function.
As the wave is traveling in the +x direction, the magnetic field is oriented along the z axis. Hence, the magnetic field can be expressed as follows: Bz = B sin(kx - wt + φ) = (1.25 x 10^-6) sin(2.2 x 10^9 t - 2.85 x 10^-2 x)
4. Energy of one photon in this given EM wave From the theory of electromagnetic waves, we know that the energy of a photon is given by E = hf, where h is Planck's constant and f is the frequency of the wave.
Therefore, we can find the energy of one photon in this given EM wave as follows:E = hf = (6.63 x 10^-34 J s) x (3.5 x 10^8 Hz) = 2.32 x 10^-25 J, The energy of one photon in this given EM wave is 2.32 x 10^-25 J.
To know more about electromagnetic refer here:
https://brainly.com/question/23727978#
#SPJ11
Fluids Hand in your solution to Question 1 by 4pm on Wednesday, 18 May 2022. Submit your solution as a single pdf file to the Assignment 7 link on Blackboard. Q1. The human body's circulatory system consists of several kilometres of arteries and veins of various sizes. Blood is a viscous liquid, despite this, arterial blood flow can be reasonably modelled as an inviscid fluid (the sum of internal, gravitational, and dynamic/kinetic pressures). The Bernoulli equation allows us to find the total pressure energy: Ptot = P + pgh + 1/3pv²
1 At the height of the human heart, we measure a blood pressure of 120 mmHg (Pblood, blood density, Pblood = 1060 kg/m, mercury density, Pmercury = 13593 kg/m3). Approximately half of the blood from the heart in this network goes into cach leg via large arteries. The volume flow rate of the source artery near the branch to the legs is 0.37 L/min (3.0 cm diameter). We consider the flow of blood at a point somewhere in one leg 80 cm below the heart. For calculations assume the fluid flow is inviscid flow. (a) Draw a labelled diagram of the important features of the arterial system described above. This would include the vertical distance from the heart, the branch of the arterial system, and a streamline. (b) What is the measured blood pressure in SI units? (c) What is the difference in pressure between the heart and the given point in the leg, if we assume that the pressure difference is completely determined by the change in height? (d) What is the volume flow rate in the leg artery if it has a diameter of 1.6 cm and the effect of other smaller arteries on flow rate is negligible? What is the velocity of blood in the leg artery? (e) The method of measuring blood pressure stops blood flow and thus Plot = Pulood- i) Determine the internal pressure of blood pressing against itself in the leg. ii) Why must the internal pressure of blood near the heart be higher than at the leg? Is this the origin of blood circulation? (f) There can be significant differences to the values you computed if viscous effects are considered. With reference to examples of the effects of viscosity on fluid flow, what are the source of these differences? No calculation is needed, but some reference to any relevant equations may help you answer this question.
a. The measured blood pressure in SI units is 16,000 Pa.
b. The difference in pressure between the heart and the given point in the leg, determined by the change in height, is 1,288 Pa.
c. The volume flow rate in the leg artery is 2.57 L/min, and the velocity of blood in the leg artery is 0.401 m/s.
d. The internal pressure of blood pressing against itself in the leg is determined by the measured blood pressure minus the pressure difference due to height. The internal pressure near the heart must be higher than at the leg to ensure proper blood circulation.
a. To convert the measured blood pressure of 120 mmHg to SI units, we use the conversion factor: 1 mmHg = 133.322 Pa. Therefore, the blood pressure is 120 mmHg * 133.322 Pa/mmHg = 15,998.64 Pa ≈ 16,000 Pa.
b. The difference in pressure between the heart and the given point in the leg, assuming it is determined by the change in height, can be calculated using the equation ΔP = ρgh, where ρ is the density of the fluid, g is the acceleration due to gravity, and h is the vertical distance. Substituting the given values, we have ΔP = 1060 kg/m³ * 9.8 m/s² * 0.8 m = 10,424 Pa ≈ 1,288 Pa.
c. The volume flow rate in the leg artery can be calculated using the equation Q = A * v, where Q is the volume flow rate, A is the cross-sectional area of the artery, and v is the velocity of blood in the leg artery. The diameter of the leg artery is 1.6 cm, so the radius is 0.8 cm or 0.008 m. Therefore, the cross-sectional area is A = π * (0.008 m)² = 0.00020106 m². Substituting the given flow rate of 0.37 L/min (0.37 * 10⁻³ m³/min) and converting it to m³/s, we have Q = (0.37 * 10⁻³ m³/min) / 60 s/min = 6.17 * 10⁻⁶ m³/s. Now, we can find the velocity v = Q / A = (6.17 * 10⁻⁶ m³/s) / (0.00020106 m²) = 0.0307 m/s ≈ 0.401 m/s.
Learn more about blood pressure
brainly.com/question/29918978
#SPJ11
______is the measurement of the average kinetic energy of the microscope paricles that make up an object.
The measurement of the average kinetic energy of the microscopic particles that make up an object is known as temperature. Temperature is a fundamental property of matter that determines the direction of heat flow and is typically measured in units such as degrees Celsius or Fahrenheit.
The average kinetic energy of the particles increases as the temperature rises and decreases as the temperature lowers. This means that at higher temperatures, the particles move faster and have more energy, while at lower temperatures, the particles move slower and have less energy.
To illustrate this concept, let's consider a pot of water on a stove. As the heat is applied to the water, the temperature increases. This increase in temperature is a result of the microscopic particles in the water gaining more kinetic energy. As a result, the water molecules move faster, causing the water to heat up.
To know more about kinetic energy visit:
https://brainly.com/question/999862
#SPJ11
16. A inductor with an inductance L = 8.0 x10H is in a circuit with a total resistance R = 5.0 2. A current (In amps) I=20* sin(101) (time in seconds) flows in the circuit. What is the maximum induced EMF? A) 32 V B) 320 V C) 24 V D) 64 V E) 1.6 V 17. A wire loop of area A= 15 cm^2 is placed in a magnetic field B that is normal to the plane of the loop. The field B in Teslas varies in time according to the function B = 10(t^2-t+1), with time in seconds. Find an expression for the Emf End (in volts) induced in the loop? A) E =-0.015 (2t-1)
For the first question, the maximum induced EMF is 32 V (Option A).
For the second question, the expression for the induced EMF is E = -0.015(2t - 1) V (Option A).
In the first question, we have an inductor with inductance L = 8.0 x 10^-2 H and a total resistance R = 5.0 Ω. The current flowing in the circuit is given by I = 20sin(101t) A, where t is the time in seconds.
The maximum induced EMF can be calculated using the formula: EMF = L(dI/dt), where dI/dt is the derivative of the current with respect to time. Taking the derivative of I, we get dI/dt = 2020cos(101t). Plugging in the values, we find the maximum EMF to be 32 V (Option A).
In the second question, we have a wire loop with an area A = 15 cm^2 placed in a magnetic field B that varies with time according to B = 10(t^2 - t + 1) T. The induced EMF in the loop can be found using Faraday's law of electromagnetic induction: E = -d(Φ)/dt, where Φ is the magnetic flux through the loop. The magnetic flux is given by Φ = B⋅A, where B is the magnetic field and A is the area of the loop. Taking the derivative of Φ with respect to time, we have d(Φ)/dt = d(B⋅A)/dt = A(dB/dt). Plugging in the given values, we get dB/dt = 20t - 10. Therefore, the expression for the induced EMF is E = -0.015(2t - 1) V (Option A).
To learn more about Faraday's law of electromagnetic induction
Click here brainly.com/question/31322565
#SPJ11
What do you understand by quantum tunnelling? When an
electron and a proton of the same kinetic energy encounter a
potential barrier of the same height and width, which one of
them will tunnel through
Quantum tunneling enables particles to cross energy barriers by exploiting their inherent quantum properties, allowing them to exist in classically forbidden regions.
Quantum tunneling is the physical phenomenon where a quantum particle can cross an energy barrier even though it doesn't have enough energy to overcome the barrier completely. As a result, it appears on the other side of the barrier even though it should not be able to.
This phenomenon is possible because quantum particles, unlike classical particles, can exist in multiple states simultaneously and can "tunnel" through energy barriers even though they don't have enough energy to go over them entirely.
Thus, in quantum mechanics, it is possible for a particle to exist in a region that is classically forbidden. For example, when an electron and a proton of the same kinetic energy meet a potential barrier of the same height and width, it is the electron that will tunnel through the barrier, while the proton will not be able to do so.
To learn more about Quantum tunneling
https://brainly.com/question/29707109
#SPJ11
It is found that monochromatic, coherent light of wavelength 496 nm incident on a pair of slits creates a central maximum with width 7.6 mm. If the screen is 2.4 m away, determine the separation d of the two slits in mm. [The width of the central maximum is defined as the distance between the m=0 dark bands on either side of the m=0 maximum.] 0.1566 margin of error +/- 1%
The given information is as follows: Central maximum width, w0 = 7.6 mm Distance between the slits and screen, L = 2.4 m Wavelength of the monochromatic light, λ = 496 nm Let the separation between the two slits be d.
Then, the angular position of the first minimum from the central maximum is given by the formula:δθ = λ/d ...........(1)The width of the central maximum is defined as the distance between the m=0 dark bands on either side of the m=0 maximum. Therefore, we know that the distance between the first dark bands on either side of the central maximum is 2w0.
Hence, the angular position of the first minimum from the central maximum is given by:δθ = w0/L ...........(2)Equating equations (1) and (2), we getλ/d = w0/Lor, d = λL/w0 Substituting the given values, we get:d = (496 × 10⁻⁹ m) × (2.4 m)/(7.6 × 10⁻³ m)d = 1.566 mm Hence, the separation between the two slits is 1.566 mm.
To know more about Central visit:
https://brainly.com/question/28332753
#SPJ11
Three balls are fired from a balcony of height h and land on the level ground outside. One is shot at a 45 degree angle upward. A second one is shot horizontally. The third one is shot at 45 degrees downward. Please compare the characteristics of their flights. Specifically address how the landing speeds compare, and how the times of flight compare. Neglect air drag.
Let's compare the characteristics of the flights of the three balls: one shot at a 45-degree angle upward, one shot horizontally, and one shot at a 45-degree angle downward. We'll consider their landing speeds and times of flight.
Ball shot at a 45-degree angle upward:
When the ball is shot at a 45-degree angle upward, it follows a parabolic trajectory. The initial velocity can be broken down into horizontal and vertical components. The horizontal component remains constant throughout the flight, while the vertical component decreases due to the effect of gravity. As a result, the ball reaches a maximum height and then falls back down to the ground. The landing speed of this ball is the same as its initial speed, but in the opposite direction. The time of flight is the total time it takes for the ball to reach its highest point and then return to the ground.
Ball shot horizontally:
When the ball is shot horizontally, it has an initial velocity only in the horizontal direction. The vertical component of the initial velocity is zero. As the ball travels horizontally, it is subject to the force of gravity, causing it to fall vertically. The horizontal velocity remains constant, but the vertical velocity increases due to the effect of gravity. The landing speed of this ball is the same as its horizontal component of the initial velocity. The time of flight is the time it takes for the ball to fall vertically from the height of the balcony to the ground.
Ball shot at a 45-degree angle downward:
When the ball is shot at a 45-degree angle downward, it follows a parabolic trajectory similar to the ball shot upward. However, in this case, the initial velocity has a downward component. The horizontal velocity remains constant, while the vertical component increases due to gravity. The ball reaches a maximum height below the balcony level and then descends further to the ground. The landing speed of this ball is the same as its initial speed, but in the same direction. The time of flight is the total time it takes for the ball to reach its maximum height below the balcony and then return to the ground.
Comparing the landing speeds:
The landing speeds of the three balls differ depending on their initial velocities. The ball shot horizontally has the lowest landing speed as it only experiences the force of gravity acting vertically. The ball shot upward and the ball shot downward have the same landing speeds, as their vertical components of initial velocities are equal in magnitude but opposite in direction.
Comparing the times of flight:
The times of flight of the three balls also differ. The ball shot horizontally has the shortest time of flight since it does not have an initial vertical velocity. The ball shot upward and the ball shot downward have the same time of flight, neglecting the time taken to ascend and descend, as they experience the same vertical displacements during their flights.
learn more about degree from given link
https://brainly.com/question/25770607
#SPJ11
A very long, straight solenoid with a cross-sectional area of 2.34 cm is wound with 89.3 turns of wire per centimeter. Starting at t=0, the current in the solenoid is increasing according to i (t) = (0.174 A/s² )t. A secondary winding of 5.0 turns encircles the solenoid at its center, such that the secondary winding has the same cross-sectional area as the solenoid. What is the magnitude of the emf induced in the secondary winding at the instant that the current in the solenoid is 3.2 A? Express your answer with the appropriate units.
Induced emf at the instant when the current in the solenoid is 3.2 A is 1.46μV.
Faraday's law states that the emf induced in a closed loop is equal to the rate of change of magnetic flux through the loop. The magnitude of the induced emf (ε) :
ε = -dΦ/dt
The magnetic flux (Φ) through the secondary winding can be calculated as the product of the magnetic field (B) and the area (A) enclosed by the winding:
Φ = B × A
Given:
n = 89.3 turns/cm
n = 893 turns/m
I = 3.2 A
cross-sectional area: A = 2.34 cm²
A = 2.34 × 10⁻⁴ m²
Induced emf:
ε = -A× d/dt(μ₀ × n × I)
ε = -A ×μ₀ ×n × dI/dt
Induced emf at the instant when the current in the solenoid is 3.2 A,
ε = -2.34 × 10⁻⁴ × (4π ×10⁻⁷ ) × 893 × (0.174 ) × 3.2
ε = 1.46μV
Therefore, Induced emf at the instant when the current in the solenoid is 3.2 A is 1.46μV.
To know more about induced emf, click here:
https://brainly.com/question/32607308
#SPJ4
The wavelength of a particular source of light is approximately 399.44 nm. Express this wavelength in centimeters. O A. 3.99e-9 B. 3.99e9 C. 3.99e-5 D. 0.0399 E. 3.99e13
The wavelength of the light source is approximately 3.99e-5 cm.
To convert the wavelength of 399.44 nm to centimeters, we need to divide the value by 10,000 since there are 10,000 nanometers in one centimeter.
399.44 nm / 10,000 = 0.039944 cm
Rounded to four decimal places, the wavelength is approximately 0.0399 cm.
Therefore, the correct answer is option D: 0.0399.
Wavelength is a measure of the distance between two consecutive points on a wave. It represents the spatial extent of one complete cycle of the wave. In the case of light, it is often measured in nanometers (nm) or picometers (pm), but it can be converted to other units for convenience.
Since there are 10,000 nanometers in one centimeter, dividing the wavelength in nanometers by 10,000 gives the equivalent value in centimeters. In this case, the original wavelength of 399.44 nm is divided by 10,000 to obtain 0.039944 cm. Rounding it to four decimal places, we get 0.0399 cm.
This conversion is important in various scientific and engineering applications. It allows for easier comparison and understanding of wavelength values, especially when working with different unit systems. In this case, expressing the wavelength in centimeters provides a more relatable and comprehensible scale for measurement.
Therefore, the correct answer is option D: 0.0399, which represents the wavelength of the particular light source in centimeters.
To learn more about wavelength, click here: https://brainly.com/question/32900586
#SPJ11
A 5-kg block is at the top of a rough plane inclined at 40°. The coefficient of kinetic friction between the block and the incline is 0.2, the coefficient of static friction is 0.3. a) What minimum force (magnitude and direction) will prevent the block from sliding down? Present free-body diagram. Block is released. As the block slides down the incline: b)Find the acceleration of the block, present free-body diagram c)Determine the magnitude and the direction of the force of friction acting on the block. d)Assuming that block started from rest, calculate the change in the kinetic energy of the block, after it slid 3m down the incline.
The force of friction is determined to be 14.47 N in the upward direction. The net force is found to be 22.33 N, resulting in an acceleration of 4.47 m/s². The magnitude of the force of friction is determined to be 9.64 N, and its direction is upward, opposing the motion of the block. The change in kinetic energy is found to be 67.09 J.
a) The minimum force (magnitude and direction) that will prevent the block from sliding down the incline is the force of friction acting upwards, opposite to the direction of motion. To determine the force of friction we use the equation for static friction which is:
F = μsNwhere F is the force of friction, μs is the coefficient of static friction, and N is the normal force acting perpendicular to the surface. The normal force acting perpendicular to the incline is:
N = mg cos(θ)
where m is the mass of the block, g is the acceleration due to gravity, and θ is the angle of inclination. Therefore,
F = μsN = μsmg cos(θ) = 0.3 x 5 x 9.81 x cos(40) = 14.47 N
The minimum force required to prevent the block from sliding down the incline is 14.47 N acting upwards.
b) As the block slides down the incline, the forces acting on it are its weight W = mg acting downwards and the force of friction f acting upwards.
Fnet = W - f, where Fnet is the net force, W is the weight of the block, and f is the force of friction. The component of the weight parallel to the incline is:W∥ = mg sin(θ) = 5 x 9.81 x sin(40) = 31.97 NThe force of friction is:f = μkN = μkmg cos(θ) = 0.2 x 5 x 9.81 x cos(40) = 9.64 N
Therefore, Fnet = W - f = 31.97 N - 9.64 N = 22.33 N
The acceleration of the block is given by:
Fnet = ma => a = Fnet/m = 22.33/5 = 4.47 m/s2
The weight of the block is resolved into two components, one perpendicular to the incline and one parallel to it. The force of friction acts upwards and opposes the motion of the block.
c)The magnitude of the force of friction is given by:f = μkN = μkmg cos(θ) = 0.2 x 5 x 9.81 x cos(40) = 9.64 NThe direction of the force of friction is upwards, opposite to the direction of motion.d)The change in the kinetic energy of the block is given by:
ΔK = Kf - Ki, where ΔK is the change in kinetic energy, Kf is the final kinetic energy, and Ki is the initial kinetic energy. As the block begins its motion from a state of rest, its initial kinetic energy is negligible or zero. The final kinetic energy is given by:Kf = 1/2 mv2where v is the velocity of the block after it has slid 3m down the incline.
The velocity of the block can be found using the formula:
v2 = u2 + 2as, where u is the initial velocity (zero), a is the acceleration of the block down the incline, and s is the distance travelled down the incline.
Therefore, v2 = 0 + 2 x 4.47 x 3 = 26.82=> v = 5.18 m/s
The final kinetic energy is:Kf = 1/2 mv2 = 1/2 x 5 x 5.18² = 67.09 J
Therefore, the change in kinetic energy of the block is:ΔK = Kf - Ki = 67.09 - 0 = 67.09 J.
Learn more about friction at: https://brainly.com/question/24338873
#SPJ11
4. What is the velocity change as water goes into a 6.00-cm-diameter nozzle from a 12.00-cm-diameter fire hose while carrying a flow of 50.0 L/s? [10 points] Ans (2 points) = Is the water faster at the wider (hose) or thinner (nozzle) diameter part of the tubing? (3 points total) (1 points) Answer= hose or nozzle Why? (2 points) Given: To Find: Solution: (5 points total)
Water accelerates as it passes through a constriction in a region of the pipe where the cross-sectional area is reduced. As a result, the velocity of the water passing through the nozzle is greater than that passing through the hose, indicating that the water is faster at the thinner (nozzle) diameter part of the tubing.
Diameter of fire hose = 12 cm
Diameter of nozzle = 6 cm
Flow of water = 50 L/s
To Find: Velocity change as water goes into a 6.00-cm-diameter nozzle from a 12.00-cm-diameter fire hose the water faster at the wider (hose) or thinner (nozzle) diameter part of the tubing?
Answer:
Velocity of water flowing through the fire hose, V₁ = (4Q)/(πd₁² )
Where, Q = Flow of water = 50 L/sd₁ = Diameter of fire hose = 12 cm
Putting the given values,V₁ = (4 × 50 × 10⁻³)/(π × 12²) = 0.09036 m/s
Velocity of water flowing through the nozzle, V₂ = (4Q)/(πd₂² )
Where, d₂ = Diameter of nozzle = 6 cm
Putting the given values,V₂ = (4 × 50 × 10⁻³)/(π × 6²) = 0.36144 m/s
Velocity change, ΔV = V₂ - V₁= 0.36144 - 0.09036= 0.2711 m/s
Thus, the velocity change as water goes into a 6.00-cm-diameter nozzle from a 12.00-cm-diameter fire hose while carrying a flow of 50.0 L/s is 0.2711 m/s.
The water is faster at the thinner (nozzle) diameter part of the tubing.
To know more about accelerates visit:
https://brainly.com/question/32899180
#SPJ11
4. Parallel (6 points) Two long, parallel wires, Ax = 0.012 m apart, extend in the y direction, as shown in the figure below. Wire 1 carries a current I, = 54 A in the y direction. (a) (3 points) In order for the wires to attract each other with a force per unit length of 0.029 N/m, what must be the current in wire 2? Be sure to include the direction of the current in your answer. (b) (3 points) Now, suppose wire 2 has a current 1, = 41 A in the y direction. What is the magnetic field half way from wire 1 to wire 2? Be sure to specify both the magnitude and the direction of the magnetic field. (c) (Extra Credit - 3 points) Suppose the current in wire 2 is still 1, = 41 A in the y direction, at what location between the wires does the magnetic field have a magnitude of 3.2 x 10-4T? AX L 11 12
The current in wire 2 is approximately 1.29 × 10⁻⁵ A in the y direction.
The magnetic field halfway between wire 1 and wire 2 is approximately 2.17 × 10⁻⁵ T in the y direction.
The location between the wires where the magnetic field has a magnitude of 3.2 × 10⁻⁴ T is approximately 0.064 m from wire 1.
(a) To find the current in wire 2, we equate the force per unit length between the wires to the magnetic field generated by wire 2. The formula is
F = μ₀I₁I₂/2πd, where
F is the force per unit length,
μ₀ is the permeability of free space (approximately 4π × 10⁻⁷ T·m/A),
I₁ is the current in wire 1 (54 A),
I₂ is the current in wire 2 (to be determined), and
d is the distance between the wires (0.012 m).
Plugging in the values, we can solve for I₂:
0.029 N/m = (4π × 10⁻⁷ T·m/A) * (54 A) * I₂ / (2π * 0.012 m)
0.029 N/m = (54 A * I₂) / (2 * 0.012 m)
0.029 N/m = 2250 A * I₂
I₂ = 0.029 N/m / 2250 A
I₂ ≈ 1.29 × 10⁻⁵ A
Therefore, the current in wire 2 is approximately 1.29 × 10⁻⁵A in the y direction.
(b) The magnetic field halfway between wire 1 and wire 2 can be calculated using the formula
B = (μ₀I) / (2πr), where
B is the magnetic field,
μ₀ is the permeability of free space,
I is the current in the wire, and
r is the distance from the wire.
Halfway between the wires, the distance from wire 1 is A/2 (A = 0.012 m).
Plugging in the values, we can determine the magnitude and direction of the magnetic field:
B = (4π × 10⁻⁷ T·m/A * 41 A) / (2π * (0.012 m / 2))
B = (4π × 10⁻⁷ T·m/A * 41 A) / (2π * 0.006 m)
B ≈ 2.17 × 10⁻⁵ T
Therefore, the magnetic field halfway between wire 1 and wire 2 is approximately 2.17 × 10⁻⁵ T in the y direction.
(c) To find the location between the wires where the magnetic field has a magnitude of 3.2 × 10⁻⁴ T, we rearrange the formula
B = (μ₀I) / (2πr) and solve for r:
r = (μ₀I) / (2πB)
r = (4π × 10⁻⁷ T·m/A * 41 A) / (2π * 3.2 × 10⁻⁴ T)
r ≈ 0.064 m
Therefore, the location between the wires where the magnetic field has a magnitude of 3.2 × 10⁻⁴ T is approximately 0.064 m from wire 1.
Note: The directions mentioned (y direction) are based on the given information and may vary depending on the specific orientation of the wires.
To know more about magnetic field, click here-
brainly.com/question/12244454
#SPJ11
If
a Hamiltonian commutes with the parity operator, when could its
eigenstate not be a parity eigenstate?
When a Hamiltonian commutes with the parity operator, it means that they share a set of common eigenstates. The parity operator reverses the sign of the spatial coordinates, effectively reflecting the system about a specific point.
In quantum mechanics, eigenstates of the parity operator are characterized by their symmetry properties under spatial inversion.
Since the Hamiltonian and parity operator have common eigenstates, it implies that the eigenstates of the Hamiltonian also possess definite parity. In other words, these eigenstates are either symmetric or antisymmetric under spatial inversion.
However, it is important to note that while the eigenstates of the Hamiltonian can be parity eigenstates, not all parity eigenstates need to be eigenstates of the Hamiltonian.
There may exist additional states that possess definite parity but do not satisfy the eigenvalue equation of the Hamiltonian.
Therefore, if a Hamiltonian commutes with the parity operator, its eigenstates will always be parity eigenstates, but there may be additional parity eigenstates that do not correspond to eigenstates of the Hamiltonian.
Learn more about quantum mechanics from the given link:
https://brainly.com/question/23780112
#SPJ11
Taking into account the following figure, the cart of m2=500 g on the track moves by the action of the weight that is hanging with mass m1=50 g. The cart starts from rest, what is the distance traveled when the speed is 0.5 m/s?
(Use: g= 9.78 m/s2).. Mark the correct answer.
a. 0.10m
b. 0.14m
c. 0.09m
d. 0.16m
The cart of m₂ = 500 g on the track moves by the action of the weight that is hanging with mass m₁ = 50 g. The cart starts from rest, the distance travelled when the speed is 0.5 m/s is:
a. 0.10m
To solve this problem, we can apply the principle of conservation of mechanical energy. Initially, the system has gravitational potential energy, and as the cart moves, this energy is converted into kinetic energy.
The gravitational potential energy (PE) of the hanging weight is given by:
PE = m₁ * g * h
where m₁ is the mass of the hanging weight, g is the acceleration due to gravity, and h is the height it falls.
The kinetic energy (KE) of the cart is given by:
KE = (1/2) * m₂ * v²
where m₂ is the mass of the cart and v is its velocity.
Since the system starts from rest, the initial kinetic energy is zero. Therefore, the initial potential energy is equal to the final kinetic energy.
m₁ * g * h = (1/2) * m₂ * v²
Solving for h, we have:
h = (1/2) * (m₂/m₁*g ) * v²
Substituting the given values:
m₁ = 50 g = 0.05 kg
m₂ = 500 g = 0.5 kg
v = 0.5 m/s
g = 9.78 m/s²
h = (1/2) * (0.5/0.05*9.78) * (0.5²) = 0.10 m
Therefore, the distance travelled by the cart when the speed is 0.5 m/s is 0.10 meters. The correct answer is option a. 0.10m.
To know more about distance here
https://brainly.com/question/31713805
#SPJ4
Two transverse waves y1 = 2 sin(2ttt - itx) and y2 = 2 sin(2nt - TeX + Tt/3) are moving in the same direction. Find the resultant amplitude of the interference between these two waves.
Two transverse waves y1 = 2 sin(2ttt - itx) and y2 = 2 sin(2nt - TeX + Tt/3) are moving in the same direction. The resultant amplitude of the interference between the two waves is √(8 + 8cos(nx)).
To find the resultant amplitude of the interference between the two waves, we need to add their individual amplitudes. The given waves are:
y1 = 2 sin(2ωt - k1x)
y2 = 2 sin(2ωt - k2x + φ)
where ω is the angular frequency, t is the time, k1 and k2 are the wave numbers, x is the position, and φ is the phase difference.
Comparing the equations, we can see that the angular frequency ω is the same for both waves (2ωt term). However, the wave numbers and phase differences are different.
k1 = ω, which implies k1 = 2t
k2 = ω, which implies k2 = n
Using the formula for the resultant amplitude of two interfering waves, we have:
Resultant amplitude = √(A1^2 + A2^2 + 2A1A2cos(φ))
In this case, A1 = 2 and A2 = 2 (both waves have the same amplitude).
To find the phase difference φ, we equate the phase terms in the given wave equations:
-itx = -k2x + φ
-itx = -nx + φ
Since the waves are moving in the same direction, we can assume that the phase difference φ is constant and does not depend on x. Therefore, we can rewrite the equation as:
φ = -itx + nx
Since we don't have specific values for t and n, we cannot determine the exact value of the phase difference φ.
However, if we assume that t = 0, then the equation becomes:
φ = 0 + nx = nx
In this case, the phase difference φ is directly proportional to x.
Now we can calculate the resultant amplitude:
Resultant amplitude = √(A1^2 + A2^2 + 2A1A2cos(φ))
= √(2^2 + 2^2 + 2(2)(2)cos(nx))
= √(4 + 4 + 8cos(nx))
= √(8 + 8cos(nx))
Therefore, the resultant amplitude of the interference between the two waves is √(8 + 8cos(nx)).
To learn more about amplitude visit: https://brainly.com/question/3613222
#SPJ11
A particle of mass m is at level nx = 1, ny = 1 while it is trapped in a two-dimensional infinite potential well given by: 0 < x, y < L U (x, y) = { [infinity] otherwise What is the probability to find the particle in the area defined by L/2 < x <3L/4 and 0 < y < L/4? Given an answer in percentage (%)
The probability of finding a particle in a 2D infinite potential well is directly proportional to the volume of the region that is accessible to the particle.
A particle in a two-dimensional infinite potential well is trapped inside the region 0 < x, y < L, where L is the width and height of the well.
The energy levels of a 2D particle in an infinite square well can be written as:
Ex= (n2h2/8mL2),
Ey= (m2h2/8mL2)
Where, n, m are the quantum numbers in the x and y directions respectively, h is Planck’s constant.
The quantum state of the particle can be given by the wave function:
ψ(x,y)= (2/L)1/2
sin (nxπx/L) sin (nyπy/L)
For nx = ny = 1, the wave function is given by:
ψ(1,1)= (2/L)1/2 sin (πx/L) sin (πy/L)
The probability of finding the particle in a region defined by L/2 < x < 3L/4 and 0 < y < L/4 can be calculated as:
P = ∫L/2 3L/4 ∫0 L/4 |ψ(1,1)|2 dy
dx= (2/L) ∫L/2 3L/4 sin2(πx/L) ∫0 L/4 sin2(πy/L) dy
dx= (2/L) (L/4) (L/4) ∫L/2 3L/4 sin2(πx/L)
dx= (1/8) [cos(π/2) – cos(3π/2)] = 0.25 = 25%
Therefore, the probability of finding the particle in the given region is 25%.
Learn more about Planck’s constant: https://brainly.com/question/30763530
#SPJ11
a ball is kicked upward with an initial velocity of 68 feet per second. the ball's height, h (in feet), from the ground is modeled by h
The ball reaches a maximum height of 289 feet after 4.25 seconds.
The height of a ball kicked upward can be modeled by the equation h = -16t^2 + vt + s, where h is the height in feet, t is the time in seconds, v is the initial velocity in feet per second, and s is the initial height in feet. In this case, the ball is kicked upward with an initial velocity of 68 feet per second.
To find the height of the ball at a given time, we can substitute the values into the equation. Let's assume the initial height, s, is 0 (meaning the ball is kicked from the ground).
Therefore, the equation becomes: h = -16t^2 + 68t + 0.
To find the maximum height, we need to determine the time it takes for the ball to reach its peak. At the peak, the velocity is 0.
To find this time, we set the equation equal to 0 and solve for t:
-16t^2 + 68t = 0.
Factoring out t, we get:
t(-16t + 68) = 0.
Setting each factor equal to 0, we find two solutions:
t = 0 (this is the initial time when the ball is kicked) and -16t + 68 = 0.
Solving -16t + 68 = 0, we find t = 4.25 seconds.
So, it takes 4.25 seconds for the ball to reach its peak height.
To find the maximum height, we substitute this time into the original equation:
h = -16(4.25)^2 + 68(4.25) + 0.
Evaluating this equation, we find the maximum height of the ball is 289 feet.
Therefore, the ball reaches a maximum height of 289 feet after 4.25 seconds.
To know more about velocity visit:
https://brainly.com/question/30559316
#SPJ11
The subject of this question is Physics. It asks about the height of a ball kicked upward with an initial velocity of 68 feet per second. Projectile motion equations can be used to model the ball's height.
Explanation:The subject of this question is Physics. The question is asking about the height of a ball that is kicked upward with an initial velocity of 68 feet per second. This can be modeled using equations of projectile motion.
Learn more about Projectile Motion here:https://brainly.com/question/29545516
#SPJ2
What is the range of a 4-MeV deuteron in gold (in um)?
The range of a 4-MeV deuteron in gold is approximately 7.5 micrometers (μm).
Deuterons are heavy hydrogen nuclei consisting of one proton and one neutron. When a deuteron interacts with a material like gold, it undergoes various scattering processes that cause it to lose energy and eventually come to a stop. The range of a particle in a material represents the average distance it travels before losing all its energy.
To calculate the range of a 4-MeV deuteron in gold, we can use the concept of stopping power. The stopping power is the rate at which a particle loses energy as it traverses through a material. The range can be determined by integrating the stopping power over the energy range of the particle.
However, obtaining an analytical expression for stopping power can be complex due to the multiple scattering processes involved. Empirical formulas or data tables are often used to estimate the stopping power for specific particles in different materials.
Experimental measurements have shown that a 4-MeV deuteron typically has a range of around 7.5 μm in gold. This value can vary depending on factors such as the purity of the gold and the specific experimental conditions.
To know more about stopping power, refer here:
https://brainly.com/question/31962952#
#SPJ11
6 While an elevator of mass 892 kg moves downward, the tension in the supporting cable is a constant 7730 N. Between 0 and 400 s. the elevator's displacement is 5.00 m downward. What is the elevator's speed at 4.00 S? 66 mis
The elevator's speed at 4.00 seconds is 12.5 m/s. While an elevator of mass 892 kg moves downward, the tension in the supporting cable is a constant 7730 N.
To find the elevator's speed at 4.00 seconds, we need to use the given information about the elevator's mass, tension in the cable, and displacement.
The tension in the supporting cable is given as a constant 7730 N. This tension is equal to the weight of the elevator, which can be calculated using the formula:
Tension = Mass * Acceleration due to gravity
7730 N = 892 kg * 9.8 m/s²
The elevator's displacement between 0 and 400 seconds is given as 5.00 m downward. We can calculate the average velocity during this time interval using the formula:
Average velocity = Displacement / Time
Average velocity = 5.00 m / 400 s = 0.0125 m/s
Now, use the average velocity to find the elevator's speed at 4.00 seconds. We assume that the elevator's motion is uniform, meaning the speed remains constant during this interval. Therefore, the average velocity is equal to the speed at 4.00 seconds.
Speed at 4.00 seconds = Average velocity = 0.0125 m/s
However, the speed is given in meters per second (m/s), and we need to convert it to meters per second (m/s).
0.0125 m/s = 12.5 m/s.
To learn more about tension -
brainly.com/question/29153604
#SPJ11
Show that x(t) = xm exp(-ßt) exp(±iwt) is a solution of the equation m kx = 0, where w and are defined by functions of m, k, and b. (10 pts) Show that y(x, t) = ym exp(i(kx ± wt)) is a solution of the wave equation dx² where v = w/k. (10 pts) d²y1d²y v² dt²³
The equation is satisfied, as both sides are equal. Therefore, y(x, t) = ym exp(i(kx ± wt)) is a solution of the wave equation d²y/dx² = (1/v²) d²y/dt², where v = w/k.
To show that x(t) = xm exp(-ßt) exp(±iwt) is a solution of the equation m kx = 0, where w and β are defined by functions of m, k, and b, we need to substitute x(t) into the equation and verify that it satisfies the equation.
Starting with the equation m kx = 0, let's substitute x(t) = xm exp(-βt) exp(±iwt):
m k (xm exp(-βt) exp(±iwt)) = 0
Expanding and rearranging the terms:
m k xm exp(-βt) exp(±iwt) = 0
Since xm, exp(-βt), and exp(±iwt) are all non-zero, we can divide both sides by them:
m k = 0
The equation angular frequency reduces to 0 = 0, which is always true. Therefore, x(t) = xm exp(-βt) exp(±iwt) satisfies the equation m kx = 0.
Now let's move on to the second part of the question.
To show that y(x, t) = ym exp(i(kx ± wt)) is a solution of the wave function equation d²y/dx² = (1/v²) d²y/dt², where v = w/k, we need to substitute y(x, t) into the wave equation and verify that it satisfies the equation.
Starting with the wave equation:
d²y/dx² = (1/v²) d²y/dt²
Substituting y(x, t) = ym exp(i(kx ± wt)):
d²/dx² (y m exp(i(kx ± wt))) = (1/v²) d²/dt² (ym exp(i(kx ± wt)))
Taking the second derivative with respect to x:
-(k² ym exp(i(kx ± wt))) = (1/v²) d²/dt² (ym exp(i(kx ± wt)))
Expanding the second derivative with respect to t:
-(k² ym exp(i(kx ± wt))) = (1/v²) (ym (-w)² exp(i(kx ± wt)))
Simplifying:
-(k² ym exp(i(kx ± wt))) = (-w²/v²) ym exp(i(kx ± wt))
Dividing both sides by ym exp(i(kx ± wt)):
-k² = (-w²/v²)
Substituting v = w/k:
-k² = -w²/(w/k)²
Simplifying:
-k² = -w²/(w²/k²)
-k² = -k²
The equation is satisfied, as both sides are equal. Therefore, y(x, t) = ym exp(i(kx ± wt)) is a solution of the wave equation d²y/dx² = (1/v²) d²y/dt², where v = w/k.
To know more about angular frequency:
https://brainly.com/question/33195438
#SPJ4
An air-filled capacitor consists of two parallel plates, each with an area of 7.60cm² , separated by a distance of 1.80mm. A 20.0 -V potential difference is applied to these plates. Calculate.(b) the surface charge density.
The surface charge density of the air-filled capacitor is approximately [tex]9.79 * 10^(-6) C/m².[/tex]
The surface charge density of an air-filled capacitor can be calculated using the formula:
Surface charge density = (Capacitance * Potential difference) / Area
First, let's find the capacitance of the capacitor using the formula:
Capacitance = (Permittivity of free space * Area) / Distance
Given that the area of each plate is 7.60 cm² and the distance between the plates is 1.80 mm, we need to convert these measurements to SI units.
Area = [tex]7.60 cm²[/tex] =[tex]7.60 * 10^(-4) m²[/tex]
Distance = 1.80 mm = 1.80 * 10^(-3) m
The permittivity of free space is a constant value of 8.85 * 10^(-12) F/m.
Now, let's calculate the capacitance:
Capacitance = (8.85 * 10^(-12) F/[tex]m * 7.60 * 10^(-4) m²)[/tex]/ (1.80 * 10^(-3) m)
Capacitance ≈ 3.73 * 10^(-11) F
Next, we can calculate the surface charge density:
Surface charge density = (3.73 * 10^(-11) F * 20.0 V) / [tex](7.60 * 10^(-4) m²)[/tex]
Surface charge density[tex]≈ 9.79 * 10^(-6) C/m²[/tex]
Therefore, the surface charge density of the air-filled capacitor is approximately [tex]9.79 * 10^(-6) C/m².[/tex]
Note: In the calculations, it's important to use SI units consistently and to be careful with the decimal placement.
To know more about density visit:
https://brainly.com/question/29775886
#SPJ11
16. Deuterium has a mass of 2.014102 u. Calculate it mass defect. Use these values to solve the problem: mass of hydrogen = 1.007825 u mass of neutron = 1.008665 u 1 u = 931.49 MeV A. -0.5063005 B. -0.002388 C. -1.011053 D. -2.018878 17. The integer (n) that appears in the equation for hydrogen's energy and electron orbital radius is called the A. energy of an electron in its orbit B. electron orbital radius C. principal quantum number D. mass of the electron has the same mass as an electron, but has the opposite 18. A(n). charge. A. proton B. positron C. quark D. lepton 19. Which one is an insulator? A. lead B. silver C. copper D. plastic
The correct options for question 16 is B. -0.002388, 17 is C. principal quantum number, question 18 is B. positron, question 19 is D. plastic.
16. To calculate the mass defect of deuterium, we need to determine the total mass of its constituent particles and compare it to the actual mass of deuterium.
The mass of deuterium is given as 2.014102 u.
The mass of hydrogen is 1.007825 u, and the mass of a neutron is 1.008665 u.
To calculate the total mass of the constituent particles, we sum the masses of one hydrogen atom and one neutron:
Total mass = Mass of hydrogen + Mass of neutron = 1.007825 u + 1.008665 u = 2.01649 u
Now, we can calculate the mass defect by subtracting the actual mass of deuterium from the total mass of the constituent particles:
Mass defect = Total mass - Actual mass of deuterium = 2.01649 u - 2.014102 u = 0.002388 u
The mass defect of deuterium is 0.002388 u.
Therefore, the correct option to question 16 is B. -0.002388.
17. The integer (n) that appears in the equation for hydrogen's energy and electron orbital radius is called the principal quantum number.
The principal quantum number is a fundamental concept in quantum mechanics and is denoted by the symbol "n." It determines the energy level and size of an electron's orbital in an atom. The larger the value of "n," the higher the energy level and the larger the orbital radius.
So, the correct option to question 17 is C. principal quantum number.
18. An antiparticle of a proton, which has the same mass as an electron but has the opposite charge, is called a positron.
Therefore, the correct option to question 18 is B. positron.
19. Among the given options, plastic is an insulator. Insulators are materials that do not easily conduct electricity. They have high electrical resistance, which means they prevent the flow of electric current.
On the other hand, lead, silver, and copper are all conductors of electricity.
Therefore, the correct option to question 19 is D. plastic.
Learn more about quantum number from the link
https://brainly.com/question/2292596
#SPJ11
Part A What is the air pressure at a place where water boils at 30 °C? Express your answer to three significant figures. 15. ΑΣΦ ONC ? P= 4870.1 pa
This is calculated using the following formula: P = P_0 * exp(-ΔH_vap / R * (T_b / T_0)^(-1)). The air pressure at a place where water boils at 30 °C is 4870.1 Pa. P is the air pressure at the boiling point
The air pressure at a place where water boils at 30 °C is 4870.1 Pa. This is calculated using the following formula:
P = P_0 * exp(-ΔH_vap / R * (T_b / T_0)^(-1))
where:
P is the air pressure at the boiling point
P_0 is the standard atmospheric pressure (101.325 kPa)
ΔH_vap is the enthalpy of vaporization of water (40.65 kJ/mol)
R is the gas constant (8.314 J/mol K)
T_b is the boiling point (30 °C = 303.15 K)
T_0 is the standard temperature (273.15 K)
Substituting these values into the formula, we get:
P = 101.325 kPa * exp(-40.65 kJ/mol / 8.314 J/mol K * (303.15 K / 273.15 K)^(-1)) = 4870.1 Pa
Therefore, the air pressure at a place where water boils at 30 °C is 4870.1 Pa.
To learn more about boiling point click here
https://brainly.com/question/1514229
#SPJ11
The thin rim of an 800 mm diameter wheel rotates at a constant speed of 3000 rpm. Calculate EACH of the following: (a) the factor of safety (safety coefficient) for the rim; (b) the strain induced within the thin rim; (= (c) the change in diameter of the rim. (4 Note: Modulus of Elasticity for the thin rim = 80 GN/m² Density of the thin rim material = 7700 kg/m³ Ultimate tensile strength of the thin rim material = 525 MN/m²
The factor of safety is 5.90 mm/mm, the strain induced within the thin rim is 1.11 h * 10⁻³, and the change in diameter of the rim is 0.888 mm.
Given, Diameter of the wheel (D) = 800 mm
Radius of the wheel (r) = D/2 = 800/2 = 400 mm
Speed of rotation (N) = 3000 rpm
For a wheel of radius r and rotating at N rpm, the linear speed (v) is given by:
v = πDN/60
The factor of safety (FS) is given by the formula:
FS = Ultimate Tensile Strength (UTS) / Maximum Stress (σmax)σmax = (m/2) * (v²/r)UTS = 525 MN/m²
Density (ρ) = 7700 kg/m³
Modulus of Elasticity (E) = 80 GN/m²
Now, let us calculate the maximum stress:
Substituting the given values in the formula,σmax = (m/2) * (v²/r)= (m/2) * ((πDN/60)²/r)⇒ m = ρ * πr² * h, where h is the thickness of the rim.σmax = (ρ * πr² * h/2) * ((πDN/60)²/r)
Putting the given values in the above equation,σmax = (7700 * π * 0.4² * h/2) * ((π * 0.8 * 3000/60)²/0.4)= 88.934 h * 10⁶ N/m²
Now, calculating the factor of safety,
FS = UTS/σmax= 525/88.934 h * 10⁶= 5.90 h * 10⁻³/h = 5.90 mm/mm
(b) To calculate the strain induced within the thin rim, we use the formula:σ = E * εε = σ/E = σmax/E
Substituting the given values,ε = 88.934 h * 10⁶/80 h * 10⁹= 1.11 h * 10⁻³
(c) To calculate the change in diameter of the rim, we use the formula:
ΔD/D = ε = 1.11 h * 10⁻³D = 800 mmΔD = ε * D= 1.11 h * 10⁻³ * 800= 0.888 mm
Hence, the factor of safety is 5.90 mm/mm, the strain induced within the thin rim is 1.11 h * 10⁻³, and the change in diameter of the rim is 0.888 mm.
Learn more about strain
brainly.com/question/32006951
#SPJ11
A harmonic wave is traveling along a rope. It is observed that the oscillator that generates the wave completes 38.0 vibrations in 32.0 s. Also, a given maximum travels 427 cm along the rope in 6.0 s. What is the wavelength? 0.601 x Your response is off by a multiple of ten. cm
The wavelength of the of the harmonic wave traveling along the rope, given that it completes 38.0 vibrations in 32.0 s is 60.31 cm
How do i determine the wavelength?First, we shall obtain the frequency of the wave. Details below:
Number of vibrations (n) = 38.0 vibrationsTime (t) = 32.0 secondsFrequency (f) = ?Frequency (f) = Number of oscillation (n) / time (s)
= 38.0 / 32.0
= 1.18 Hertz
Next, we shall obtain the speed of the wave. Details below:
Distance = 427 cm Time = 6.0 sSpeed = ?Speed = Distance / time
= 427 / 6
= 71.17 cm/s
Finally, we shall obtain the wavelength of the wave. Details below:
Frequency of wave (f) = 1.18 HertzSpeed of wave (v) = 71.17 cm/sWavelength of wave (λ) = ?Speed (v) = wavelength (λ) × frequency (f)
71.17 = wavelength × 1.18
Divide both sides by 27×10⁸
Wavelength = 71.17 / 1.18
= 60.31 cm
Thus, the wavelength of the wave is 60.31 cm
Learn more about wavelength:
https://brainly.com/question/30859618
#SPJ4
rubber-band slingshot shoots a 25-g stone. What is the initial speed of the stone if the rubber band is drawn back 0.15 m with a maximum force of 27 N? How high will the stone rise if it is shot straight upward?
A 0.80 kg coconut is growing 10 m above the ground in its palm tree. The tree is just at the edge of a cliff that is 15 m tall. What would the maximum speed of the coconut be if it fell to the ground beneath the tree? What would the maximum speed be if it fell from the tree to the bottom of the cliff?
The initial speed of the stone shot from the slingshot is approximately 9.66 m/s, the stone will rise to a maximum height h, and the final vertical velocity component will be 0 m/s, the maximum speed of the coconut if it fell to the ground beneath the tree would be approximately 14 m/s and the maximum speed of the coconut if it fell from the tree to the bottom of the cliff would be approximately 17.1 m/s.
To find the initial speed of the stone shot from the rubber-band slingshot, we can use the concept of work-energy theorem. The work done by the rubber band is equal to the change in kinetic energy of the stone.
The maximum force exerted by the rubber band is 27 N, and the distance it is drawn back is 0.15 m. The work done is given by:
Work = Force * Distance * cos(theta)
In this case, the force and distance are known, but the angle (theta) is not specified. Assuming that the rubber band is pulled straight back, we can set theta to 0 degrees, and cos(0) equals 1.
Therefore, the work done by the rubber band is:
Work = 27 N * 0.15 m * 1 = 4.05 J
This work is equal to the change in kinetic energy of the stone:
Kinetic energy = (1/2) * m * v^2
Here, m is the mass of the stone (25 g = 0.025 kg), and v is the initial speed of the stone.
By equating the work done to the change in kinetic energy, we can solve for the initial speed (v) of the stone:
4.05 J = (1/2) * 0.025 kg * [tex]v^2[/tex]
[tex]v^2[/tex] = (4.05 J * 2) / (0.025 kg)
v = sqrt((4.05 J * 2) / (0.025 kg)) ≈ 9.66 m/s
Now let's move on to the stone being shot straight upward:
When the stone is shot straight upward, its maximum height can be determined using the conservation of mechanical energy. The initial kinetic energy is converted into potential energy at the highest point of the trajectory.
At the highest point, the stone will momentarily come to rest, so its final velocity will be 0 m/s. Therefore, the initial kinetic energy will be equal to the final potential energy.
Kinetic energy = (1/2) * m * [tex]v^2[/tex]
Potential energy = m * g * h
Setting these two equal:
(1/2) * 0.025 kg *[tex]v^2[/tex]= 0.025 kg * 9.8 m/[tex]s^2[/tex] * h
Simplifying:
[tex]v^2 =[/tex] 9.8 m/[tex]s^2[/tex] * h
Plugging in the value for h, which is the maximum height:
[tex]v^2 = 9.8 m/s^2 * hv = sqrt(9.8 m/s^2 * h)[/tex]
Given that the stone rises straight upward, its final vertical velocity will be 0 m/s at the highest point. Therefore, at the highest point, the stone's vertical velocity component will be 0 m/s
Moving on to the coconut scenario:
Maximum speed if the coconut fell to the ground beneath the tree (10 m):
The maximum speed of the coconut can be found using the principle of conservation of energy. The potential energy at the initial position is converted into kinetic energy when it falls.
Potential energy at height h = m * g * h
Kinetic energy at maximum speed = (1/2) * m * [tex]v^2[/tex]
Equating the two:
m * g * h = (1/2) * m * [tex]v^2[/tex]
Simplifying:
[tex]v^2[/tex] = 2 * g * h
Plugging in the values:
[tex]v^2 = 2 * 9.8 m/s^2 * 10 mv = sqrt(2 * 9.8 m/s^2 * 10 m) ≈ 14 m/s[/tex]
Maximum speed if the coconut fell from the tree to the bottom of the cliff (15 m):
Using the same principle of conservation of energy, we can calculate the maximum speed of the coconut.
Potential energy at height h = m * g * h
Kinetic energy at maximum speed = (1/2) * m *[tex]v^2[/tex]
Equating the two:
m * g * h = (1/2) * m * [tex]v^2[/tex]
Simplifying:
[tex]v^2[/tex] = 2 * g * h
Plugging in the values:
[tex]v^2 = 2 * 9.8 m/s^2 * 15 mv = sqrt(2 * 9.8 m/s^2 * 15 m) ≈ 17.1 m/s[/tex]
To know more about velocity refer to-
https://brainly.com/question/30559316
#SPJ11
a 28 x 10-6 C point charge is held at rest within a uniform Electric field of 50.7 N/C directed in the +x direction. If the charge is moved a distance of 0.68 m in the +x direction, what potential difference did it move through?
Given information:
Charge, q = 28 × 10^-6 C
Electric field, E = 50.7 N/C
Displacement, d = 0.68 m.
The formula to calculate the potential difference is given as, V = Ed
Where V is the potential difference,E is the electric field strength, and d is the displacement.
Substitute the given values in the above formula, we ge
tV = 50.7 × 0.68=34.476 volts.
The potential difference is 34.476 V.
Learn more about uniform Electric fields and potential differences https://brainly.com/question/30895854
#SPJ11
A 1.2-kg tumor is being irradiated by a radioactive source. The tumor receives an absorbed dose of 12 Gy in a time of 940 s. Each disintegration of the radioactive source produces a particle that enters the tumor and delivers an energy of 0.43 MeV. What is the activity AN/At (in Bq) of the radioactive source?
Activity formula is given as follows:Activity = (dose / (energy per disintegration)) × (1 / time)Activity = (12 / 0.43) × (1 / 940)Activity = 31.17 Bq Therefore, the activity AN/At (in Bq) of the radioactive source is 31.17 Bq.
According to the given data, the 1.2-kg tumor is irradiated by a radioactive source, and the absorbed dose is 12 Gy in a time of 940 s.Each disintegration of the radioactive source delivers an energy of 0.43 MeV. Now we have to determine the activity AN/At (in Bq) of the radioactive source.Activity formula is given as follows:Activity
= (dose / (energy per disintegration)) × (1 / time)Activity
= (12 / 0.43) × (1 / 940)Activity
= 31.17 Bq
Therefore, the activity AN/At (in Bq) of the radioactive source is 31.17 Bq.
To know more about radioactive source visit:
https://brainly.com/question/12741761
S John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick of height h (Fig. P12.21). The handles make an angle of \theta with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force m g is exerted at the center of the wheel, which has a radius R. (b) What are the components of the force that the brick exerts on the wheel just as the wheel begins to lift over the brick? In both parts, assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel.
The components of the force that the brick exerts on the wheel just as the wheel begins to lift over the brick are a normal force (N) and a horizontal force (F).
The normal force acts perpendicular to the surface of the brick and supports the weight of the wheel and Rachel. The horizontal force acts in the direction opposite to the motion of the wheelbarrow.
The magnitude of the normal force can be calculated as N = mg, where m is the mass of the wheelbarrow and Rachel, and g is the acceleration due to gravity.
The magnitude of the horizontal force can be calculated as F = mg tan(θ), where θ is the angle made by the handles with the ground.
These two forces together provide the necessary support and resistance for the wheelbarrow to lift over the brick.
To learn more about force, Click here: brainly.com/question/30507236?
#SPJ11