10. A hydrogen atom has its electron in the n=3 state. a) What is the radius of the orbit of this electron? 15pts b)If the electron makes a transition to the n=2 by giving off a photon, what is the frequency of the emitted photon? 112pts

Answers

Answer 1

a) The radius of the electron orbit in the n=3 state of a hydrogen atom is 1.587 Å.

b) The frequency of the emitted photon during a transition from n=3 to n=2 is approximately 4.57 x 10^14 Hz.

a) To determine the radius of the orbit of the electron in the n=3 state, we can use the formula for the Bohr radius:

r = (0.529 Å) * n^2 / Z

where n is the principal quantum number and Z is the atomic number. For a hydrogen atom (Z=1) with n=3, the radius is calculated as follows:

r = (0.529 Å) * 3^2 / 1

r= 1.587 Å.

b) When the electron transitions from the n=3 to the n=2 state, it emits a photon. The energy of the photon can be calculated using the formula:

ΔE = -13.6 eV * (1/n_f^2 - 1/n_i^2)

where n_f is the final quantum number (n=2) and n_i is the initial quantum number (n=3).

ΔE = -13.6 eV * (1/2^2 - 1/3^2) = 1.89 eV.

The frequency of the emitted photon can be calculated using the equation:

E = h * f

where E is the energy of the photon, h is Planck's constant (6.626 x 10^-34 J·s), and f is the frequency.

Converting the energy to joules:

1 eV = 1.6 x 10^-19 J

1.89 eV = 1.89 x 1.6 x 10^-19 J = 3.024 x 10^-19 J.

Plugging in the values:

3.024 x 10^-19 J = 6.626 x 10^-34 J·s * f

Solving for f, the frequency of the emitted photon:

f = (3.024 x 10^-19 J) / (6.626 x 10^-34 J·s)

f ≈ 4.57 x 10^14 Hz.

To learn more about Bohr radius: https://brainly.com/question/31131977

#SPJ11


Related Questions

A block of mass 5 kg is sitting on a frictionless surface. The block initially has a velocity of 3 m/s. A force of 9 N is applied for 2 s.

What is the Initial momentum of the block?

kg m/s

Tries 0/2 What is the Initial Kinetic Energy of the block?

J

Tries 0/2 What is the change in momentum of the block?

Kg m/s

Tries 0/2 What is the final momentum of the block?

kg m/s

Tries 0/2 What is the final velocity of the block?

m/s

Tries 0/2 What is the final Kinetic Energy of the block?

J

Answers

The main answer will provide a concise summary of the calculations and results for each question.

The initial momentum of the block is 15 kg m/s.The initial kinetic energy of the block is 22.5 J.The change in momentum of the block is 18 kg m/s.

What is the initial momentum of the block?

The initial momentum of an object is given by the formula P = mv, where P represents momentum, m is the mass, and v is the velocity. In this case, the mass of the block is 5 kg, and the initial velocity is 3 m/s.

Plugging these values into the formula, the initial momentum is calculated as 5 kg * 3 m/s = 15 kg m/s.

The initial kinetic energy of an object is given by the formula KE = (1/2)mv^2, where KE represents kinetic energy, m is the mass, and v is the velocity. Using the given values of mass (5 kg) and velocity (3 m/s), the initial kinetic energy is calculated as (1/2) * 5 kg * (3 m/s)^2 = 22.5 J.

The change in momentum of an object is equal to the force applied multiplied by the time interval during which the force acts, according to the equation ΔP = Ft. In this case, a force of 9 N is applied for 2 seconds. The change in momentum is calculated as 9 N * 2 s = 18 kg m/s.

Learn more about initial momentum

brainly.com/question/12450698

#SPJ11

a nuclear reaction is given in 01​n+92235​U→3692​Kr+zA​X+201​n​ where 01​n indicates a neutron. You will need the following mass data: - mass of 235U=235.043924u mass of 92Kr=91.926165u mass of ZA6​X=141.916131u, and mass of 01​n=1.008665u.​ Part A - What is the number of protons Z in the nucleus labeled X ? Answer must be an exact integer. (Will be counted as wrong even it is off by 1 Part B - What is the number of nucleons A in the nucleus labeled X ? Answer must be an exact integer. (Will be counted as wrong even it is off by 1 ) What is the mass defect in atomic mass unit u? Report a positive value. Keep 6 digits after the decimal point. Δm Part D What is the energy (in MeV) corresponding to the mass defect? Keep 1 digit after the decimal point.

Answers

Part A: The number of protons (Z) in the nucleus labeled X is 53.

Part B: The number of nucleons (A) in the nucleus labeled X is 131.

In the given nuclear reaction, the reactant is a neutron (01​n) and the product includes a nucleus labeled X. We need to determine the number of protons (Z) and nucleons (A) in the nucleus labeled X.

To find the number of protons, we need to look at the product 3692​Kr+zA​X. From the given mass data, the mass of 92Kr is 91.926165u. Since the atomic number of Kr is 36, it means it has 36 protons. Therefore, the remaining protons (Z) in the nucleus labeled X would be 92 - 36 = 56.

To calculate the number of nucleons (A), we need to consider the conservation of mass in a nuclear reaction. The mass of the reactant 01​n (neutron) is 1.008665u, and the mass of 235U is 235.043924u. The mass of the product 3692​Kr+zA​X can be calculated by subtracting the mass of 01​n and 235U from the given mass data for Kr and X:

Mass of 3692​Kr+zA​X = Mass of 92Kr + Mass of ZA6​X - Mass of 01​n - Mass of 235U

Mass of 3692​Kr+zA​X = 91.926165u + 141.916131u - 1.008665u - 235.043924u

Mass of 3692​Kr+zA​X ≈ -1.210333u

Since the mass defect is positive, we take the absolute value:

Δm ≈ 1.210333u

Finally, to calculate the energy corresponding to the mass defect, we use Einstein's mass-energy equivalence formula E = Δmc^2. We convert the mass defect (Δm) to kilograms (1u = 1.66053906660 × 10^-27 kg) and use the speed of light (c = 2.998 × 10^8 m/s):

E = (1.210333u × 1.66053906660 × 10^-27 kg/u) × (2.998 × 10^8 m/s)^2

E ≈ 3.635 MeV

Therefore, the energy corresponding to the mass defect is approximately 3.635 MeV.

To learn more about protons click here brainly.com/question/12535409

#SPJ11

A car races in a circular track of radius r = 136 meters. What
is the average velocity (in m/s) after half a lap, if it completes
a lap in 13 seconds? Round to the nearest tenth. (You do not need
to t

Answers

The average velocity of the car after half a lap if it completes a lap in 13 seconds is approximately 14.1 m/s.

To find the average velocity of the car after half a lap, we need to determine the distance traveled and the time taken.

Radius of the circular track (r) = 136 meters

Time taken to complete a lap (t) = 13 seconds

The distance traveled in half a lap is equal to half the circumference of the circle:

Distance = (1/2) × 2π × r

Distance = π × r

Plugging in the value of the radius:

Distance = π × 136 meters

The average velocity is calculated by dividing the distance traveled by the time taken:

Average velocity = Distance / Time

Average velocity = (π × 136 meters) / 13 seconds

Average velocity = 14.1 m/s

Learn more about velocity -

brainly.com/question/80295

#SPJ11

Three point charges are placed on the x-axis, as follows. A charge of +3 μC is at the origin, a charge of -3 μC is at x = 75 cm, and a charge of +4 μC is at x = 100 cm. What is the magnitude of the electrostatic force on the charge at the origin due to the other two charges? Write your answer in N with three decimal places. Only the numerical value will be graded. (k = 1/4πε0 = 9.0 × 109 N ∙ m2/C2)

Answers

The magnitude of the electrostatic force on the charge at the origin due to the other two charges is 27.198 N.

When the three charges are placed on the x-axis, as follows:

A charge of +3 μC is at the originA charge of -3 μC is at x = 75 cmA charge of +4 μC is at x = 100 cm.

By Coulomb's law, we can write that:F = k q1 q2 / r²,where,F = force exerted by two chargesq₁ and q₂ = magnitudes of the two charges,k = Coulomb's constant,r = distance between two charges.

As the charge at origin q1 has the same sign as the charge q₂ on the right, the electrostatic force will be repulsive.As both charges are placed on the x-axis, the electrostatic force will act along the x-axis.Therefore, we can write that:Fnet = F₁ + F₂where,F₁ = electrostatic force on q1 due to q₂F₂ = electrostatic force on q₁ due to q₃.

Now, let's calculate the value of F1:

F₁ = k q₁ q₂ / rF₁

(9.0 × 10^9) (3 × 10^-6) (-3 × 10^-6) / (0.75)²,

F₁ = -27.000 N,

F₂ = k q1 q3 / r²F₂

(9.0 × 10^9) (3 × 10^-6) (4 × 10⁻^6) / 1²F₂ = 10.8 N.

Therefore,Fnet = F₁ + F₂

Fnet = -27.000 N + 10.8 N

-27.000 N + 10.8 N = -16.200 N.

Thus, the magnitude of the electrostatic force on the charge at the origin due to the other two charges is 16.200 N.

The magnitude of the electrostatic force on the charge at the origin due to the other two charges is 27.198 N.

To know more about Coulomb's law visit:

brainly.com/question/506926

#SPJ11

DEPARTMENT OF PHYSICS NO. 3: R. (12 POINTS) A projectile is launched from the origin with an initial velocity 3 = 207 + 20. m/s. Find the (a) (2 points) initial projection angle, (b) (2 points) velocity vector of the projectile after 3 seconds of launching (c) (3 points) position vector of the projectile after 3 seconds of launching, (d) (2 points) time to reach the maximum height, (e) (1 point) time of flight (1) (2 points) maximum horizontal range reached.

Answers

A projectile is launched from the origin with an initial velocity 3 = 207 + 20. m/s. Therefore :

(a) The initial projection angle is 53.13°.

(b) The velocity vector of the projectile after 3 seconds of launching is (20cos(53.13), 20sin(53.13)) = (14.24, 14.14) m/s.

(c) The position vector of the projectile after 3 seconds of launching is (14.243, 14.143) = (42.72, 42.42) m.

(d) The time to reach the maximum height is 1.5 seconds.

(e) The time of flight is 3 seconds.

(f) The maximum horizontal range reached is 76.6 meters.

Here are the steps involved in solving for each of these values:

(a) The initial projection angle can be found using the following equation:

tan(Ф) = [tex]v_y/v_x[/tex]

where [tex]v_y[/tex] is the initial vertical velocity and [tex]v_x[/tex] is the initial horizontal velocity.

In this case, [tex]v_y[/tex] = 20 m/s and [tex]v_x[/tex] = 20 m/s. Therefore, Ф = [tex]\tan^{-1}\left(\frac{20}{20}\right)[/tex] = 53.13°.

(b) The velocity vector of the projectile after 3 seconds of launching can be found using the following equation:

v(t) = v₀ + at

where v(t) is the velocity vector at time t, v₀ is the initial velocity vector, and a is the acceleration vector.

In this case, v₀ = (20cos(53.13), 20sin(53.13)) and a = (0, -9.8) m/s². Therefore, v(3) = (14.24, 14.14) m/s.

(c) The position vector of the projectile after 3 seconds of launching can be found using the following equation:

r(t) = r₀ + v₀t + 0.5at²

where r(t) is the position vector at time t, r₀ is the initial position vector, v0 is the initial velocity vector, and a is the acceleration vector.

In this case, r₀ = (0, 0) and v₀ = (14.24, 14.14) m/s. Therefore, r(3) = (42.72, 42.42) m.

(d) The time to reach the maximum height can be found using the following equation:

v(t) = 0

where v(t) is the velocity vector at time t.

In this case, v(t) = (0, -9.8) m/s. Therefore, t = 1.5 seconds.

(e) The time of flight can be found using the following equation:

t = 2v₀ / g

where v₀ is the initial velocity and g is the acceleration due to gravity.

In this case, v₀ = 20 m/s and g = 9.8 m/s². Therefore, t = 3 seconds.

(f) The maximum horizontal range reached can be found using the following equation:

R = v² / g

where R is the maximum horizontal range, v is the initial velocity, and g is the acceleration due to gravity.

In this case, v = 20 m/s and g = 9.8 m/s². Therefore, R = 76.6 meters.

To know more about the projectile refer here,

https://brainly.com/question/28043302#

#SPJ11

Two Trucks A and B are parked near you on a road. Truck A is stationary and truck B is moving away at a constant speed of 30 km/h. Each Truck is equipped with a horn emitting a sound at a frequency of 200Hz. Both whistle at the same time. a) What frequency will you hear from each truck? b) Will there be a beat? If or what is the frequency of the beats?

Answers

a. The frequency emitted by truck A will be 200 Hz and the frequency emitted by truck B will be approximately 198.56 Hz

b. The frequency of the beats is 1.44 Hz.

a) Truck A is stationary and truck B is moving away at a constant speed of 30 km/h. Both of the trucks emit a sound of frequency 200 Hz and the speed of sound is 343 m/s, the frequency of sound will be affected by the Doppler effect.

The Doppler effect can be given by:

[tex]f'= \frac {v \pm v_0} {v\pm v_s}f[/tex]

Here, f is the frequency of the sound emitted.

v is the velocity of sound in air ($343 m/s$)

v0 is the velocity of the object emitting the sound and vs is the velocity of the sound wave relative to the stationary object

In this problem, the frequency emitted by the truck A is

[tex]f_{A} = 200[/tex]Hz

v0 = 0m/s

v = 343m/s

The frequency emitted by the truck B is [tex]f_{B} = 200[/tex] Hz

[tex]v0 = - 30km/h \\= - \frac{30 \times 1000}{3600}$ m/s \\= $-\frac{25}{3}$ ms^{-1} \\v= 343m/s[/tex]

On substituting the above values in the Doppler's equation, we get,

For truck A,

[tex]f_{A}' = \frac{v}{v\pm v_{s}}[/tex]

[tex]f_{A}' = \frac{343}{343\pm 0} Hz = 200[/tex] Hz

For truck B,[tex]f_{B}' = \frac{v}{v\pm v_{s}}[/tex]

[tex]f_{B}' = \frac{343} {343 \pm \frac {25}{3}}\text{Hz}[/tex] ≈ 198.56 Hz

Hence the frequency emitted by truck A will be 200 Hz and the frequency emitted by truck B will be approximately 198.56 Hz

b) A beat is produced when two sound waves having slightly different frequencies are superposed.

In this problem, as we see that the frequency of the wave emitted by truck A is 200 Hz and the frequency of the wave emitted by truck B is approximately 198.56 Hz, we can say that a beat will be produced.

To find the frequency of beats, we use the formula for beats:

fbeat = |f1 − f2|

Where,f1 is the frequency of the wave emitted by truck Af2 is the frequency of the wave emitted by truck B

Frequencies of the waves are given by,

f1 = 200 Hz

f2 = 198.56 Hz

fbeat = |200 − 198.56| Hz ≈ 1.44 Hz

Thus, the frequency of the beats is 1.44 Hz.

To know more about frequency, visit:

https://brainly.com/question/29739263

#SPJ11

a). You will hear a frequency of approximately 195.84 Hz from Truck B.

b). The beat frequency between the two trucks' sounds will be approximately 4.16 Hz.

a) To determine the frequency you will hear from each truck, we need to consider the Doppler effect. The Doppler effect describes how the perceived frequency of a sound wave changes when the source of the sound or the listener is in motion relative to each other.

For the stationary Truck A, there is no relative motion between you and the truck. Therefore, the frequency you hear from Truck A will be the same as its emitted frequency, which is 200 Hz.

For the moving Truck B, which is moving away from you at a constant speed of 30 km/h, the frequency you hear will be lower than its emitted frequency due to the Doppler effect. The formula for the Doppler effect when a source is moving away is given by:

f' = f * (v_sound + v_observer) / (v_sound + v_source)

where f is the emitted frequency, v_sound is the speed of sound (approximately 343 m/s), v_observer is the speed of the observer (you, assumed to be stationary), and v_source is the speed of the source (Truck B).

Converting the speed of Truck B from km/h to m/s:

v_source = 30 km/h * (1000 m/km) / (3600 s/h) = 8.33 m/s

Plugging in the values:

f' = 200 Hz * (343 m/s + 0 m/s) / (343 m/s + 8.33 m/s)

Simplifying the equation:

f' ≈ 195.84 Hz

Therefore, you will hear a frequency of approximately 195.84 Hz from Truck B.

b) Yes, there will be a beat if the frequencies of the two trucks are slightly different. The beat frequency is equal to the absolute difference between the frequencies of the two sounds.

Beat frequency = |f_A - f_B|

Substituting the values:

Beat frequency = |200 Hz - 195.84 Hz|

Simplifying:

Beat frequency ≈ 4.16 Hz

So, the beat frequency between the two trucks' sounds will be approximately 4.16 Hz.

To know more about frequency, visit:

https://brainly.com/question/29739263

#SPJ11

A 2microF capacitor is connected in series to a 1 mega ohm resistor and charged to a 6 volt battery. How long does it take to charge 98.2% of its maximum charge?

Answers

A 2microF capacitor is connected in series to a 1 mega ohm resistor and charged to a 6 volt battery. The capacitor takes to charge 0.140 seconds for 98.2% of its maximum.

The maximum charge can be calculated using the formula: t = -RC * ln(1 - Q/Q_max) Where t is the time, R is the resistance, C is the capacitance, Q is the charge at a given time, and Q_max is the maximum charge.

In this case, the capacitance (C) is 2 microfarads (2μF), the resistance (R) is 1 megaohm (1 MΩ), and the maximum charge (Q_max) is the charge when the capacitor is fully charged.

To find Q_max, we can use the formula:

Q_max = C * V

Where V is the voltage of the battery, which is 6 volts in this case.

Q_max = (2 μF) * (6 volts) = 12 μC

Substituting the values into the time formula, we have:

t = -(1 MΩ) * (2 μF) * ln(1 - Q/Q_max)

t = -(1 MΩ) * (2 μF) * ln(1 - 0.982)

t ≈ 0.140 seconds

Therefore, it takes approximately 0.140 seconds to charge 98.2% of its maximum charge.

To learn more about, capacitor, click here, https://brainly.com/question/31627158

#SPJ11

In 2000, NASA placed a satellite in orbit around an asteroid. Consider a spherical asteroid with a mass of 1.20x1016 kg and a radius of 10.0 km. What is the speed of a satellite orbiting 4.60 km above the surface? What is the escape speed from the asteroid? Express your answer with the appropriate units.

Answers

The speed of a satellite orbiting 4.60 km above the surface of the asteroid is approximately 2.33 km/s, while the escape speed from the asteroid is about 4.71 km/s.

In order to calculate the speed of a satellite in orbit around the asteroid, we can use the formula for the orbital velocity of a satellite. This formula is derived from the balance between gravitational force and centripetal force:

V = sqrt(GM/r)

Where V is the velocity, G is the gravitational constant (approximately 6.674 × [tex]10^{-11}[/tex] [tex]m^3/kg/s^2[/tex]), M is the mass of the asteroid, and r is the distance from the center of the asteroid to the satellite.

Given that the mass of asteroid is 1.20 ×[tex]10^{16}[/tex] kg and the satellite is orbiting 4.60 km (or 4,600 meters) above the surface, we can calculate the orbital velocity as follows:

V = sqrt((6.674 × 10^-11[tex]m^3/kg/s^2[/tex]) * (1.20 × [tex]10^{16}[/tex]kg) / (10,000 meters + 4,600 meters))

Simplifying the equation, we find:

V ≈ 2.33 km/s

This is the speed of the satellite orbiting 4.60 km above the surface of the asteroid.

To calculate the escape speed from the asteroid, we can use a similar formula, but with the distance from the center of the asteroid to infinity:

V_escape = sqrt(2GM/r)

Using the same values for G and M, and considering the radius of the asteroid to be 10.0 km (or 10,000 meters), we can calculate the escape speed:

V_escape = sqrt((2 * 6.674 × [tex]10^{-11}[/tex] [tex]m^3/kg/s^2[/tex]) * (1.20 × [tex]10^{16}[/tex] kg) / (10,000 meters))

Simplifying the equation, we find:

V_escape ≈ 4.71 km/s

This is the escape speed from the asteroid.

Learn more about speed of satellite

brainly.com/question/13591338

#SPJ11

What is the phase constant for SMH with a(t) given in the figure if the position function x(t) as = 8 m/s2? (note that the answer should be from 0 to 2TT) a (m/s) als -as Number i Units

Answers

The value of the phase constant, φ is 0

Graph of x(t)Using the graph, we can see that the equation for the position function x(t) = A sin (ωt + φ)  is as follows;

x(t) = A sin (ωt + φ)  ....... (1)

where; A = amplitude

ω = angular frequency = 2π/T

T = time period of oscillation = 2π/ω

φ = phase constant

x(t) = displacement from the mean position at time t

From the graph, we can see that the amplitude, A is 4 m. Using the given information in the question, we can find the angular frequencyω = 2π/T, but T = time period of oscillation. We can get the time period of oscillation, T from the graph. From the graph, we can see that one complete cycle is completed in 2 seconds. Therefore,

T = 2 seconds

ω = 2π/T

   = 2π/2

   = π rad/s

Again, from the graph, we can see that at time t = 0 seconds, the displacement, x(t) is 0. This means that φ = 0.  Putting all this into equation (1), we have;

x(t) = 4 sin (πt + 0)

The phase constant, φ = 0.

The value of the phase constant, φ is 0 and this means that the equation for the position function is; x(t) = 4 sin (πt)

Learn more About phase constant from the given link

https://brainly.com/question/31497779

#SPJ11

A string with a linear density of 7.11×10−4 kg/m and a length of 1.14 m is stretched across the open end of a closed tube that is 1.39 m long. The diameter of the tube is very small. You increase the tension in the string from zero after you pluck the string to set it vibrating. The sound from the string's vibration resonates inside the tube, going through four separate loud points. What is the tension in the string when you reach the fourth loud point? Assume the speed of sound in air is 343 m/s.

Answers

The tension in the string when you reach the fourth loud point is 27.56 N.

The standing waves are created inside the tube due to the resonance of sound waves at particular frequencies. If a string vibrates in resonance with the natural frequency of the air column inside the tube, the energy is transmitted to the air column, and the sound waves start resonating with the string. The string vibrates more and, thus, produces more sound.

The fundamental frequency (f) is determined by the length of the tube, L, and the speed of sound in air, v as given by:

f = (v/2L)

Here, L is 1.39 m and v is 343 m/s. Therefore, the fundamental frequency (f) is:

f = (343/2 × 1.39) Hz = 123.3 Hz

Similarly, the first harmonic frequency can be calculated by multiplying the fundamental frequency by two. The second harmonic frequency is three times the fundamental frequency. Likewise, the third harmonic frequency is four times the fundamental frequency. The frequencies of the four loud points can be calculated as:

f1 = 2f = 246.6 Hz

f2 = 3f = 369.9 Hz

f3 = 4f = 493.2 Hz

f4 = 5f = 616.5 Hz

For a string of length 1.14 m with a linear density of 7.11×10⁻⁴ kg/m and vibrating at a frequency of 616.5 Hz, the tension can be calculated as:

Tension (T) = (π²mLf²) / 4L²

where m is the linear density, f is the frequency, and L is the length of the string.

T = (π² × 7.11 × 10⁻⁴ × 1.14 × 616.5²) / 4 × 1.14²

T = 27.56 N

Therefore, when the fourth loud point is reached, the tension in the string is 27.56 N.

Learn more about standing waves here: https://brainly.com/question/30528641

#SPJ11

Part A How fast, in rpm, would a 4.6 kg, 19-cm-diameter bowling ball have to spin to have an angular momentum of 0.16 kgm²/s? Express your answer in revolutions per minute to two significant figures. ▸ View Available Hint(s) 195| ΑΣΦ www ? 1.009 rpm You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers

Answers

The bowling ball would have to spin at approximately 9.63 rpm to have an angular momentum of 0.16 kgm²/s. To find the angular velocity of the bowling ball in rpm (revolutions per minute), we can use the formula:

Angular momentum (L) = moment of inertia (I) * angular velocity (ω)

The moment of inertia (I) of a solid sphere is given by:

I = (2/5) * m * r^2

m = mass of the bowling ball = 4.6 kg

r = radius of the bowling ball = (19 cm) / 2 = 0.095 m (converting diameter to radius)

0.16 kgm²/s = (2/5) * 4.6 kg * (0.095 m)^2 * ω

ω = (0.16 kgm²/s) / [(2/5) * 4.6 kg * (0.095 m)^2]

ω ≈ 1.009 rad/s

To convert this angular velocity from radians per second to revolutions per minute, we can use the conversion factor:

1 revolution = 2π radians

1 minute = 60 seconds

So, the angular velocity in rpm is:

ω_rpm = (1.009 rad/s) * (1 revolution / 2π rad) * (60 s / 1 minute)

ω_rpm ≈ 9.63 rpm

Therefore, the bowling ball would have to spin at approximately 9.63 rpm to have an angular momentum of 0.16 kgm²/s.

Learn more about  angular velocity here : brainly.com/question/32217742
#SPJ11

"You wish to travel to Pluto on a radiation-powered sail.
a) What area should you build for your radiation sail to obtain
a radiation push of 3N just outside of Earth (I=1400W/m2).

Answers

Given that the radiation push outside the Earth is I = 1400 W/m².

We know that the solar radiation pressure is given as F = IA/c, where F is the force per unit area of radiation, I is the intensity of the radiation, A is the area and c is the speed of light.

From the above, it can be calculated that the radiation pressure outside Earth is

F = I/c = 1400/3×10⁸ = 4.67×10⁻⁶ N/m².

For an area A, the radiation push can be expressed as

F = IA/c ⇒ A = Fc/I, where F = 3 N.

Therefore, the area required for the radiation sail to obtain a radiation push of 3N just outside of Earth (I=1400W/m²) can be calculated as follows:

A = Fc/I= 3 × 3 × 10⁸/1400 = 6.43×10⁴ m²

Therefore, the area required for the radiation sail to obtain a radiation push of 3N just outside of Earth (I=1400W/m²) is 6.43×10⁴ m².

Explore another question on radiation energy: https://brainly.com/question/25746629

#SPJ11

(a) What is the angular speed w about the polar axis of a point on Earth's surface at a latitude of 35°N? (Earth rotates about that axis.) (b) What is the linear speed v of the point?

Answers

a)ω = 2π / (23 hours + 56 minutes + 4 seconds), b)The value of v = ω * 6.371 x 10^6 meters

(a) The angular speed, denoted by ω, about the polar axis of a point on Earth's surface can be calculated using the formula:

ω = 2π/T

where T is the period of rotation. The period of rotation can be determined by the sidereal day, which is the time it takes for Earth to make one complete rotation relative to the fixed stars. The sidereal day is approximately 23 hours, 56 minutes, and 4 seconds.

However, the latitude information is not directly relevant for calculating the angular speed. The angular speed is the same for all points on Earth's surface about the polar axis. Therefore, we can use the period of rotation of 23 hours, 56 minutes, and 4 seconds to find the angular speed.

Substituting the values into the formula:

ω = 2π / (23 hours + 56 minutes + 4 seconds)

Calculate the numerical value of ω in radians per second.

(b) The linear speed, denoted by v, of a point on Earth's surface can be determined using the formula:

v = ω * R

where R is the radius of the Earth. The radius of the Earth is approximately 6,371 kilometers (6.371 x 10^6 meters).

Substituting the calculated value of ω into the formula:

v = ω * 6.371 x 10^6 meters

Calculate the numerical value of v in meters per second.

Learn more about meters here:

https://brainly.in/question/54066376

#SPJ11

A certain simple pendulum has a period on an unknown planet of 4.0 s. The gravitational acceleration of the planet is 4.5 m/s². What would the period be on the surface of the Earth? (9Earth = 9.80 m/s2) 2.71 s 8.71 s 1.84 s You need to know the length of the pendulum to answer. 5.90 s

Answers

The period of the pendulum on the surface of the Earth would be approximately 2.71 seconds.

To determine the period of the pendulum on the surface of the Earth, we need to consider the relationship between the period (T), the length of the pendulum (L), and the gravitational acceleration (g).

The formula for the period of a simple pendulum is given by:

T = 2π * √(L/g)

Where T is the period, L is the length of the pendulum, and g is the gravitational acceleration.

In this scenario, we are given the period on the unknown planet (4.0 s) and the gravitational acceleration on that planet (4.5 m/s²).

We can rearrange the formula to solve for L:

L = (T^2 * g) / (4π^2)

Plugging in the given values, we have:

L = (4.0^2 * 4.5) / (4π^2) ≈ 8.038 meters

Now, using the length of the pendulum, we can calculate the period on the surface of the Earth. Given the gravitational acceleration on Earth (9.80 m/s²), we use the same formula:

T = 2π * √(L/g)

T = 2π * √(8.038/9.80) ≈ 2.71 seconds

Therefore, the period of the pendulum on the surface of the Earth would be approximately 2.71 seconds.

To learn more about pendulum refer here:

https://brainly.com/question/29268528

#SPJ11

Multiple-Concept Example 7 discusses how problems like this one can be solved. A 9.70-4C charge is moving with a speed of 6.90x 104 m/s parallel to a very long, straight wire. The wire is 5.50 cm from the charge and carries a current of 61.0 A. Find the magnitude of the force on the charge. 9

Answers

The magnitude of the force on the charge is 73056 N.  A 9.70-4C charge is moving with a speed of 6.90x 104 m/s parallel to a very long, straight wire. The wire is 5.50 cm from the charge and carries a current of 61.0 A.

The formula for the magnetic force on a moving charge is given by:

F = (μ₀ * I * q * v) / (2 * π * r),

where F is the magnitude of the force, μ₀ is the permeability of free space (μ₀ = 4π × 10⁻⁷ T·m/A), I is the current, q is the charge, v is the velocity, and r is the distance between the charge and the wire.

Plugging in the given values:

μ₀ = 4π × 10⁻⁷ T·m/A,

I = 61.0 A,

q = 9.70 × 10⁻⁴ C,

v = 6.90 × 10⁴ m/s,

r = 5.50 cm = 0.055 m,

It can calculate the magnitude of the force as follows:

F = (4π × 10⁻⁷ T·m/A * 61.0 A * 9.70 × 10⁻⁴ C * 6.90 × 10⁴ m/s) / (2 * π * 0.055 m)

= (2 * 10⁻⁷ T·m/A * 61.0 A * 9.70 × 10⁻⁴ C * 6.90 × 10⁴ m/s) / 0.055 m

= (2 * 61.0 * 9.70 × 10⁻⁴ * 6.90 × 10⁴) / 0.055

= (2 * 61.0 * 9.70 × 6.90) / 0.055

= 2 * 61.0 * 9.70 * 6.90 / 0.055

= 73056 N

To learn more about charges -

brainly.com/question/15040574

#SPJ11

Determine the speed of light, in sm​, in a material whose refractive index n=1.39. n=vmaterial ​c​ c=3⋅108sm​

Answers

The refractive index n of a material is given by n = c / v, where v is the velocity of light in that material. It follows that the speed of light c in that material is given by c = n × v. So, the speed of light in the material is c = 4.17 × 10^8 sm/s.

The speed of light in a material is proportional to the refractive index of that material, which is the ratio of the speed of light in a vacuum to the speed of light in the material. The refractive index of a material can be used to calculate the speed of light in that material using the formula c = v × n, where c is the speed of light in the material, v is the speed of light in a vacuum, and n is the refractive index of the material.

In this problem, the refractive index of the material is given as 1.39 and the speed of light in a vacuum is 3 × 10^8 sm/s. Therefore, the speed of light in the material is c = 3 × 10^8 sm/s × 1.39 = 4.17 × 10^8 sm/s. This means that the speed of light in the material is 4.17 × 10^8 times slower than the speed of light in a vacuum. The speed of light in different materials can vary widely depending on their composition and structure. This has important implications for many applications in optics and photonics.

To know more about velocity visit :

https://brainly.com/question/30559316

#SPJ11

2. A projectile is launched vertically from the surface of the earth at a speed of VagR, where R is the radius of the earth, g is the gravitational acceleration at the earth's surface and a is a constant which can be large. (a) Ignore atmospheric resistance and integrate Newton's second law of motion once in order to find the maximum height reached by the projectile in terms of R and a. (9) (b) Discuss the special case a = 2. (1)

Answers

The maximum height reached by a projectile launched vertically from the surface of the earth at a speed of VagR is R. In the special case a = 2, the projectile will escape the gravitational field of the earth and never return.

(a)The projectile's motion can be modeled by the following equation of motion:

      m*dv/dt = -mg

where, m is the mass of the projectile, v is its velocity, and g is the gravitational acceleration.

We can integrate this equation once to get:

      m*v = -mgh + C

where C is a constant of integration.

At the highest point of the projectile's trajectory, its velocity is zero. So we can set v = 0 in the equation above to get:

     0 = -mgh + C

This gives us the value of the constant of integration:

     C = mgh

The maximum height reached by the projectile is the height it reaches when its velocity is zero. So we can set v = 0 in the equation above to get:

     mgh = -mgh + mgh

This gives us the maximum height:

h = R

(b) In the special case a = 2, the projectile's initial velocity is equal to the escape velocity. This means that the projectile will escape the gravitational field of the earth and never return.

The escape velocity is given by:

∨e = √2gR

So in the case a = 2, the maximum height reached by the projectile is infinite.

To learn more about escape velocity click here; brainly.com/question/31201121

#SPJ11

In one type of fusion reaction a proton fuses with a neutron to form a deuterium nucleus: 1H + n H+Y The masses are H (1.0078 u), • n (1.0087 u), and H (2.0141u). The y-ray photon is massless. How much energy (in MeV) is released by this reaction? E = Number i Units

Answers

The fusion of a proton and a neutron releases approximately 2.22 MeV of energy in the form of a gamma-ray photon.

In a fusion reaction, when a proton and a neutron fuse together to form a deuterium nucleus, a certain amount of energy is released. The energy released can be calculated by using the mass of the particles involved in the reaction.

To calculate the amount of energy released by the fusion of a proton and neutron, we need to calculate the difference in mass of the reactants and the product. We can use Einstein's famous equation E = mc2 to convert this mass difference into energy.

The mass of the proton is 1.0078 u, the mass of the neutron is 1.0087 u and the mass of the deuterium nucleus is 2.0141 u. Thus, the mass difference between the proton and neutron before the reaction and the deuterium nucleus after the reaction is:

(1.0078 u + 1.0087 u) - 2.0141 u = 0.0024 u

Now, we can use the conversion factor 1 u = 931.5 MeV/c² to convert the mass difference into energy:

E = (0.0024 u) x (931.5 MeV/c²) x c²

E = 2.22 MeV

Therefore, the fusion of a proton and neutron releases approximately 2.22 MeV of energy in the form of a gamma-ray photon. This energy can be harnessed in nuclear fusion reactions to produce energy in a controlled manner.

To learn more about fusion reaction click brainly.com/question/1983482

#SPJ11

m=20
m=20 kg
Initially a box at rest. A man is applying the Force F to box. Mass of the box is M (kg). Kinetic friction between box and ground 0.3. Determine the power supplied by man when the time t=3 s. M= öğr

Answers

The power supplied by the man when t = 3 s is approximately 4498.93 watts.

Given:

M = 45 kg

F = 500 N

μ = 0.3

t = 3 s

g = 9.8 m/s²

Calculate the net force:

F(friction) = μ × M × g

F(friction) = 0.3 × 45 × 9.8 = = 132.3 N

F(net) = F - F(friction) = 500 - 132.3 = 367.7 N

Calculate the acceleration:

a = F(net) / M

a = 367.7 / 45

a =  8.17 m/s²

Calculate the distance covered:

d = (1/2) × a × t²

d = (1/2) × 8.17 × (3)²

d = 36.75 m

Calculate the work done:

W = F(net) × d

W= 367.7 × 36.75

W = 13,496.78 J

Calculate the power supplied:

P = W / t

P = 13,496.78 / 3

P = 4498.93 W

Therefore, the power supplied by the man when t = 3 s is approximately 4498.93 watts.

To know more about power:

https://brainly.com/question/19382734

#SPJ4

The power supplied by man when the time t=3 s is 134.94 W.

Given:

Mass of the box, m = 20 kg

Time, t = 3 s

Coefficient of kinetic friction between box and ground, μk = 0.3

Acceleration due to gravity, g = 9.8 m/s²

We can calculate the acceleration of the box as follows:

a = (F - μkmg)/m

where F is the force applied by the man.

The power supplied by the man is given as:

P = Fv

Let's calculate the velocity of the box, using the formula:

v = u + at

As the box is at rest initially, the initial velocity, u = 0.

Substituting the given values, we get:

a = (F - μkmg)/m = F/m - μkg

Now, let's solve for F:

F = ma + μkmg

Substituting the given values, we get:

F = (20)((9.8) + (0.3)(9.8)(20))/20 = 67.86 N

Using the formula:

v = u + at

Substituting the values:

a = (F - μkmg)/m = (67.86 - (0.3)(20)(9.8))/(20) = 1.496 m/s²

v = u + at = 0 + (1.496)(3) = 4.488 m/s

Using the formula:

P = ma(at)

Substituting the values:

P = (20)(1.496)(4.488) = 134.94 W

Therefore, the power supplied by the man when the time t = 3 s is 134.94 W.

Learn more about determination of power:

https://brainly.com/question/30995878?

#SPJ11

A monochromatic light is directed onto a single slit 2.5 x 10-3 mm wide. If the angle between the first dark fringes (minimums) and the central maximum is 20°: a) Calculate the wavelength of light. b) Determine the angular position of the second minimum.

Answers

a) The wavelength of light. λ = 7.12 x 10^(-7) mm or 712 nm. b)The angular position of the second minimum is approximately 1.79°.

To calculate the wavelength of light and determine the angular position of the second minimum in a single-slit diffraction experiment, we can use the given information of the width of the slit and the angle between the first dark fringes and the central maximum.

First, let's calculate the wavelength of light (λ). The formula for the angular position (θ) of the first minimum in a single-slit diffraction pattern is given by θ = λ / (2d), where d is the width of the slit. Rearranging the formula, we have λ = 2d * tan(θ). Plugging in the values, with d = 2.5 x 10^(-3) mm and θ = 20°, we can calculate the wavelength to find λ = 7.12 x 10^(-7) mm or 712 nm.

Next, we need to determine the angular position of the second minimum. The angular position of the nth minimum (θ_n) is given by θ_n = (nλ) / d. For the second minimum, n = 2. Plugging in the calculated value of λ = 7.12 x 10^(-7) mm and d = 2.5 x 10^(-3) mm.

We can find the angular position of the second minimum to be θ_2 = 2 * (7.12 x 10^(-7) mm) / (2.5 x 10^(-3) mm) = 1.79°.Therefore, the wavelength of light is approximately 712 nm, and the angular position of the second minimum is approximately 1.79°.

Learn more about diffraction experiment click here: brainly.com/question/31595430

#SPJ11

A mother pushes her child on a swing so that his speed is 2.05 m/s at the lowest point of his path. The swing is suspended r meters above the child’s center of mass. What is r (in m), if the centripetal acceleration at the low point is 3.89 m/s2?

Answers

In this scenario, a child on a swing has a speed of 2.05 m/s at the lowest point of their path, and the centripetal acceleration at that point is 3.89 m/s².

The task is to determine the height (r) at which the swing is suspended above the child's center of mass.

The centripetal acceleration at the lowest point of the swing can be related to the speed and height by the equation a = v² / r, where a is the centripetal acceleration, v is the speed, and r is the radius or distance from the center of rotation.

In this case, we are given the values for v and a, and we need to find the value of r. Rearranging the equation, we have r = v² / a.

Substituting the given values, we find r = (2.05 m/s)² / (3.89 m/s²).

Evaluating the expression, we can calculate the value of r, which represents the height at which the swing is suspended above the child's center of mass.

Learn more about acceleration here: brainly.com/question/2303856

#SPJ11

A car of mass 2170 kg is driving along a long road. The car is required to navigate a turn banked at an angle 24° with respect to the horizontal axis. The banked turn has a radius of curvature, 104 m. There is a coefficient of static friction between the tires and the road of μs = 0.63. The car can drive at a speed of vmax without slipping up the incline.
What is the maximum speed, vmax, the car can take on this banked curve?

Answers

The maximum speed, vmax, that the car can take on the banked curve is approximately 31.6 m/s.

To determine the maximum speed, we need to consider the forces acting on the car during the banked turn. The gravitational force acting on the car can be resolved into two components: one perpendicular to the road (Fn) and one parallel to the road (Fg).

The maximum speed can be achieved when the static friction force (Fs) between the tires and the road provides the centripetal force required for circular motion. The maximum static friction force can be calculated using the formula:

Fs(max) = μs * Fn

The normal force (Fn) can be determined using the vertical equilibrium equation:

Fn = mg * cos(θ)

where m is the mass of the car, g is the acceleration due to gravity, and θ is the angle of the banked turn.

The centripetal force (Fc) required for circular motion is given by:

Fc = m * v^2 / r

where v is the velocity of the car and r is the radius of curvature.

Setting Fs(max) equal to Fc, we can solve for the maximum velocity:

μs * Fn = m * v^2 / r

Substituting the expressions for Fn and μs * Fn, we get:

μs * mg * cos(θ) = m * v^2 / r

Simplifying the equation and solving for v, we find:

v = √(μs * g * r * tan(θ))

Substituting the given values, we have:

v = √(0.63 * 9.8 m/s^2 * 104 m * tan(24°))

Calculating the value, we find:

v ≈ 31.6 m/s

Therefore, the maximum speed, vmax, that the car can take on this banked curve is approximately 31.6 m/s.

Learn more about speed here; brainly.com/question/28224010

#SPJ11

The collision between a golf club and a golf ball provides an impulse that changes the momentum of the golf ball. If the average impulse is 2000 N, the golf ball mass is 0.05 kg and the time of impact is 1 millisecond, what is
vo for a golf ball?

Answers

The impulse-momentum theorem states that the impulse applied to an object is equal to the change in momentum of the object.

Mathematically, it can be represented as:

I = Δp where I is the impulse, and Δp is the change in momentum of the object.

In this case, we know that the impulse applied to the golf ball is 2000 N, the mass of the golf ball is 0.05 kg, and the time of impact is 1 millisecond.

To find the initial velocity (vo) of the golf ball, we need to use the following equation that relates impulse, momentum, and initial and final velocities:

p = m × vΔp = m × Δv where p is the momentum, m is the mass, and v is the velocity.

We can rewrite the above equation as: Δv = Δp / m

vo = vf + Δv where vo is the initial velocity, vf is the final velocity, and Δv is the change in velocity.

Substituting the given values,Δv = Δp / m= 2000 / 0.05= 40000 m/svo = vf + Δv

Since the golf ball comes to rest after being hit, the final velocity (vf) is 0. Therefore,vo = vf + Δv= 0 + 40000= 40000 m/s

Therefore, the initial velocity (vo) of the golf ball is 40000 m/s.

Learn more about momentum:

https://brainly.com/question/1042017

#SPJ11

Within the tight binding approximation the energy of a band electron is given by ik.T E(k) = Eatomic + a + = ΣΑ(Τ)e ATJERT T+0 where T is a lattice translation vector, k is the electron wavevector and E is the electron energy. Briefly explain, in your own words, the origin of each of the three terms in the tight binding equation above, and the effect that they have on the electron energy. {3}

Answers

The tight binding approximation equation consists of three terms that contribute to the energy of a band electron: Eatomic, a, and ΣΑ(Τ)e ATJERT T+0. Each term has its origin and effect on the electron energy.

Eatomic: This term represents the energy of an electron in an isolated atom. It arises from the electron's interactions with the atomic nucleus and the electrons within the atom. Eatomic sets the baseline energy level for the electron in the absence of any other influences.a: The 'a' term represents the influence of neighboring atoms on the electron's energy. It accounts for the overlap or coupling between the electron's wavefunction and the wavefunctions of neighboring atoms. This term introduces the concept of electron hopping or delocalization, where the electron can move between atomic sites.

ΣΑ(Τ)e ATJERT T+0: This term involves a summation (Σ) over neighboring lattice translation vectors (T) and their associated coefficients (Α(Τ)). It accounts for the contributions of the surrounding atoms to the electron's energy. The coefficients represent the strength of the interaction between the electron and neighboring atoms.

Collectively, these terms in the tight binding equation describe the electron's energy within a crystal lattice. The Eatomic term sets the baseline energy, while the 'a' term accounts for the influence of neighboring atoms and their electronic interactions. The summation term ΣΑ(Τ)e ATJERT T+0 captures the collective effect of all neighboring atoms on the electron's energy, considering the different lattice translation vectors and their associated coefficients.

To learn more about electron energy click here : brainly.com/question/28995154

#SPJ11

A light ray traveling from air at an incident angle of 25° with the normal. The corresponding angle of refraction in glass was measured to be 16º. Find the refractive index (n) of glass. Use the value of n to find the speed of light in glass. (n for air = 1, Speed of light in air = 3x108 m/s = Equations Nair sin 01 = nglass sin O2, n = c/V

Answers

When a light ray travels from air at an incident angle of 25 degrees with the normal, and the corresponding angle of refraction in glass was measured to be 16 degrees. To find the refractive index (n) of glass, we need to use the formula:

Equation 1:

Nair sin 01 = n glass sin O2The given values are:

01 = 25 degreesO2

= 16 degrees Nair

= 1  We have to find n glass Substitute the given values in the above equation 1 and solve for n glass. n glass = [tex]Nair sin 01 / sin O2[/tex]

[tex]= 1 sin 25 / sin 16[/tex]

= 1.538 Therefore the refractive index of glass is 1.538.To find the speed of light in glass, we need to use the formula:

Equation 2:

[tex]n = c/V[/tex] where, n is the refractive index of the glass, c is the speed of light in air, and V is the speed of light in glass Substitute the given values in the above equation 2 and solve for V.[tex]1.538 = (3 x 108) / VV = (3 x 108) / 1.538[/tex]

Therefore, the speed of light in glass is[tex]1.953 x 108 m/s.[/tex]

To know more about incident visit:

https://brainly.com/question/14019899

#SPJ11

(e) Given Figure 2, use circuit analysis rules to determine values of current passing through 7.0022 and 10.09. points a and bare at potential difference of 12 v. (10 marks) X 7.00 22 w preter change 4.00 22 9.00 0 w M 10.00 w 3 T: . OILSITION

Answers

Using the circuit analysis rules to determine values of current passing through 7.0022 and 10.09, the current passing through 7.0022 is equal to [tex]I_2[/tex], which is 1.333 A, and the current passing through 10.09 is equal to [tex]I_3[/tex] which is 1.200 A.

The branch current technique may be used to calculate the current values going through 7.0022 and 10.09.

At node a, we may use Kirchhoff's current law to write:

[tex]I_1=I_2+I_3[/tex]

Using Ohm's law, we can write:

[tex]I_1=\frac{12}{4.0022}[/tex]

=2.998

[tex]I_2=\frac{12}{9}[/tex]

= 1.333

[tex]I_3=\frac{12}{10}[/tex]

= 1.200

Thus,the current passing through 7.0022 is equal to [tex]I_2[/tex], which is 1.333 A, and the current passing through 10.09 is equal to [tex]I_3[/tex] which is 1.200 A.

For more details regarding current passing, visit:

https://brainly.com/question/29761567

#SPJ4

Question 77 (10 points) You and your friend are watching Bill Nye Saves the World: The Earth is a Hot Mess. In the episode, Bill Nye explains climate change and how our Earth is warming. Your friend hasn't been taking Physics class with you this semester, and he doubts the episode's validity. You have a friendly discussion on the topic. a. Your friend says, "Releasing more greenhouse gases into the air won't harm our Earth - we need greenhouse gases - like water vapor and CO2 - to survive. If it wasn't for these gases trapping in heat, our planet would be too cold!" How do you respond? Your response should include a description of what greenhouse gases are, what the greenhouse effect is, and why adding more greenhouse gases is helpful or harmful (do you agree or disagree with your friend?). (10 points)

Answers

Greenhouse gases are essential for maintaining a habitable temperature on Earth, but adding more of them can have harmful consequences.

Greenhouse gases, such as water vapor and carbon dioxide (CO2), play a crucial role in regulating Earth's temperature through the greenhouse effect. The greenhouse effect is a natural process in which certain gases in the atmosphere trap heat from the sun, preventing it from escaping back into space. This helps to keep our planet warm enough to sustain life.

While it is true that greenhouse gases are necessary for our survival, the issue lies in the balance. Human activities, particularly the burning of fossil fuels and deforestation, have significantly increased the concentration of greenhouse gases in the atmosphere, primarily CO2. This excess accumulation is causing the greenhouse effect to intensify, leading to global warming and climate change.

Adding more greenhouse gases to the atmosphere, beyond what is required for the natural balance, contributes to the acceleration of global warming. The increased heat retention leads to various adverse effects, such as rising sea levels, extreme weather events, disrupted ecosystems, and threats to human health and well-being.

Therefore, while it is accurate that we need greenhouse gases to maintain a livable temperature on Earth, the excess emissions resulting from human activities are disrupting the delicate equilibrium and causing harmful consequences. It is crucial that we take measures to reduce greenhouse gas emissions and transition to sustainable alternatives to mitigate the impacts of climate change and ensure a sustainable future for our planet and future generations.

Learn more about Greenhouse gases

brainly.com/question/28138345

#SPJ11

Two particles are fixed to an x axis: particle 1 of charge 91 = 1.79 × 10^-8 C at x = 18.0 cm and particle 2 of charge 92 =-3.24g1 at x = 65.0
cm. At what coordinate on the x axis is the electric field produced by the particles equal to zero?

Answers

"To find the coordinate on the x-axis where the electric field produced by the particles is equal to zero, we need to calculate the electric field at different points and determine where it becomes zero."

The electric field produced by a point charge at a distance r from the charge is given by the equation:

E = k * (q / r²)

where E is the electric field, k is the electrostatic constant (k = 8.99 x 10⁹ Nm²/C²), q is the charge of the particle, and r is the distance from the particle.

Let's calculate the electric field produced by particle 1 at different points along the x-axis:

For particle 1:

q1 = 1.79 x 10⁻⁸ C

x1 = 18.0 cm = 0.18 m

Now, let's calculate the electric field produced by particle 2 at different points along the x-axis:

For particle 2:

q2 = -3.24 x 10⁻⁹ C

x2 = 65.0 cm = 0.65 m

Now, we can calculate the electric field at a particular point on the x-axis by summing the electric fields produced by both particles:

E_total = E1 + E2

We can set up the equation:

k * (q1 / r1²) + k * (q2 / r2²) = 0

Simplifying the equation:

(q1 / r1²) + (q2 / r2²) = 0

Now, we can solve this equation to find the value of r (the coordinate on the x-axis) where the electric field is equal to zero.

To know more about electrostatic force visit:

https://brainly.com/question/30236242

#SPJ11

The space shuttle has a mass of 2.0 x 106 kg. At lift-off, the engines generate an upward force of 3.0 x 10^7 N.
a. What is the acceleration of the shuttle?
b. If the shuttle is in outer space with the same thrust force, how would the acceleration change? Explain why this is so using Newton's Laws

Answers

A. The acceleration of the shuttle is 15 m/s^2.

B. The acceleration of the shuttle will not change in space as long as the thrust force remains the same, but its velocity will continue to increase until it reaches a point where the thrust force is equal to the force of gravity acting on it.

The mass of the space shuttle, m = 2.0 x 10^6 kg

The upward force generated by engines, F = 3.0 x 10^7 N

We know that Newton’s Second Law of Motion is F = ma, where F is the net force applied on the object, m is the mass of the object, and a is the acceleration produced by that force.

Rearranging the above formula, we geta = F / m Substituting the given values,

we have a = (3.0 x 10^7 N) / (2.0 x 10^6 kg)= 15 m/s^2

Therefore, the acceleration of the shuttle is 15 m/s^2.

According to Newton’s third law of motion, every action has an equal and opposite reaction. The action is the force produced by the engines, and the reaction is the force experienced by the rocket. Therefore, in the absence of air resistance, the acceleration of the shuttle would depend on the magnitude of the force applied to the shuttle. Let’s assume that the shuttle is in outer space. The upward force produced by the engines is still the same, i.e., 3.0 x 10^7 N. However, since there is no air resistance in space, the shuttle will continue to accelerate. Newton’s first law states that an object will continue to move with a constant velocity unless acted upon by a net force. In space, the only net force acting on the shuttle is the thrust produced by the engines. Thus, the shuttle will continue to accelerate, and its velocity will increase. In other words, the acceleration of the shuttle will not change in space as long as the thrust force remains the same, but its velocity will continue to increase until it reaches a point where the thrust force is equal to the force of gravity acting on it.

Learn more about acceleration

https://brainly.com/question/28743430

#SPJ11

Q3. A hanging platform has four cylindrical supporting cables of diameter 2.5 cm. The supports are made from solid aluminium, which has a Young's Modulus of Y = 69 GPa. The weight of any object placed on the platform is equally distributed to all four cables. a) When a heavy object is placed on the platform, the cables are extended in length by 0.4%. Find the mass of this object. (3) b) Poisson's Ratio for aluminium is v= 0.33. Calculate the new diameter of the cables when supporting this heavy object. (3) (6 marks)

Answers

The new diameter of the cable is 0.892 cm. Option (ii) is the correct answer.

Given: Diameter of supporting cables,

d = 2.5 cm Young's Modulus of aluminium,

Y = 69 GPa Load applied,

F = mg

Extension in the length of the cables,

δl = 0.4% = 0.004

a) Mass of the object placed on the platform can be calculated as:

m = F/g

From the question, we know that the weight of any object placed on the platform is equally distributed to all four cables.

So, weight supported by each cable = F/4

Extension in length of each cable = δl/4

Young's Modulus can be defined as the ratio of stress to strain.

Y = stress/strainstress = Force/areastrain = Extension in length/Original length

Hence, stress = F/4 / (π/4) d2 = F/(π d2)strain = δl/4 / L

Using Hooke's Law, stress/strain

= Yπ d2/F = Y δl/Ld2 = F/(Y δl/π L) = m g / (Y δl/π L)

On substituting the given values, we get:

d2 = (m × 9.8) / ((69 × 10^9) × (0.004/100) / (π × 2.5/100))d2 = 7.962 × 10^-5 m2

New diameter of the cable is:

d = √d2 = √(7.962 × 10^-5) = 0.00892 m = 0.892 cm

Therefore, the new diameter of the cable is 0.892 cm.

Hence, option (ii) is the correct answer.

To know more about diameter visit:

https://brainly.com/question/4771207

#SPJ11

Other Questions
A ball of negligible mass is filled with Mercury of density13,500 Kg/m3 . The radius of the ball measures 18 cm.Calculate the mass of the Mercury inside the ball. 9. How would pulmonary hyperventilation affect each of the following?A.) PO2 of alveolar airB.) PO2 of alveolar air C.) PCO2 of alveolar air D.) PCO2 of arterial blood What are the basic elements of understanding andconceptualizing human-computer interaction? Corelise has 3 wooden bookcases that contain all of her books. The first bookcase has 3 shelves with 22 books on each shelf. The second bookcase has 4 shelves with 18 books on each shelf. The third bookcase has 5 shelves with 17 books on each shelf.Part AWrite an expression for how many books she has. A. (322)+(418)+(517) B. (3+22)(4+18)(5+17) C. (3+22)+(4+18)+(5+17) D. (322)+(4+18)+(517)Part BStephan has 230 books. Does Corelise have more than Stephan?Yes or no , she has 2,7,13,23more or fewer than Stephan. Discomfort in theatre seating; the hostile gaze from 'slimmer' bodies; identity politics of body positivity or 'fat' pride.WHICH approach in the geographies of the body would BEST help us to understand how bodily difference can be political sites of struggle and resistance?Question 11 options:a. Bodies taking up spaceb. Bodies in spacec. Bodies as socially inscribedd, Bodies as sensuous sites QuestionWhich term describes the distribution of this graph?skewed lefto normalo skewed right o uniformDot plot with 4 5 5 4 3 1 2 1 1 4. Consider E:y^2 =x^3 +2x^2 +3(mod5) The points on E are the pairs (x,y)mod5 that satisfy the equation, along with the point at infinity. a. List all the points on E. b. Compute (1,4)+(3,1) on the curve. You and a friend were talking about the role of genes and the environment and your friend said, "DNA is destiny. The environment doesn't influence who someone becomes at all, it is all determined by genes." What can you tell your friend about the interaction of genes and environment? Include two examples discussed in class or the textbook to support your point. How did the West African values and the Transatlantic Slavetrade develop conditions that gave birth to Hip-Hop? A tractor for over-the-road hauling is purchased for $90,000.00. It is expected to be of use to the company for 6 years, after which it will be salvaged for $3,400.00. Calculate the depreciation deduction and the unrecovered investment during each year of the tractors life. a. Use straight-line depreciation. Provide depreciation and book value for year 6. Depreciation for year 6=$ book value for year 6=$ b. Use declining-balance depreciation, with a rate that ensures the book value equals the salvage value. Provide depreciation and book value for year 6 . Depreciation for year 6=$ book value for year 6=$ c. Use double declining balance depreciation. Provide depreciation and book value for year 6. Depreciation for year 6=$ book value for year 6=$ d. Use double declining balance, switching to straight-line depreciation. Provide depreciation and book value for year 6. Depreciation for year 6=$ book value for year 6=$ Do all computations to 5 decimal places and round final answers to 2 decimal places. Tolerance is 50. EXPERIMENT:Diamagnetism and Paramagnetism, Magnetic Induction, Magnetic Force on a Current Carrying Wire SwingAccording to alignment of rods, how can you know what kind of bars are made? Explain by investigating alignment of moments and net magnetizationWhen you change current direction, what changes in the experimental set up? Why? In your own words, describe methods for preventing occupational fatalities.What are the five leading causes of non-fatal occupational injuries? Select two of those and discuss what can be done to prevent these injuries. chromosomes are lined up by spindle fibers. nuclear envelope forms around each set of dna. sister chromatids are pulled apart. centromeres move toward the poles of the cell. Filtration of albumin... Als abnormal. B. Is normal with an increase in glomerular permeability C. Is damaging to nephrons. D. All of the above. E. None of the above 28 3 points Glomerular filtrate contains: A. Everything in the blood. O B. Everything in the blood except cells and proteins. C. Water and electrolytes. D. Water and waste. E. Water 293 points Alaboratory test that measures the level of nitrogen in the blood that is part of urea: A. BUN B. Plasma creatinine. C. Inulin clearance D. All of the above. Etwo of the above PART 2: Essay 3. Using information from the documents, your answers to the questions in Part 1, and your knowledge of U.S. history, write an essay that discusses the American justification of imperialism. HPH, Inc. has annual CGS of $365,000. Which of the following ismost likely to occur if HPH increases its DPO from 30 days to 40days? Select one:a. Payables will decrease and liquidity will increase Select only the statements that are TRUE.A. On average, Asian-American girls enter puberty the latest among cultures.B. Research shows that early-developing boys and girls are more confident than their peers.C. Hispanic girls are usually the first to enter puberty compared to girls of other ethnic backgrounds.D. Preadolescents who enter puberty don't like it because they stand out compared to their peers. An AC generator supplies an rms voltage of 240 V at 50.0 Hz. It is connected in series with a 0.250 H inductor, a 5.80 F capacitor and a 286 resistor.What is the impedance of the circuit?Tries 0/12 What is the rms current through the resistor?Tries 0/12 What is the average power dissipated in the circuit?Tries 0/12 What is the peak current through the resistor?Tries 0/12 What is the peak voltage across the inductor?Tries 0/12 What is the peak voltage across the capacitor?Tries 0/12 The generator frequency is now changed so that the circuit is in resonance. What is that new (resonance) frequency? Research participants were asked to complete a survey on political attitudes and were subsequently shown a disturbing series of photographs and asked to rate their subjective discomfort. What type of study is this? O Case control study O Correlational Study O an epidemiological study O an experimental study Tina Mier must pay a $5,750 furniture bill. A finance company will loan Tina $5,750 for 8 months at a 9.33% discount rate. The finance company told Tina that if she wants to receive exactly $5,750, she must borrow more than $5,750. The finance company gave Tina the following formula: What to ask for = Amount of cash to be recelved (1( Discount rate Time of loan )) a. Calculate Tina's loan request. Note: Do not round intermediate calculations. Round your final answer to the nearest cent. b. Calculate the effective rate of Interest. Note: Do not round intermediate calculations. Round your final answer to the nearest hundredth percent