(1 point)
7. a marble is rolled down a ramp. the distance it travels is described by the formula d = 490t^2 where d is the distance in centimeters that the marble rolls in t seconds. if the marble is released at the top of a ramp that is 3,920 cm long, for what time period will the marble be more than halfway down the ramp?

t> 2
t> 4
t>8
t> 16

Answers

Answer 1

Here we need to determine the time period for which the marble will be more than halfway down the ramp. The marble will be more than halfway down the ramp for a time period greater than 2.

To determine the time period for which the marble will be more than halfway down the ramp, we need to compare the distance traveled by the marble to half of the length of the ramp.

Given that the distance traveled by the marble is described by the formula d = 490[tex]t^{2}[/tex], and the length of the ramp is 3,920 cm, we can set up the following inequality:490[tex]t^{2}[/tex] > (1/2) * 3,920

Simplifying the equation: 245[tex]t^{2}[/tex] > 1,960

Dividing both sides of the inequality by 245:[tex]t^{2}[/tex] > 8

Taking the square root of both sides: t > √8 , Simplifying further:t > 2√2

Therefore, the marble will be more than halfway down the ramp for a time period greater than 2√2 seconds. This is approximately equal to 2(1.41) = 2.82 seconds.

Therefore, the correct answer is t > 2.82 seconds.

Learn more about time period here:

https://brainly.com/question/32509379

#SPJ11


Related Questions

identify the surface with the given vector equation:
r(s,t)=(s*sin2t,s^2,s*cos(2t))

Answers

The surface with the given vector equation is a paraboloid.

We are given the vector equation of a surface in terms of two parameters s and t:

r(s,t) = (ssin(2t), s^2, scos(2t))

To identify the surface, we need to eliminate the parameters s and t from this equation and obtain a simpler equation in terms of the Cartesian coordinates x, y, and z.

To eliminate t, we can take the ratio of the first and third components of r(s,t):

x/z = sin(2t)/cos(2t) = tan(2t)

Solving for t, we get:

t = 1/2 * atan(x/z)

Substituting this expression for t back into r(s,t), we get:

r(s,x,z) = (sx/sqrt(x^2 + z^2), s^2, sz/sqrt(x^2 + z^2))

To eliminate s, we can set s = sqrt(y) and obtain:

r(x,y,z) = (x/sqrt(1 + z^2/y), y, z/sqrt(1 + z^2/y))

This is the Cartesian equation of a paraboloid, which opens along the y-axis. Specifically, it is a circular paraboloid, since the x and z coordinates appear symmetrically.

For more questions like Vector click the link below:

https://brainly.com/question/29740341

#SPJ11

Mr Deaver 's new car cost $20,000. After one year its value had decreased by 25%. What was the car's value after one year?

Answers

Main answer: The car's value after one year was $15,000.

Supporting explanation:

The cost of Mr. Deaver's new car was $20,000. After one year, the car's value decreased by 25%. Therefore, the car's value after one year can be found by subtracting the 25% decrease from the original cost of the car:

25% of $20,000 = 0.25 × $20,000 = $5,000

Subtracting $5,000 from $20,000 gives us the car's value after one year:

$20,000 - $5,000 = $15,000

Therefore, the car's value after one year was $15,000.

Know more about car's value here:

https://brainly.com/question/29087474

#SPJ11

a pair of dice are rolled one time find the probaility of odds against a sum of 7

Answers

The required answer is every 5 times we roll the dice and don't get a sum of 7, we can expect to get a sum of 7 once.

To find the probability of odds against a sum of 7 when rolling a pair of dice one time, we need to first determine the number of ways to get a sum of 7 versus the number of ways to get any other sum.
There are a total of 36 possible outcomes when rolling a pair of dice, as there are six possible outcomes for each die (1, 2, 3, 4, 5, or 6). To get a sum of 7, there are 6 possible combinations: 1+6, 2+5, 3+4, 4+3, 5+2, and 6+1. Therefore, the probability of rolling a sum of 7 is 6/36 or 1/6.

To find the odds against rolling a sum of 7, we can use the formula:
Odds against = (number of ways it won't happen) : (number of ways it will happen)
So the number of ways it won't happen (i.e. rolling any sum other than 7) is 36-6, or 30. Therefore, the odds against rolling a sum of 7 are:
Odds against = 30 : 6
Simplifying, we get:
Odds against = 5 : 1
This means that for every 5 times we roll the dice and don't get a sum of 7, we can expect to get a sum of 7 once.

To know more about the probability . Click on the link.

https://brainly.com/question/30034780

#SPJ11

show that differentiation is the only linear transformation from pn → pn which satisfies t(x^k ) = kx^k−1 for all k = 0, 1 . . . , n

Answers

The only linear transformation from pn → pn which satisfies t(x^k ) = kx^k−1 for all k = 0, 1 . . . , n is differentiation.

Suppose there exists a linear transformation T: Pn → Pn satisfying T(x^k) = kx^(k-1) for all k = 0, 1, ..., n. We need to show that T is the differentiation operator.

Let p(x) = a0 + a1x + a2x^2 + ... + anxn ∈ Pn be an arbitrary polynomial. Then we can write p(x) as a linear combination of the standard basis polynomials {1, x, x^2, ..., x^n}:

p(x) = a0(1) + a1(x) + a2(x^2) + ... + an(x^n)

Now, by the linearity of T, we have

T(p(x)) = a0T(1) + a1T(x) + a2T(x^2) + ... + anT(x^n)

Using the given condition, T(x^k) = kx^(k-1), we get

T(p(x)) = a0(0) + a1(1) + 2a2(x) + ... + nan(x^(n-1))

This can be rewritten as

T(p(x)) = a1 + 2a2(x) + ... + nan(x^(n-1))

which is exactly the derivative of p(x).

Thus, we have shown that any linear transformation T satisfying T(x^k) = kx^(k-1) for all k = 0, 1, ..., n is the differentiation operator. Therefore, differentiation is the only linear transformation satisfying this condition.

For more questions like Differentiation click the link below:

https://brainly.com/question/13077606

#SPJ11

if one wishes to raise 4 to the 13th power, using regular (naive) exponentiation then how many total multiplication will require?

Answers

To raise 4 to the 13th power using regular exponentiation, a total of 12 multiplications are required.

How many multiplications are required to raise 4 to the power of 13 using regular exponentiation?

To raise 4 to the 13th power using regular exponentiation, we can start by multiplying 4 by itself 13 times. However, this would require a total of 13 multiplications, which is not the most efficient way to calculate 4^13.

Instead, we can use a method called "exponentiation by squaring", which reduces the number of multiplications required. Here's how it works:

Start by writing the exponent (13) in binary form: 13 = 1101 (in binary).

Starting with the base (4), square it repeatedly, each time moving from right to left in the binary representation of the exponent.

Whenever we encounter a "1" in the binary representation of the exponent, we multiply the current result by the base.

Using this method, we can calculate 4^13 with the following steps:

Start with 4.Square 4 to get 16.Square 16 to get 256.Multiply 256 by 4 to get 1024.Square 1024 to get 1,048,576.Multiply 1,048,576 by 4 to get 4,194,304.Square 4,194,304 to get 17,592,186,044,416.Multiply 17,592,186,044,416 by 4 to get 70,368,744,177,664.

So, using exponentiation by squaring, we only needed a total of 7 multiplications instead of 13, which is much more efficient.

Learn more about regular exponentiation

brainly.com/question/30489889

#SPJ11

Students where surveyed about the time they wake up on school mornings. 20 surveyed, out of 500 students. 3 students woke up before 6am, 13 between 6-630am, 4 after 630am what is the best prediction of the number of students who wake up after 630am

Answers

To make the best prediction of the number of students who wake up after 6:30 am, we can use the information provided by the survey.

Out of the 20 students surveyed:

3 students woke up before 6 am.

13 students woke up between 6 am and 6:30 am.

4 students woke up after 6:30 am.

Since the survey sample consists of 20 students, we can assume that the proportions observed in the sample are representative of the larger population of 500 students. To estimate the number of students who wake up after 6:30 am among the 500 students, we can use proportional reasoning.

We can calculate the proportion of students who woke up after 6:30 am in the sample and apply that proportion to the larger population.

The proportion of students who woke up after 6:30 am in the sample is 4/20 or 0.2.

To estimate the number of students who wake up after 6:30 am in the larger population of 500 students, we multiply the proportion by the total population size:

0.2 * 500 = 100

Based on this estimation, the best prediction would be that approximately 100 students wake up after 6:30 am among the 500 surveyed students.

Learn more about prediction Visit : brainly.com/question/4695465

#SPJ11

the correct relationship between sst, ssr, and sse is given by question 13 options: a) ssr = sst sse. b) ssr = sst - sse. c) sse = ssr sst. d) n(sst) = p(ssr) (n - p)(sse).

Answers

The correct relationship between SST, SSR, and SSE is given by option b) SSR = SST - SSE.

SST stands for the total sum of squares, which represents the total variation in the data. It is calculated by taking the sum of the squared differences between each observation and the mean of the entire dataset.

SSR stands for the regression sum of squares, which represents the variation in the data that is explained by the regression model. It is calculated by taking the sum of the squared differences between each predicted value and the mean of the entire dataset.

SSE stands for the error sum of squares, which represents the variation in the data that is not explained by the regression model. It is calculated by taking the sum of the squared differences between each observed value and its corresponding predicted value.

Therefore, the correct relationship between SST, SSR, and SSE is given by the equation SSR = SST - SSE, as SSR represents the portion of the total variation in the data that is explained by the regression model, and SSE represents the portion that is not explained. Subtracting SSE from SST leaves us with SSR, which is the portion of the variation that is explained by the model.

To know more about squares refer to

https://brainly.com/question/28776767

#SPJ11

A right rectangular prism has a length of 8 centimeters, a width of 3 centimeters, and a height of 5 centimeters.
What is the surface area of the prism?

Answers

You can use the following formula to calculate the surface area of the right rectangular prism:

[tex]\sf SA=2(wl+lh+hw)[/tex]

Where "w" is the width, "l" is the length, and "h" is the height.

Knowing that this right rectangular prism  has a length of 8 centimeters, a width of 3 centimeters and a height of 5 centimeters, you can substitute these values into the formula.

Then, the surface of the right rectangular prism is:

[tex]\sf SA=[(3 \ cm\times 8 \ cm)+( 8 \ cm\times 5 \ cm)+(5 \ cm\times3 \ cm)][/tex]

[tex]\Rightarrow\sf SA=158 \ cm^2[/tex]

Triangle JKL with vertices J(4,4) , K(4,6) , and L(1,6) represents an end table in Stacey’s family room. She wants to rotate the end table counterclockwise 180° about vertex J

Answers

After rotating the end table counterclockwise 180° about vertex J, the new coordinates of the vertices will be J(4,4), K(6,2), and L(7,2).

To rotate a point counterclockwise 180° about a fixed point, we can use the following transformation rules:

1. Translate the fixed point to the origin by subtracting its coordinates from all points.

2. Rotate the translated points counterclockwise 180° about the origin.

3. Translate the rotated points back to their original position by adding the coordinates of the fixed point.

In this case, the fixed point is J(4,4). Let's apply these transformation rules to find the new coordinates of the vertices:

1. Translate: Subtract 4 from the x-coordinates and 4 from the y-coordinates of all points:

  J(4-4, 4-4) = J(0,0)

  K(4-4, 6-4) = K(0,2)

  L(1-4, 6-4) = L(-3,2)

2. Rotate: Rotate the translated points counterclockwise 180° about the origin:

  J(0,0) remains unchanged

  K(0,2) rotates to (-0, -2) = (0,-2)

  L(-3,2) rotates to (3,-2)

3. Translate back: Add 4 to the x-coordinates and 4 to the y-coordinates of all points:

  J(0+4, 0+4) = J(4,4)

  K(0+4, -2+4) = K(4,2)

  L(3+4, -2+4) = L(7,2)

Therefore, after rotating the end table counterclockwise 180° about vertex J, the new coordinates of the vertices are J(4,4), K(4,2), and L(7,2).

Learn more about coordinates here:

https://brainly.com/question/15300200

#SPJ11

Hailey has $117. 39 in her savings account. She has -$121. 06 in her checking account. What inequality correctly compares the account values?

Answers

The inequality that correctly compares Hailey's account values is: $117.39 > -$121.06.

To correctly compare the account values, we can use the inequality symbol.

Since Hailey has $117.39 in her savings account and -$121.06 in her checking account, the correct inequality to compare the values is:

Savings account value > Checking account value

Therefore, the correct inequality is:

$117.39 > -$121.06

To know more about inequality,

https://brainly.com/question/32848031

#SPJ11

What is the value of x?

sin 25° = cos x°

1. 50

2. 65

3. 25

4. 155

5. 75

Answers

The value of x in the function is 65 degrees

Calculating the value of x in the function

From the question, we have the following parameters that can be used in our computation:

sin 25° = cos x°

if the angles are in a right triangle, then we have tehe following theorem

if sin a° = cos b°, then a + b = 90

Using the above as a guide, we have the following:

25 + x = 90

When the like terms are evaluated, we have

x = 65

Hence, the value of x is 65 degrees

Read more about trigonometry function at

https://brainly.com/question/24349828

#SPJ1

The circumference of the Curiosity Rover’s wheels are 157. 1 cm. If the wheels are rotated 14, 756. 8 times, how many miles has Curiosity traveled

Answers

The Curiosity Rover has traveled approximately distance covered 14.43 miles.

Given that the circumference of the Curiosity Rover's wheels is 157.1 cm and the wheels are rotated 14,756.8 times,

we need to find the distance covered by the Curiosity Rover.

Let us first convert the circumference from centimeters to miles:

1 mile = 160934.4 cm

Circumference in miles = 157.1/160934.4 miles

Circumference in miles = 0.000976615 miles

We know that distance covered is equal to the product of circumference and the number of revolutions. Thus,

Distance covered = Circumference * Number of revolutions

Distance covered = 0.000976615 miles * 14,756.8

Distance covered = 14.426192 miles

To know more about circumference :

https://brainly.com/question/4268218

#SPJ11

A player chooses one card from deck a and one card from deck b. what is the probability that the player will choose a c2 card from the first deck or a c6 card from the second deck?

the probability of choosing a c3 card from deck a or choosing a c5 card from deck b is?

Answers

To calculate the probability of choosing a c2 card from the first deck (Deck A) or a c6 card from the second deck (Deck B):

First, calculate the probability of choosing a c2 card from Deck A:

P(c2) = Number of c2 cards in Deck A / Total number of cards in Deck A

= 4/20

= 1/5

Next, calculate the probability of choosing a c6 card from Deck B:

P(c6) = Number of c6 cards in Deck B / Total number of cards in Deck B

= 2/10

= 1/5

Since the events of choosing a c2 card and a c6 card are mutually exclusive, the probability of both events occurring together (P(c2 and c6)) is zero.

Therefore, the probability of choosing a c2 card from Deck A or a c6 card from Deck B can be found by adding these probabilities:

P(c2 or c6) = P(c2) + P(c6) - P(c2 and c6)

= 1/5 + 1/5 - 0

= 2/5

So, the probability of choosing a c2 card from Deck A or a c6 card from Deck B is 2/5.

Now, let's calculate the probability of choosing a c3 card from Deck A or a c5 card from Deck B:

P(c3) = Number of c3 cards in Deck A / Total number of cards in Deck A

= 5/20

= 1/4

P(c5) = Number of c5 cards in Deck B / Total number of cards in Deck B

= 1/10

Therefore, the probability of choosing a c3 card from Deck A or a c5 card from Deck B is:

P(c3 or c5) = P(c3) + P(c5)

= 1/4 + 1/10

= 3/10

So, the probability of choosing a c3 card from Deck A or a c5 card from Deck B is 3/10.

To know more about  mutually exclusive,visit:

https://brainly.com/question/30512497

#SPJ11

Exercise 8.5. Let X be a geometric random variable with parameter p = and let Y be a Poisson random variable with parameter A 4. Assume X and Y independent. A rectangle is drawn with side lengths X and Y +1. Find the expected values of the perimeter and the area of the rectangle.

Answers

Let X be a geometric random variable with parameter p = and let Y be a Poisson random variable with parameter A 4. Assuming X and Y independent, then the expected value of the perimeter of the rectangle is 2( + 5), and the expected value of the area is 5.

For the expected values of the perimeter and area of the rectangle, we need to calculate the expected values of X and Y first, as well as their respective distributions.

We have,

X is a geometric random variable with parameter p =

Y is a Poisson random variable with parameter λ = 4

X and Y are independent

For a geometric random variable with parameter p, the expected value is given by E(X) = 1/p. In this case, E(X) = 1/p = 1/.

For a Poisson random variable with parameter λ, the expected value is equal to the parameter itself, so E(Y) = λ = 4.

Now, let's calculate the expected values of the perimeter and area of the rectangle using the given side lengths X and Y + 1.

Perimeter = 2(X + Y + 1)

Area = X(Y + 1)

To find the expected value of the perimeter, we substitute the expected values of X and Y into the equation:

E(Perimeter) = 2(E(X) + E(Y) + 1)

            = 2( + 4 + 1)

            = 2( + 5)

To find the expected value of the area, we substitute the expected values of X and Y into the equation:

E(Area) = E(X)(E(Y) + 1)

       = ( )(4 + 1)

       = 5

Therefore, the expected value of the perimeter of the rectangle is 2( + 5), and the expected value of the area is 5.

To know more about Geometric and Poisson random variable refer here:

https://brainly.com/question/32295808#

#SPJ11

solve 8 cos 2 ( t ) − 2 sin ( t ) − 7 = 0 for all solutions 0 ≤ t < 2 π

Answers

The solution for 8 cos 2 ( t ) − 2 sin ( t ) − 7 = 0 for all solutions 0 ≤ t < 2 π is

t ≈ 0.896 rad and t ≈ 5.387 rad.

We can use the trigonometric identity:

cos(2t) = 2cos²t - 1, to rewrite the equation as:

8(2cos²t - 1) - 2sint - 7 = 0

Simplifying and rearranging terms, we get:

16cos²t - 2sint - 15 = 0

Using the identity sin²(t) + cos²(t) = 1, we can substitute sin(t) = ±√(1 - cos²(t)) and get a quadratic equation in terms of cos(t):

16cos²(t) - 2(±√(1 - cos²(t))) - 15 = 0

Solving for cos(t), we get:

cos(t) = ±√(17)/4

Since 0 ≤ t < 2π, we can use the inverse cosine function to find the solutions in this interval:

t = cos⁻¹(√(17)/4) and t = 2π - cos⁻¹(√(17)/4)

Therefore, the solutions are:

t ≈ 0.896 rad and t ≈ 5.387 rad.

To learn more about cos : https://brainly.com/question/23720007

#SPJ11

If the coefficient of the correlation is -0.4,then the slope of the regression line a.must also be -0.4 b.can be either negative or positive c.must be negative d.must be 0.16

Answers

If the coefficient of correlation is -0.4, then the slope of the regression line must be negative.(C)

The coefficient of correlation, denoted as 'r', measures the strength and direction of the linear relationship between two variables. In this case, r = -0.4, indicating a negative relationship.

The slope of the regression line, denoted as 'a', represents the change in the dependent variable for a unit change in the independent variable. Since the correlation coefficient is negative, the slope of the regression line must also be negative, as the variables move in opposite directions.

This means that as one variable increases, the other decreases. Thus, the correct answer is (c) the slope of the regression line must be negative.

To know more about coefficient of correlation click on below link:

https://brainly.com/question/15577278#

#SPJ11

Use the regression equation in Exercise 16.2 to predict with 90% confidence the sales when the advertising budget is $90,000.

Answers

Without access to Exercise 16.2, I'm unable to provide the regression equation.

However, I can provide a general framework for predicting sales using a regression equation with a given advertising budget and confidence interval. To predict sales with a 90% confidence interval, you would first need to input the advertising budget value of $90,000 into the regression equation. The resulting value would be your point estimate for the sales with that budget. Next, you would need to calculate the margin of error using the standard error of the estimate, which is a measure of the variability of the predicted sales around the regression line. The margin of error is equal to the critical value (which depends on the sample size and confidence level) times the standard error of the estimate. Finally, you would calculate the confidence interval by adding and subtracting the margin of error from the point estimate. The resulting interval would provide a range of values that you can be 90% confident includes the true sales value for the given advertising budget.

Learn more about regression here

https://brainly.com/question/17004137

#SPJ11

Use the regression equation in Exercise 16.2 to predict with 90% confidence the sales when the advertising budget is $90,000.

If the standard deviation of a data set were originally 4, and if each value in the data set were multiplied by 1. 75, what would be the standard deviation of the resulting data? O A. 1 B. 4 O c. 7 O D. 3​

Answers

The standard deviation of the resulting data would be 7. To understand why the standard deviation would be 7, let's consider the effect of multiplying each value in the data set by 1.75.

When we multiply each value by a constant, the mean of the data set is also multiplied by that constant. In this case, since multiplying by 1.75 increases the scale of the data, the mean is also multiplied by 1.75.

Now, the standard deviation measures the dispersion or spread of the data around the mean. When we multiply each value by 1.75, the spread of the data increases because the values are further away from the mean. Since the original standard deviation was 4 and each value is multiplied by 1.75, the resulting standard deviation is 4 * 1.75 = 7.

Therefore, the standard deviation of the resulting data is 7.

To learn more about standard deviation visit:

brainly.com/question/13498201

#SPJ11

Determine whether the series converges or diverges.[infinity]Σ 5n / ( 2n2 - 5 )n=1

Answers

The limit is less than 1, the series converges by the ratio test. The given series ∑(n=1 to infinity) 5n / [(2n^2

To determine the convergence or divergence of the series ∑(n=1 to infinity) 5n / [(2n^2 - 5)], we can use the limit comparison test or the ratio test.

Let's start with the limit comparison test. We choose a known convergent series with positive terms, say ∑(n=1 to infinity) 1/n^2.

First, let's calculate the limit of the ratio of the two series:

lim (n→∞) (5n / [(2n^2 - 5)]) / (1/n^2)

To simplify this expression, let's multiply the numerator and denominator by n^2:

lim (n→∞) [(5n * n^2) / (2n^2 - 5)] / 1

Simplifying further:

lim (n→∞) (5n^3) / (2n^2 - 5)

Since the degree of the numerator is greater than the degree of the denominator, we can divide both the numerator and denominator by n^2:

lim (n→∞) (5n^3 / n^2) / (2n^2 / n^2 - 5 / n^2)

= lim (n→∞) (5n) / (2 - 5/n^2)

As n approaches infinity, the term 5/n^2 approaches 0. Therefore:

lim (n→∞) (5n) / (2 - 5/n^2) = lim (n→∞) (5n) / 2

This limit is equal to infinity. Since the limit of the ratio of the two series is not finite (it diverges), we cannot use the limit comparison test to determine convergence.

Next, let's use the ratio test:

Using the ratio test, we calculate:

lim (n→∞) |(5(n+1) / [(2(n+1)^2 - 5)]) / (5n / [(2n^2 - 5)])|

Simplifying:

lim (n→∞) |(5(n+1) * [(2n^2 - 5)]) / (5n * [(2(n+1)^2 - 5)])|

Again, dividing the numerator and denominator by n^2:

lim (n→∞) |[(5(n+1) * (2n^2 - 5)) / (5n * (2(n+1)^2 - 5))] * (n^2 / n^2)

= lim (n→∞) |(5(n+1) * (2 - 5/n^2)) / (5 * (2(n+1)^2/n^2 - 5/n^2))|

As n approaches infinity, the term 5/n^2 approaches 0. Therefore:

lim (n→∞) |(5(n+1) * (2 - 5/n^2)) / (5 * (2(n+1)^2/n^2))|

= lim (n→∞) |(5(n+1) * 2) / (5 * 2(n+1)^2/n^2)|

= lim (n→∞) |(n+1) / (n+1)^2|

Taking the absolute value, we have:

lim (n→∞) |1 / (n+1)| = 0

Since the limit is less than 1, the series converges by the ratio test.

Therefore, the given series ∑(n=1 to infinity) 5n / [(2n^2

To know more about convergent series refer to

https://brainly.com/question/15415793

#SPJ11

Omar’s preparing the soil in his garden for planting squash. The directions say to use 4 pounds of fertilizer for 160 square feet of soil. The area of Omar’s Garden is 200 square feet. How much fertilizer is needed for a 200 square-foot garden?

Answers

The amount of fertilizer required for a 200 square-foot garden is 5 pounds.

According to the given data, the directions say to use 4 pounds of fertilizer for 160 square feet of soil. Then, for 1 square foot of soil, Omar needs 4/160 = 0.025 pounds of fertilizer.So, to find the amount of fertilizer needed for 200 square feet of soil, we will multiply the amount of fertilizer for 1 square foot of soil with the area of Omar's garden.i.e., 0.025 × 200 = 5 pounds of fertilizer.
So, Omar needs 5 pounds of fertilizer for a 200 square-foot garden.

Therefore, the amount of fertilizer required for a 200 square-foot garden is 5 pounds.

To know more about area, click here

https://brainly.com/question/1631786

#SPJ11

how many teenagers (people from ages 13-19) must you select to ensure that 4 of them were born on the exact same date (mm/dd/yyyy)? simplify your answer to an integer.

Answers

Assuming that there are 365 days in a year (ignoring leap years) and that all dates are equally likely, we can use the Pigeonhole Principle to determine the minimum number of teenagers needed to ensure that 4 of them were born on the same date.

There are 365 possible days in a year on which a person could be born. Therefore, if we select k teenagers, the total number of possible birthdates is 365k.

To guarantee that 4 of them were born on the exact same date, we need to find the smallest value of k for which 365k is greater than or equal to 4 times the number of possible birthdates. In other words:365k ≥ 4(365)

Simplifying this inequality, we get: k ≥ 4

Therefore, we need to select at least 4 + 1 = 5 teenagers to ensure that 4 of them were born on the exact same date.

To know more about "Pogeonhole Principle" refer here:

https://brainly.com/question/31687163#

#SPJ11

. If 10 + 30 + 90 + ⋯ = 2657200, what is the finite sum equation? Include values for 1, , and

Answers

The value of the finite sum equation is,

⇒ S = 5 (3ⁿ - 1)

We have to given that;

Sequence is,

⇒ 10 + 30 + 90 + ..... = 2657200

Now, We get;

Common ratio = 30/10 = 3

Hence, Sequence is in geometric.

So, The sum of geometric sequence is,

⇒ S = a (rⁿ- 1)/ (r - 1)

Here, a = 10

r = 3

Hence, We get;

⇒ S = 10 (3ⁿ - 1) / (3 - 1)

⇒ S = 10 (3ⁿ - 1) / 2

⇒ S = 5 (3ⁿ - 1)

Learn more about the geometric sequence visit:

https://brainly.com/question/25461416

#SPJ1

An Engineer makes metal parts in


the shape of hollow spheres. The


diameter of the outside of the


sphere is 3in and the walls of the


sphere are 0. 5 inches thick. What is


the volume of the part?

Answers

To find the volume of the hollow sphere, we need to subtract the volume of the inner sphere from the volume of the outer sphere. Given that the outside diameter of the sphere is 3 inches and the walls are 0.5 inches thick, we can find the inside diameter of the sphere as follows:

Diameter of inside sphere = Diameter of outside sphere - 2 × Thickness of wall= 3 - 2(0.5) = 2 inches Now we can find the volumes of the inner and outer spheres as follows: Volume of outer sphere = [tex](4/3)π(1.5)^3= 14.14[/tex] cubic inches Volume of inner sphere = [tex](4/3)π(1)^3= 4.19[/tex]cubic inches Therefore, the volume of the part is: Volume of part = Volume of outer sphere - Volume of inner sphere= 14.14 - 4.19= 9.95 cubic inches.

To know more about  sphere visit:

brainly.com/question/22849345

#SPJ11

The following list shows how many brothers and sisters some students have:

2
,


2
,


4
,


3
,


3
,


4
,


2
,


4
,


3
,


2
,


3
,


3
,


4


State the mode.

Answers

Answer:

3.

Step-by-step explanation:

The mode is what number appears the most. Hope this helps!

can 5 vectors in f 4be linearly independent? justify your answer.

Answers

No, 5 vectors in4be cannot be linearly independent.

This is because the maximum number of linearly independent vectors in 4be is 4. This is because any set of 5 or more vectors in4be must be linearly dependent by the Pigeonhole Principle. Specifically, if there are 5 or more vectors in4be, then there are only 4 possible choices for the first 4 entries of each vector. Therefore, by the Pigeonhole Principle, there must be two vectors that have the same first 4 entries. Since the last entry can be any element of 4be, these two vectors are linearly dependent, and thus the set of 5 or more vectors is linearly dependent.

Know more about Pigeonhole Principle here:

https://brainly.com/question/31876101

#SPJ11

What factor limits the seaward distribution of Iva in the marsh? View Available Hint(s) O aphid density Osoil salinity O number and amount of herbivores present Osoil oxygen levels Juncus pressce

Answers

Soil salinity is the main factor that limits the seaward distribution of Iva in the marsh.

Iva is a plant that can tolerate a range of soil conditions, but high salinity levels make it difficult for the plant to grow and survive. As the marsh gets closer to the sea, the soil salinity increases, making it less favorable for Iva growth. Additionally, the presence of other herbivores can also limit the growth of Iva by reducing the availability of nutrients and resources. Soil oxygen levels and Juncus pressce can also affect Iva growth, but salinity has the most significant impact.

In conclusion, high soil salinity is the main factor that limits the seaward distribution of Iva in the marsh.

To know more about soil salinity visit:

https://brainly.com/question/30071300

#SPJ11

How many more bushels did mr myers pick of golden delicious apples than of red delicious apples

Answers

The amount of golden delicious apples than red delicious apples that Mr. Myers picked would be 14 1/8.

How many more apples did Mr. Myers pick?

The extra amount of golden delicious apples that Mr. Myers picked in comparison to the red delicious apples that Mr. Myers picked would be gotten by subtracting the amount of golden delicious apples from red delicious apples as follows:

27 2/8 - 13 1/8

= 14 1/8

So, the amount with which the number of golden delicious apples that Mr. Myers got was greater than the red delicious apples is 14 1/8

Learn more about fractions here:

https://brainly.com/question/17220365

#SPJ4

Complete Question:

Mr.Myers picked 13 1/8 bushels of red delicious apples and 27 2/8 bushels of golden delicious apples. How many bushels of golden delicious apples than of red delicious apples did he pick?

c. show the result of using the buildheap general algorithm described in the class to build a binary heap using the same input as in a.

Answers

Using the build heap general algorithm described in class, the result of building a binary heap using the same input as in part a would be a complete binary tree where each node is greater than or equal to its children (if any).

The algorithm first starts by building a binary tree by inserting each element of the input list into the tree in level order. It then iteratively performs heapify operations on each non-leaf node starting from the last node and moving up to the root. The heapify operation swaps the node with its largest child (if it exists) until the node is greater than or equal to its children. This process ensures that the resulting binary tree is a heap.

Learn more about algorithm here:

https://brainly.com/question/21364358

#SPJ11

F (*) - -42 + 4 and g (a) - 20; + 20, what is f (g (4)?

Answers

To find the value of f(g(4)), we need to evaluate the function g(4) first, and then substitute that result into the function f.

The given problem defines two functions, f(x) and g(a). The function f(x) is defined as -42 + 4, which simplifies to -38. The function g(a) is defined as -20; + 20, which means it returns the value of a without any changes.

To find f(g(4)), we need to evaluate g(4) first. Since g(a) returns the value of a without any changes, g(4) will simply be 4.

Now we can substitute the result of g(4) into f(x). We substitute 4 into f(x), which gives us:

f(g(4)) = f(4) = -38.

Therefore, the value of f(g(4)) is -38.

Learn more about substitute  here :

https://brainly.com/question/29383142

#SPJ11

The demand for a medical equipment is uncertain and follows a normal distribution. Its average daily demand is 45 units, with a daily standard deviation of 7 units. It costs $46 to place an order, and it takes 2 weeks to receive the order. The equipment requires a 95% service level, or a 95% probability of not-stocking-out. What would be the safety stock level to satisfy the required 95% service level? Note that z = normsinv(0.95) = 1.64.

Answers

A safety stock level of approximately 23 units would be needed to achieve the required 95% service level.

The safety stock level can be calculated as:

Safety stock = z * σ * sqrt(L)

where z is the z-score corresponding to the desired service level, σ is the standard deviation of daily demand, and L is the lead time (in days).

In this case, z = 1.64, σ = 7, L = 14 (2 weeks x 7 days/week), so:

Safety stock = 1.64 * 7 * sqrt(14) ≈ 22.8

Know more about safety stock level here;

https://brainly.com/question/30626062

#SPJ11

Other Questions
Youve observed the following returns on SkyNet Data Corporations stock over the past five years: 21 percent, 17 percent, 26 percent, 27 percent, and 4 percent.a. What was the arithmetic average return on the companys stock over this five-year period?b. What was the variance of the companys returns over this period? The standard deviation?c. What was the average nominal risk premium on the companys stock if the average T-bill rate over the period was 5.1 percent? Identify the steps that might occur leading to foodborne intoxications by S. aureus and C. botulinum.A. A person ingests the toxin-containing food. Symptoms of botulism begin in 12 to 36 hours.B. Pathogen endospores contaminate many different foods.C. A person ingests the toxin-containing food, resulting in food poisoning symptoms in 4 to 6 hours.D. Most bacteria that compete with pathogen are killed by booking or inhibited by salty conditions.E. A food handler inadvertently transfers pathogen onto food.F. Pathogen grows and produces toxin when food cools slowly or is stored at room temperature.G. Endospores survive inadequate canning processes. Canned foods are anaerobic.H. Surviving endospores germinate, grow, and produce toxin in canned foods predict the major product formed by 1,4-addition of hcl to 1,3-cycloheptadiene. In a Cournot market structure with two firms, firm A's reaction function gives: optimal quantity for A as a function of price for A and price for B. optimal price for A as a function of price for B. optimal quantity for A as a function of price for B. optimal quantity for A as a function of quantity for B. *option 1 is incorrect Imagine that a host with IP address 150.55.66.77 wishes to download a file from the web server at IP address 202.28.15.123. Select a valid socket pair for a connection between this pair of hosts. 1 150.55.66.77:150 and 202.28.15.123:80 2 150.55.66.77:80 and 202.28.15.123:80 3 150.55.66.77:80 and 202.28.15.123:3500 4 150.55.66.77:2000 and 202.28.15.123:80 In a perfectly competitive market, each firm has the cost function: q 2+10q+100. The price in the market is $50.a. What is the Marginal Cost for the firm?b. What is the Profit Maximizing Output?c. What is the Total Profit the firm receives?d. Should this firm continue to produce in the short run? Please explain.e. If the price is $20, should the firm continue to produce? Please explain. Where a higher value is placed on the more easily recognized alternative? The U.S. fits neatly into which of the five global health care models? a. Beveridge model b. Bismarck model c. National health insurance model d. None of the above Which ion would you expect to have the largest crystal field splitting delta ? [Os(H2O)6]^2+ [Os(CN)6]^3 [Os(CN)6]^4- [Os( H2O)6]^3+ in a survey conducted on a simple random sample of 1, 002 p eople, 701 said that they voted in a recent presidential election. a) Construct a 95% CI estimate of the proportion of eligible voters who would say that they voted? YOU HAVE TO USE THE EXCEL COMMANDS SHOWN IN CLASS TO DETER- MINE THE CI. THE ANSWER TO THIS QUESTION MUST BE SUBMITTED IN 3 EXCEL. ANSWERS IN ANOTHER FORMAT WILL NOT BE CONSIDERED. b) Voting records show that 61% of eligible voters actually did vote. Are the survey results consistent with the actual voter turnout of 61%? Explain very clearly your answer. bonds that are issued against the general credit of the borrower are called group of answer choices callable bonds. debenture bonds. secured bonds. term bonds. How do we know that orientation of promoters relative to the transcription start site is important while enhancers are orientation independent? A. experiments using reporter gene constructs B. experiments using mutations in regulatory genes C. experiments using insulator elements D. experiments using silencer elements 2. using sound, balanced nuclear equation/reaction and principle only, explain (a) "how does ki work to help mitigate the effect of exposure to radiation? Altham (1978) introduced the discrete distribution f(x;7, 0) = c(7,0) (%) **(1 11)-xgxn-x), *= 0,1..., n, = where cart, 0) is a normalizing constant. Show that this is in the two-parameter exponential family and that the binomial occurs when 0 = 1. (Altham noted that overdispersion occurs when 0 < 1. Lindsey and Altham (1998) used this as the basis of an alternative model to the beta-binomial.) paloma, while driving at a constant speed of 45 mph, begins to speed up in such a way that her velocity t hours later is v(t) 45 12t mph. how far does she travel in the first 2 hours? given the regression equation y with hat on top equals negative 0.07 x plus 16, what will y with hat on top be when x = 100? Select the statement that best describes the a mainframe computer.-It enabled users to organize information through word processing and database programs from their desktop.-It enabled people to connect to a central server and share data with friends, business partners, and collaborators.-It could run programs and store data on a single silicon chip, which increased computing speeds and efficiency-It enabled corporations and universities to store enormous amounts of data, sometimes on devices which occupied an entire room. 13. the reaction has the following rate law: after a period of s, the concentration of no falls from an initial value of 2.8 103 mol/l to 2.0 103 mol/l. what is the rate constant, k? Find the surface area of the prism. Round to the nearest whole numberShow working out a) According to theory, the period T of a simple pendulum is T = 2L/g, where L is the length of the pendulum. If L is measured as L = 1.40 0.01 m, what is the predicted value of T?b) Would you say that a measured value of T = 2.39 0.01 s is consistent with the theoretical prediction of part (a)?