10 of 10 Problem#18 (20 points show work) (a) What current flows when a 60.0 Hz, 480 V AC source is connected to a 0.250μ capacitor? (b) What would the current be at 25.0 kHz?

Answers

Answer 1

(a) When a 60.0 Hz, 480 V AC source is connected to a 0.250μF capacitor, the current flowing through the capacitor can be calculated using the formula I = CωV, where I is the current, C is the capacitance, ω is the angular frequency (2πf), and V is the voltage.

In this case, substituting the given values into the formula, the current is approximately 6.02 mA.

(b) At 25.0 kHz, the current flowing through the 0.250μF capacitor can be calculated using the same formula I = CωV. Substituting the values, the current is approximately 39.27 mA.

(a) For an AC circuit with a capacitor, the current is given by I = CωV, where C is the capacitance, ω is the angular frequency (2πf), and V is the voltage. By substituting the values given (C = 0.250μF, f = 60.0 Hz, V = 480 V) into the formula, the current flowing through the capacitor is calculated to be approximately 6.02 mA.

(b) To find the current at 25.0 kHz, the same formula I = CωV is used. However, the angular frequency ω is now calculated using the new frequency f = 25.0 kHz. By substituting the values into the formula, the current is found to be approximately 39.27 mA. The higher frequency results in a larger current flowing through the capacitor.

These calculations demonstrate the relationship between frequency, capacitance, and current in an AC circuit with a capacitor. As the frequency increases, the current through the capacitor also increases, assuming all other factors remain constant.

To learn more about capacitor click here brainly.com/question/31627158

#SPJ11


Related Questions

Q13. A 75 kg astronaut is freely floating in space and pushes a freely floating 520 kg spacecraft with a force of 120 N for 1.50 s. 1 mark a)Compare the forces exerted on the astronaut and the spacecraft b)Compare the acceleration of the astronaut to the acceleration of the spacecraft

Answers

a. The astronaut applies a force on the spacecraft and the spacecraft applies an equal force on the astronaut.

b. The astronaut will move faster than the spacecraft, but since the spacecraft has a greater mass, it will require more force to achieve the same acceleration.

a) The forces exerted on the astronaut and spacecraft are equal in magnitude and opposite in direction. The Third Law of Motion states that every action has an equal and opposite reaction.  Therefore, both forces are the same.

b) To compare the acceleration of the astronaut and the spacecraft, the mass of each needs to be taken into consideration. The acceleration of an object is directly proportional to the force applied to it and inversely proportional to its mass. The formula to calculate acceleration is a = F/m, where F is force and m is mass.

For the astronaut:
Force (F) = 120 N
Mass (m) = 75 kg
Acceleration (a) = F/m = 120/75 = 1.6 m/s²

For the spacecraft:
Force (F) = 120 N
Mass (m) = 520 kg
Acceleration (a) = F/m = 120/520 = 0.23 m/s²

Therefore, the acceleration of the astronaut is higher than the acceleration of the spacecraft. The astronaut experiences a greater change in velocity in the given time than the spacecraft.

To learn about acceleration here:

https://brainly.com/question/460763

#SPJ11

inembers have average mas5tts of 71 kg and exert average forces of 1360 N horizontally. (a) What is the acceleration of the two teams? - m/s 2
(in the direction the heavy team is puining) (b) What is the tecsionin the sectien of rope between the teamw

Answers

The acceleration  is 19.15 m/s2. F = ma. 1360/ 71 = 19.15 m/s2.

Thus, acceleration has both a magnitude and a direction, it is a vector quantity. Additionally, it is the first derivative of velocity with respect to time or the second derivative of position with respect to time.

If an object's velocity changes, it is said to have been accelerated. An object's velocity can alter depending on whether it moves faster or slower or in a different direction.

A falling apple, the moon orbiting the earth, and a car stopped at a stop sign are a few instances of acceleration. Through these illustrations, we can see that acceleration happens whenever a moving object changes its direction or speed, or both.

Thus, The acceleration  is 19.15 m/s2. F = ma. 1360/ 71 = 19.15 m/s2.

Learn more about Acceleration, refer to the link:
https://brainly.com/question/2303856

#SPJ4

a) Acceleration (a) of the two teams can be calculated as follows: a = F/ma = (1360 N) / (150 kg)a = 9.07 m/s²

b) The tension in the section of rope between the teams is 680 N.

(a) Acceleration of the two teams

The acceleration of the two teams can be calculated as follows: F = m a

Where, F = force exerted by the teams = 1360 Nm = mass of the two teams = 150 kg

Therefore, acceleration (a) of the two teams can be calculated as follows:

a = F/ma = (1360 N) / (150 kg)a = 9.07 m/s²

(b) Tension in the section of rope between the teams, The tension in the section of rope between the teams can be calculated as follows: F = T + T Where, F = force exerted by the teams on the rope = 1360 N (as calculated above)T = tension in the section of rope between the teams

Therefore, the equation can be written as follows: F = 2 TT = (F/2)T = (1360 N/2)T = 680 N

Learn more about Acceleration

https://brainly.com/question/2303856

#SPJ11

A barrel contains 25 liters of a solvent mixture that is 40% solvent and 60% water. Lee will add pure solvent to the barrel, without removing any of the mixture currently in the barrel, so that the new mixture will contain 50% solvent and 50% water. How many liters of pure solvent should Lee add to create this new mixture? F. 2.5 G. 5 H. 10 J. 12.5 K. 15

Answers

The amount of pure solvent that Lee should add to the mixture to obtain 50% solvent is 2.5 liters.

The barrel contains 25 liters of a solvent mixture that is 40% solvent and 60% water. Lee will add pure solvent to the barrel, without removing any of the mixture currently in the barrel, so that the new mixture will contain 50% solvent and 50% water. We are to determine how many liters of pure solvent should Lee add to create this new mixture.

Let's say Lee adds 'x' liters of pure solvent. Hence, after adding x liters of pure solvent, the total volume in the barrel would be 25 + x. Since 40% of the initial 25 liters of solvent was present in the mixture, it means that 60% of it was water.

The amount of solvent in 25 liters of the mixture is 40% of 25 = 0.4 × 25 = 10 liters.

The final volume of the mixture is (25 + x) liters and it is to contain 50% solvent. We can set up the equation as follows:

Amount of solvent in the new mixture = Amount of solvent in the old mixture + amount of solvent added

10 + x = 0.5(25 + x)

10 + x = 12.5 + 0.5x

0.5x - x = 12.5 - 10

-0.5x = -2.5

x = 2.5 liters

Learn more about mixture at

https://brainly.com/question/26579767

#SPJ11

1. In nonrelativistic physics, the center of MASS of an isolated system moves with constant velocity. (This is also a statement of conservation of linear momentum.) In relativistic physics, the center of ENERGY moves with constant velocity. Consider a system of two particles. Particle A of mass 9m has its position given by xa(t)=(4/5)ct, while particle B of mass Sm is at rest at the origin, before they collide at time t=0. The two particles stick together after the collision. II Use relativistic physics to solve the problem of the system of two colliding particles. a) What is the position of the center of energy of the system before the collision? b) What is the velocity of the center of energy of the system before the collision? c) What is the mass (rest mass) of the final composite particle? d) What is the velocity of the final composite particle? e) What is the position xc(t) of the final particle after the collision? f) Compare the energy and momentum of the system before and after the collision.

Answers

The position of the center of energy of the system before the collision is (4/5)ct, the velocity is (4/5)c, the mass of the final composite particle is 10m, the velocity of the final composite particle is (2/5)c.

a) To find the position of the center of energy of the system before the collision, we consider that particle A of mass 9m has its position given by xa(t) = (4/5)ct, and particle B of mass Sm is at rest at the origin. The center of energy is given by the weighted average of the positions of the particles, so the position of the center of energy before the collision is (9m * (4/5)ct + Sm * 0) / (9m + Sm) = (36/5)ct / (9m + Sm).

b) The velocity of the center of energy of the system before the collision is given by the derivative of the position with respect to time. Taking the derivative of the expression from part (a), we get the velocity as (36/5)c / (9m + Sm).

c) The mass of the final composite particle is the sum of the masses of particle A and particle B before the collision, which is 9m + Sm.

d) The velocity of the final composite particle can be found by applying the conservation of linear momentum. Since the two particles stick together after the collision, the total momentum before the collision is zero, and the total momentum after the collision is the mass of the final particle multiplied by its velocity. Therefore, the velocity of the final composite particle is 0.

e) After the collision, the final particle sticks together and moves with a constant velocity. Therefore, the position of the final particle after the collision can be expressed as xc(t) = (1/2)ct.

f) Both energy and momentum are conserved in this system. Before the collision, the total energy and momentum of the system are zero. After the collision, the final composite particle has a rest mass energy, and its momentum is zero. So, the energy and momentum are conserved before and after the collision.

To learn more about energy -

brainly.com/question/32118995

#SPJ11

A capacitor consists of two 6.0-cm-diameter circular plates separated by 1.0 mm. The plates are charged to 170 V, then the battery is removed.
A. How much energy is stored in the capacitor?
B. How much work must be done to pull the plates apart to where the distance between them is 2.0 mm?

Answers

The energy stored in the capacitor is approximately 0.81 Joules. To calculate the energy stored in a capacitor, we can use the formula:

E = (1/2) * C * V^2

Where:

E is the energy stored in the capacitor,

C is the capacitance of the capacitor, and

V is the voltage across the capacitor.

C = (ε₀ * A) / d

Step 1: Calculate the area of one plate.

The diameter of each plate is 6.0 cm, so the radius (r) is half of that:

r = 6.0 cm / 2 = 3.0 cm = 0.03 m

A = π * r^2

A = π * (0.03 m)^2

Step 2: Calculate the capacitance.

C = (8.85 x 10^-12 F/m) * A / d

Step 3: Calculate the energy stored in the capacitor.

Using the formula for energy stored in a capacitor:

E = (1/2) * C * V^2

A = π * (0.03 m)^2

A = 0.0028274 m^2

C = (8.85 x 10^-12 F/m) * 0.0028274 m^2 / 0.001 m

C ≈ 2.8 x 10^-11 F

V = 170 V

E = (1/2) * (2.8 x 10^-11 F) * (170 V)^2

E ≈ 0.81 J

So, the energy stored in the capacitor is approximately 0.81 Joules.

Learn more about capacitor here : brainly.com/question/31627158

#SPJ11

In a double-slit experiment the distance between slits is 5.1 mm and the slits are 1.4 m from the screen. Two interference patterns can be seen on the screen: one due to light of wavelength 500 nm, and the other due to light of wavelength 630 nm. What is the separation in meters on the screen between the m=2 bright fringes of the two interference patterns?

Answers

The separation between the m is 2 bright fringes of the two interference patterns is approximately -71.37 × 10^(-6) meters.

In a double-slit experiment, the separation between bright fringes can be determined using the formula:

Δy = (mλD) / d

Where:

Δy is the separation between the fringes on the screen,

m is the order of the fringe (in this case, m=2),

λ is the wavelength of light,

D is the distance between the slits and the screen, and

d is the distance between the two slits.

Given:

λ₁ = 500 nm = 500 × 10^(-9) m (wavelength of the first light)

λ₂ = 630 nm = 630 × 10^(-9) m (wavelength of the second light)

D = 1.4 m (distance between the slits and the screen)

d = 5.1 mm

  = 5.1 × 10^(-3) m (distance between the two slits)

For the m=2 bright fringe of the first interference pattern:

Δy₁ = (mλ₁D) / d

     = (2 × 500 × 10^(-9) m × 1.4 m) / (5.1 × 10^(-3) m)

For the m=2 bright fringe of the second interference pattern:

Δy₂ = (mλ₂D) / d

     = (2 × 630 × 10^(-9) m × 1.4 m) / (5.1 × 10^(-3) m)

Now, we can calculate the separation between the m=2 bright fringes of the two interference patterns:

Δy = Δy₁ - Δy₂

Substituting the given values:

Δy = [(2 × 500 × 10^(-9) m × 1.4 m) / (5.1 × 10^(-3) m)] - [(2 × 630 × 10^(-9) m × 1.4 m) / (5.1 × 10^(-3) m)]

Simplifying this equation will give you the separation in meters between the m=2 bright fringes of the two interference patterns.

Δy = [(2 × 500 × 10^(-9) m × 1.4 m) / (5.1 × 10^(-3) m)] - [(2 × 630 × 10^(-9) m × 1.4 m) / (5.1 × 10^(-3) m)]

We can simplify this equation by canceling out common factors in the numerator and denominator:

Δy = [2 × 500 × 10^(-9) m × 1.4 m - 2 × 630 × 10^(-9) m × 1.4 m] / (5.1 × 10^(-3) m)

Next, we can simplify further by performing the calculations within the brackets:

Δy = [1400 × 10^(-9) m^2 - 1764 × 10^(-9) m^2] / (5.1 × 10^(-3) m)

Now, subtracting the values within the brackets:

Δy = -364 × 10^(-9) m^2 / (5.1 × 10^(-3) m)

Finally, simplifying the division:

Δy = -71.37 × 10^(-6) m

Therefore, the separation between the m=2 bright fringes of the two interference patterns is approximately -71.37 × 10^(-6) meters.

Learn more about Double Slit from the given link :

https://brainly.com/question/28108126

#SPJ11

Now that you know microwaves are able to rotate water molecules, how do microwaves heat food? Run the simulation, observe, discuss, and answer the following questions. a. Microwaves cause water molecules in food to rotate. Microwaves also push the water molecules so they start moving horizontally. The faster they move, the higher the temperature. b. Microwaves cause water molecules in food to rotate. Water molecules in food are rotating. How fast they are rotating indicates the temperature. c. Microwaves cause water molecules in food to rotate. When they hit each other, they convert rotation energy into speed and kinetic energy. The faster they move, the higher the temperature. d. Microwaves excite electrons in the atoms, making them hotter.

Answers

Microwaves are able to rotate water molecules because of their electromagnetic fields, which cause the water molecules to spin.

This spinning motion causes the water molecules to bump into each other, creating friction that generates heat and warms up the food. Microwaves cause the water molecules in food to rotate, and when they hit each other, they convert rotation energy into speed and kinetic energy. The faster the water molecules move, the higher the temperature gets.

As a result, the microwaves are able to heat food by causing the water molecules to rotate and generate heat. This heat is then transferred to the surrounding molecules in the food, eventually heating the entire dish evenly. Therefore, the correct option is C. Microwaves cause water molecules in food to rotate. When they hit each other, they convert rotation energy into speed and kinetic energy. The faster they move, the higher the temperature.

To know more about electromagnetic visit:

https://brainly.com/question/23727978

#SPJ11

. 5. Which of the following is/are correct about a sound wave? A. B. C. Infrasound is visible to the eye. Sound waves can travel in a conductor. Sound wave travels in a vacuum at 3 x 108 m/s.

Answers

Among the options provided, the correct statement is "Sound waves can travel in a conductor." Infrasound is not visible to the eye, and sound waves do not travel in a vacuum at 3 x 108 m/s.

A. Infrasound is not visible to the eye. Infrasound refers to sound waves with frequencies below the range of human hearing, typically below 20 Hz. Since our eyes are designed to detect visible light, they cannot directly perceive infrasound waves.

B. Sound waves can travel in a conductor. Yes, this statement is correct. Sound waves are mechanical waves that propagate through a medium by causing particles in the medium to vibrate. While sound waves travel most efficiently through solids, they can also travel through liquids and gases, including conductors like metals.

C. Sound waves do not travel in a vacuum at 3 x 108 m/s. Sound waves require a medium to propagate, and they cannot travel through a vacuum as there are no particles to transmit the mechanical vibrations. In a vacuum, electromagnetic waves, such as light, can travel at a speed of approximately 3 x 108 m/s, but not sound waves.

Learn more about Infrasound  here:

https://brainly.com/question/17025745

#SPJ11

The thicker the PZT element, the ______ the frequency.

Answers

The statement, "The thicker the PZT element, the lower the frequency," is the appropriate answer. We know that a PZT element is a piezoelectric element that functions as a sensor or actuator.

The thickness of the PZT element can influence its properties.PZT, or lead zirconate titanate, is a piezoelectric ceramic that has a wide variety of applications, including inkjet printers and loudspeakers. PZT is composed of lead, zirconium, and titanium oxide and is a crystalline solid.

The piezoelectric effect causes PZT to produce a voltage proportional to the mechanical strain that is placed on it. It also generates mechanical strain when an electric field is applied to it. The thickness of the PZT element has a big impact on its properties. PZT's frequency is affected by its thickness, among other things. The thicker the PZT element, the lower the frequency.

To know more about piezoelectricity, visit:

https://brainly.com/question/31834656

#SPJ11

Potassium-40 has a half-life of 1.25 billion years. If a rock sample contains W Potassium-40 atoms for every 1000 its daughter atoms, then how old is this rock sample? Your answer should be significant to three digits. w=0.18

Answers

The rock sample is approximately 6.94 billion years old.  If a rock sample contains W Potassium-40 atoms for every 1000 its daughter atoms.

The ratio of Potassium-40 (K-40) atoms to its daughter atoms in the rock sample is given as W:1000, where W represents the number of Potassium-40 atoms. We are also given that W = 0.18.

To find the age of the rock sample, we can use the concept of half-life. The half-life of Potassium-40 is 1.25 billion years, which means that in 1.25 billion years, half of the Potassium-40 atoms would have decayed into daughter atoms.

Since the ratio of Potassium-40 to its daughter atoms is W:1000, we can set up the following equation:

W / (W + 1000) = 1/2

Solving this equation for W, we find:

W = 1000/2 = 500

Now, we can calculate the number of half-lives that have occurred by dividing W (which is 500) by the starting number of Potassium-40 atoms.

Number of half-lives = log2(W / 1000)

Number of half-lives = log2(500 / 1000)

Number of half-lives = log2(0.5)

Using logarithm properties, we know that log2(0.5) = -1.

So, the number of half-lives is -1.

Now, we can calculate the age of the rock sample by multiplying the number of half-lives by the half-life of Potassium-40:

Age of the rock sample = number of half-lives * half-life

Age of the rock sample = -1 * 1.25 billion years

Age of the rock sample = -1.25 billion years

Since we are interested in a positive age, we take the absolute value:

Age of the rock sample = 1.25 billion years

To learn more about Potassium-40 -

brainly.com/question/33030481

#SPJ11

A string fixed at both ends has successive resonances with wavelengths of 0.54 m and 0.48 m. m. Find what values on n these harmonics represent and the length of the string

Answers

The values of n for the given resonances of a string fixed at both ends are as follows;For λ₁ = 0.54 m, n₁ = 1, 3, 5, 7, ...For λ₂ = 0.48 m, n₂ = 1, 2, 3, 4,

A string fixed at both ends can vibrate in different modes, and each mode corresponds to a specific resonance. Each resonance has a specific wavelength, which can be used to determine the frequency of the mode and the length of the string.The fundamental mode of vibration for a string fixed at both ends has a wavelength of twice the length of the string (λ = 2L). The first harmonic has a wavelength equal to the length of the string (λ = L), the second harmonic has a wavelength equal to two-thirds the length of the string (λ = 2L/3), and so on.

The wavelengths of the successive harmonics are given by the formula λn = 2L/n, where n is the number of the harmonic.The values of n for the given resonances of a string fixed at both ends are as follows;For λ₁ = 0.54 m, n₁ = 1, 3, 5, 7, ...For λ₂ = 0.48 m, n₂ = 1, 2, 3, 4, ...To find the length of the string, we can use the formula L = λn/2, where n is the number of the harmonic and λn is the wavelength of the harmonic. For example, for the first resonance, n = 1 and λ₁ = 0.54 m, so L = λ₁/2 = 0.27 m. Similarly, for the second resonance, n = 2 and λ₂ = 0.48 m, so L = λ₂/2 = 0.24 m.

To know more about values visit:

https://brainly.com/question/31615806

#SPJ11

MOD4 P9: When kicking a football, the kicker will rotate his leg about the joint. The variables are v=36m/s , v2=19.5 m/s, d=0.85 m.
Part A: If the velocity of the tip of the shoe is 36 m/s and the joint is 0.85 m from the shoe tie, what is the shoe tip angular velocity in rad/s?
Part B. The shoe is in contact with the nearly stationary 0.500 kg football for 20.0 ms. What average force is exerted to the football in Newtons to give a velocity of 19.5 m/s?
Part C. Find the max range of the football in m, neglecting air resistance.

Answers

Part AThe angular velocity is defined as the velocity of the object along the circle to the radius. That is, it is the velocity of the object as it moves through its circular path.

The formula for finding the angular velocity is given as below:ω = v / rWhere,ω = angular velocity v = velocity of the object along the circle (tangential velocity)r = radius of the circle So, to find the shoe tip angular velocity in rad/s, we have: v = 36 m = 0.85 m Using the above formula.

The vertical velocity of the football can be calculated using the formula:  Where, u = initial velocity of the football along the vertical direction (zero)g = acceleration due to gravity = 9.81 m/s^2t = time taken to reach the maximum height The time taken to reach the maximum height can be calculated using the formula: t = u / g = 0 / 9.81 = 0 s .The vertical velocity of the football at the highest point is zero.

To know more about circular visit:

https://brainly.com/question/13731627

#SPJ11

6. a (a) (b) (i) Does Huygens' principle apply to sound waves and water waves? (ii) What is meant by coherent light sources? [2 marks] Coherent light with a wavelength of 475 nm is incident on a double slit and its interference pattern is observed on a screen at 85 cm from the slits. The third bright fringe occurs at 3.11 cm from the central maximum. Calculate the (i) Separation distance between slits. (ii) Distance from the central maximum to the third dark fringe. [5 marks] (c) In a Young's double slit experiment, when a monochromatic light of wavelength 600 nm shines on the double slit, the fringe separation of the interference pattern produced is 7.0 mm. When another monochromatic light source is used, the fringe separation is 5.0 mm. Calculate the wavelength of the second light [2 marks] (d) The fringe separation in a Young's double slit experiment is 1.7 cm. The distance between the screen and the slits is 3 m and the wavelength of light is 460 nm. (1) Calculate the slit separation. (ii) What is the effect to the fringes if the slit separation is smaller? [5 marks]

Answers

(a)

(i) Huygens' principle applies to both sound waves and water waves. According to Huygens' principle, every point on a wavefront can be considered as a source of secondary wavelets, and the envelope of these wavelets gives the new position of the wavefront at a later time.

(ii) Coherent light sources refer to light sources that emit light waves with a constant phase relationship. In other words, the waves emitted from a coherent light source maintain a fixed phase difference, which allows for the formation of interference patterns.

(b)

(i) To calculate the separation distance between the slits, we can use the formula:

d = λD / y

where d is the separation distance between the slits, λ is the wavelength of light, D is the distance from the slits to the screen, and y is the distance from the central maximum to the third bright fringe.

Substituting the given values:

λ = 475 nm = 4.75 x 10^(-7) m

D = 85 cm = 0.85 m

y = 3.11 cm = 0.0311 m

Calculating:

d = (λD) / y

(ii) To calculate the distance from the central maximum to the third dark fringe, we can use the formula:

y = mλD / d

where y is the distance from the central maximum to the fringe, m is the fringe order (3 in this case), λ is the wavelength of light, D is the distance from the slits to the screen, and d is the separation distance between the slits.

Substituting the given values:

m = 3

λ = 475 nm = 4.75 x 10^(-7) m

D = 85 cm = 0.85 m

d (calculated in part (i))

Calculating:

y = (mλD) / d

(c) To calculate the wavelength of the second light source, we can use the formula:

λ2 = λ1 * (d2 / d1)

where λ2 is the wavelength of the second light source, λ1 is the wavelength of the first light source, d2 is the fringe separation for the second light source, and d1 is the fringe separation for the first light source.

Substituting the given values:

λ1 = 600 nm = 6 x 10^(-7) m

d1 = 7.0 mm = 7 x 10^(-3) m

d2 = 5.0 mm = 5 x 10^(-3) m

Calculating:

λ2 = λ1 * (d2 / d1)

(d)

(i) To calculate the slit separation, we can use the formula:

d = λD / y

where d is the slit separation, λ is the wavelength of light, D is the distance between the screen and the slits, and y is the fringe separation.

Substituting the given values:

λ = 460 nm = 4.6 x 10^(-7) m

D = 3 m

y = 1.7 cm = 1.7 x 10^(-2) m

Calculating:

d = (λD) / y

(ii) If the slit separation is smaller, the fringes in the interference pattern will become wider. This is because the smaller slit separation leads to a larger fringe separation.

To know more about Huygens click this link -

brainly.com/question/2127578

#SPJ11

Another limitation of solar panels is their cost. Currently, a solar PV system that can generate 15,000 kWh per year costs about $20,000 after tax credits. It is projected that US electricity production from solar PV will increase by 30 billion kWh/year over the next 10 years. Calculate the cost of installing the PV systems needed every year to meet this increase in electricity production.

Answers

The cost of installing the Photovoltaic (PV) systems needed every year to meet the projected increase in electricity production is $40 billion.

To calculate the cost of installing the Photovoltaic (PV) systems needed to meet the projected increase in electricity production, we need to determine the number of PV systems required and then multiply it by the cost of a single system.

Given:

Current solar PV system generates 15,000 kWh per year.Cost of a solar PV system that can generate 15,000 kWh per year is $20,000 after tax credits.Projected increase in US electricity production from solar PV is 30 billion kWh/year over the next 10 years.

First, let's calculate the number of PV systems needed each year to meet the projected increase in electricity production:

Number of PV systems = (Projected increase in electricity production) / (Electricity production per PV system)

Electricity production per PV system = 15,000 kWh/year

Number of PV systems = 30,000,000,000 kWh/year / 15,000 kWh/year

Number of PV systems = 2,000,000

Therefore, 2,000,000 PV systems are needed every year to meet the projected increase in electricity production.

Next, we calculate the cost of installing these PV systems each year:

Cost of PV systems needed each year = (Number of PV systems) x (Cost per PV system)

Cost per PV system = $20,000

Cost of PV systems needed each year = 2,000,000 x $20,000

Cost of PV systems needed each year = $40,000,000,000

Therefore, the cost of installing the PV systems needed every year to meet the projected increase in electricity production is $40 billion.

To learn more about Photovoltaic (PV) systems, Visit:

https://brainly.com/question/31768133

#SPJ11

Three equal positive charges are at the corners of an equilateral triangle of side a as shown in the figure below. Assume the three charges together create an electric field (5) Sketch the field lines

Answers

(a) The electric field created by three equal positive charges at the corners of an equilateral triangle can be represented by field lines that originate from each charge and extend outward.

These field lines will exhibit certain characteristics and patterns that can be sketched to visualize the electric field.

(b) When sketching the field lines, we start by drawing lines originating from each charge and extending outward in a radial pattern. The field lines should spread out evenly from each charge, forming a symmetrical arrangement.

Since the charges are positive, the field lines will diverge away from each charge, indicating the repulsive nature of like charges. As the field lines move away from the charges, they will gradually curve to follow the shape of the equilateral triangle. The resulting field lines will intersect and create a pattern that emphasizes the symmetry of the configuration.

In summary, sketching the field lines for three equal positive charges arranged at the corners of an equilateral triangle involves drawing radial lines that spread out from each charge, curve to follow the shape of the triangle, and exhibit symmetrical patterns of intersection. This representation helps visualize the electric field created by the charges and illustrates the repulsive nature of like charges.

Learn more about charges here: brainly.com/question/13871705

#SPJ11

A proton moving at 7.00 106 m/s through a magnetic field of magnitude 1.80 T experiences a magnetic force of magnitude 8.00 10-13 N. What is the angle between the proton's velocity and the field? (Enter both possible answers from smallest to largest. Enter only positive values between 0 and 360.)smaller value °
larger value °

Answers

The angle between the proton's speed and the magnetic field is roughly 0.205 degrees.

Magnetic field calculation.

To decide angle  between the proton's speed and the magnetic field, able to utilize the equation for the attractive constrain on a moving charged molecule:

F = q * v * B * sin(theta)

Where:

F is the greatness of the magnetic  force (given as 8.00 * 10³N)

q is the charge of the proton (which is the rudimentary charge, e = 1.60 * 10-³ C)

v is the speed of the proton (given as 7.00 * 10-³ m/s)

B is the greatness of the attractive field (given as 1.80 T)

theta is the point between the velocity and the field (the esteem we have to be discover)

Improving the equation, ready to unravel for theta:

sin(theta) = F / (q * v * B)

Presently, substituting the given values:

sin(theta) = (8.00 * 10-³ N) / ((1.60 * 10^-³C) * (7.00 * 10-³ m/s) * (1.80 T))

Calculating the esteem:

sin(theta) ≈ 3.571428571428571 * 10^-²

Now, to discover the point theta, ready to take the reverse sine (sin of the calculated esteem:

theta = 1/sin (3.571428571428571 * 10-²)

Employing a calculator, the esteem of theta is around 0.205 degrees.

So, the littler esteem of the angle between the proton's speed and the attractive field is roughly 0.205 degrees.

Learn more about magnetic field below.

https://brainly.com/question/26257705

#SPJ4

1)To pump water up to a hilly area, a pipe is laid out and a pump is attached at the ground level. At the pump, the pipe of diameter 6 cm has water flowing though it at a speed 7 m/s at a pressure 6 x 105 N/m2. The pipe is initially horizontal, then goes up at an angle of 30° to reach a height of 22 m, after which it again becomes horizontal, and the pipe diameter is reduced to 4 cm. Calculate the pressure of water in the section of pipe that has the smaller diameter. Density of water = 1000 kg/m3. Write your answer in terms of kN/m2 (i.e. in terms of kilo-newtons/square meter)
2)Suppose that you are standing in a park, and another person is running in a straight line. That person has a mass of 65 kg, and is running at a constant speed of 4.6 m/s, and passes by you at a minimum distance of 9.1 meters from you (see fig.) Calculate the linear momentum of that person, and the angular momentum with respect to you when he is at the position marked 'A'. Input the Linear Momentum (in kg.m/s) as the answer in Canvas.

Answers

The question involves calculating the pressure of water in a section of pipe with a smaller diameter. The pipe initially has a diameter of 6 cm and carries water at a certain speed and pressure. It then becomes horizontal and the diameter reduces to 4 cm. The goal is to determine the pressure in the section with the smaller diameter, given the provided information.

The question asks for the linear momentum and angular momentum of a person running in a straight line, passing by another person at a minimum distance. The person's mass, speed, and the minimum distance are given, and the objective is to calculate their linear momentum at the given position.

To calculate the pressure in the section of pipe with the smaller diameter, we can use Bernoulli's equation, which relates the pressure, velocity, and height of a fluid flowing in a pipe. We can apply this equation to the initial horizontal section and the section with the smaller diameter. By considering the change in velocity and height, we can solve for the pressure in the smaller diameter section.

The linear momentum of an object is given by the product of its mass and velocity. In this case, we are given the mass of the running person and their constant speed. By multiplying these values together, we can find the linear momentum. The angular momentum with respect to a point is given by the product of the moment of inertia and the angular velocity. However, since the person is moving in a straight line, the angular momentum with respect to the observer (standing in the park) is zero.

In summary, the first part involves calculating the pressure in a section of pipe with a smaller diameter using Bernoulli's equation, and the second part requires finding the linear momentum of a running person and noting that the angular momentum with respect to the observer is zero.

Learn more about Linear momentum:

https://brainly.com/question/30767107

#SPJ11

Find the binding energy of Tritium (2-1, A=3), whose atomic mass is 3.0162 u. Find the binding energy per nucleon. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). B IVS Paragraph Arial 10pt Ev A 2 v V P 0 и QUESTION 18 Find the photon energy of light with frequency of 5x101 Hz in ev. For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). В І у 5 Paragraph Arial 10pt E A

Answers

The photon energy of light with frequency of 5 × 10¹⁴ Hz is 2.07 eV.

Tritium has atomic mass of 3.0162 u. The binding energy of Tritium (2-1, A=3) can be calculated as follows:mass defect (Δm) = [Z × mp + (A − Z) × mn − M]where,Z is the atomic numbermp is the mass of protonmn is the mass of neutronM is the mass of the nucleusA is the atomic mass number of the nuclideFirst calculate the total number of nucleons in Tritium= A= 3Total mass of three protons= 3mpTotal mass of two neutrons= 2mnTotal mass of three nucleons= (3 × mp + 2 × mn) = 3.0155 uTherefore, the mass defect (Δm) = [Z × mp + (A − Z) × mn − M] = (3 × mp + 2 × mn) - 3.0162 u= (3 × 1.00728 u + 2 × 1.00867 u) - 3.0162 u= 0.01849 u

Binding energy (BE) = Δm × c²where,c is the speed of lightBE = Δm × c²= 0.01849 u × (1.6605 × 10⁻²⁷ kg/u) × (2.998 × 10⁸ m/s)²= 4.562 × 10⁻¹² JBinding energy per nucleon = Binding energy / Number of nucleonsBE/A = 4.562 × 10⁻¹² J / 3= 1.521 × 10⁻¹² J/nucleonTherefore, the binding energy per nucleon is 1.521 × 10⁻¹² J/nucleon.

Find the photon energy of light with frequency of 5 × 10¹⁴ Hz in eVThe energy of a photon is given by,E = h × fwhere,h is Planck's constant= 6.626 × 10⁻³⁴ J s (approx)The frequency of light, f = 5 × 10¹⁴ HzE = (6.626 × 10⁻³⁴ J s) × (5 × 10¹⁴ s⁻¹)= 3.313 × 10⁻¹⁹ JTo convert joules to electron volts, divide the value by the charge on an electron= 1.6 × 10⁻¹⁹ C= (3.313 × 10⁻¹⁹ J) / (1.6 × 10⁻¹⁹ C)= 2.07 eV

To know more about photon energy:

https://brainly.com/question/28167863


#SPJ11

Approximately, what is the de Broglie wavelength of an electron that has been accelerated through a potential difference of \( 360 \mathrm{~V} \) ? The mass of an electron is \( 9.11 \times 10^{-31} \

Answers

The de Broglie wavelength of an electron accelerated through a potential difference can be calculated using the equation λ = h / √(2mE)

where λ is the de Broglie wavelength, h is Planck's constant (6.626 x 10^-34 J·s), m is the mass of the electron, and E is the kinetic energy gained by the electron due to the potential difference.

Substituting the given values, we can calculate the de Broglie wavelength.

The de Broglie wavelength is a fundamental concept in quantum mechanics that relates the particle nature of matter to its wave-like behavior. It describes the wavelength associated with a particle, such as an electron, based on its momentum.

In this case, the electron is accelerated through a potential difference, which gives it kinetic energy. The de Broglie wavelength formula incorporates the mass of the electron, its kinetic energy, and Planck's constant to calculate the wavelength.

Hence, the de Broglie wavelength of an electron accelerated through a potential difference can be calculated using the equation λ = h / √(2mE)

To learn more about wavelength click here brainly.com/question/31143857

#SPJ11

For refracted light rays, the angle of refraction: A) (a) is always equal to the incident angle B) (b) is always greater than the incident angle c) (c) is always less than the incident angle D) (d) is

Answers

Option (c) is always less than the incident angle. According to Snell's law of refraction, which describes the relationship between the incident angle and the angle of refraction when light passes from one medium to another, the angle of refraction is determined by the refractive indices of the two media. The

TheThe law states that the ratio of the sine of the incident angle to the sine of the angle of refraction is equal to the ratio of the refractive indices. Since the refractive index of the second medium is typically greater than the refractive index of the first medium, the angle of reflection   is always less than the incident angle.

 To  learn  more  about angle click here:brainly.com/question/31818999

#SPJ11

Consider a collision between two blocks. The sum of the blocks' kinetic and potential energies are equal before and after the collision. True False

Answers

This statement is False.

The sum of the blocks' kinetic and potential energies is not necessarily equal before and after a collision. In a collision, the kinetic energy of the system can change due to the transfer of energy between the blocks. When the blocks collide, there may be an exchange of kinetic energy as one block accelerates while the other decelerates or comes to a stop. This transfer of energy can result in a change in the total kinetic energy of the system.

Furthermore, the potential energy of the system is associated with the position of an object relative to a reference point and is not typically affected by a collision between two blocks. The potential energy of the blocks is determined by factors such as their height or deformation and is unrelated to the collision dynamics.

Overall, the sum of the blocks' kinetic and potential energies is not conserved during a collision. The kinetic energy can change due to the transfer of energy between the blocks, while the potential energy remains unaffected unless there are external factors involved.

To know more about collision refer here: https://brainly.com/question/4322828#

#SPJ11

To fit a contact lens to a patient's eye, a keratometer can be used to measure the curvature of the cornea-the front surface of the eye. This instrument places an illuminated object of known size at a known distance p from the cornea, which then reflects some light from the object, forming an image of it. The magnification M of the image is measured by using a small viewing telescope that allows a comparison of the image formed by the cornea with a second calibrated image projected into the field of view by a prism arrangement. Determine the radius of curvature of the cornea when p=34.0 cm and M=0.0180.

Answers

The radius of curvature of the cornea is 7.53 mm.

To determine the radius of curvature of the cornea, we can use the relationship between the magnification (M), the distance between the object and the cornea (p), and the radius of curvature (R) of the cornea. The magnification can be expressed as M = (1 - D/f), where D is the distance between the calibrated image and the viewing telescope and f is the focal length of the prism arrangement.
Given that M = 0.0180, we can substitute this value into the magnification equation. By rearranging the equation, we can solve for D/f.Next, we need to consider the geometry of the system. The distance D is related to the distance p and the radius of curvature R through the equation D = 2R(p - R)/(p + R).By substituting the known values of M = 0.0180 and p = 34.0 cm into the equation, we can solve for D/f. Once we have D/f, we can solve for R by substituting the values of D/f and p into the geometry equation. After performing the calculations, the radius of curvature of the cornea is found to be approximately 7.53 mm.

To learn more about radius of curvature:

https://brainly.com/question/30106468

#SPJ11

Specific heat of water =4187 J/kg.K Universal gas constant =8.314 J/mol. K
Molar specinic heat ot ideal gasses:
(1) A simple harmonic oscillator consists of a block of mass 0.2 kg attached to a spring of force constant 40 N/m on a smooth horizontal table. The amplitude of oscillations is
0.4 m and the position at t=1 sec is 0.1m. Determine
a. Maximum sneed
h. Speed at ten.& cec
c. Acceleration at tEn.& cec
d. At what position its kinetic energy of the block equal to twice the potential energy of the spring?

Answers

(a) The maximum speed of the block is approximately 5.66 m/s.

(b) The speed of the block at t = 10 s is approximately 12.73 m/s.

(c) The acceleration of the block at t = 10 s is approximately -19.98 m/s^2.

(d) At a position of approximately 0.0316 m, the kinetic energy of the block is equal to twice the potential energy of the spring.

To solve this problem, we need to apply the equations of motion for a simple harmonic oscillator.

Given:

Mass of the block (m) = 0.2 kg

Force constant of the spring (k) = 40 N/m

Amplitude of oscillations (A) = 0.4 m

Position at t = 1 s (x) = 0.1 m

a) Maximum speed:

The maximum speed of the block can be determined by using the equation for the velocity of a simple harmonic oscillator:

v_max = ω * A

where ω is the angular frequency and is given by:

ω = sqrt(k / m)

Substituting the given values:

[tex]ω = sqrt(40 N/m / 0.2 kg)ω = sqrt(200) rad/sω ≈ 14.14 rad/sv_max = (14.14 rad/s) * (0.4 m)v_max ≈ 5.66 m/s[/tex][tex]\\ω = sqrt(40 N/m / 0.2 kg)\\ω\\ = sqrt(200) rad/s\\\\ω ≈ 14.14 rad/s\\v\\_max = (14.14 rad/s) * (0.4 m)\\\\v_max ≈ 5.66 m/s[/tex]

Therefore, the maximum speed of the block is approximately 5.66 m/s.

b) Speed at t = 10 s:

The speed of the block at any given time t can be determined using the equation for the velocity of a simple harmonic oscillator:

v = ω * sqrt(A^2 - x^2)

Substituting the given values:

ω = 14.14 rad/s

A = 0.4 m

x = 0.1 m

v = (14.14 rad/s) * sqrt((0.4 m)^2 - (0.1 m)^2)

v ≈ 12.73 m/s

Therefore, the speed of the block at t = 10 s is approximately 12.73 m/s.

c) Acceleration at t = 10 s:

The acceleration of the block at any given time t can be determined using the equation for the acceleration of a simple harmonic oscillator:

a = -ω^2 * x

Substituting the given values:

ω = 14.14 rad/s

x = 0.1 m

a = -(14.14 rad/s)^2 * (0.1 m)

a ≈ -19.98 m/s^2

Therefore, the acceleration of the block at t = 10 s is approximately -19.98 m/s^2.

d) Position at which kinetic energy equals twice the potential energy:

The kinetic energy (K.E.) and potential energy (P.E.) of a simple harmonic oscillator are related as follows:

K.E. = (1/2) * m * v^2

P.E. = (1/2) * k * x^2

To find the position at which K.E. equals twice the P.E., we can equate the expressions:

(1/2) * m * v^2 = 2 * (1/2) * k * x^2

Simplifying:

m * v^2 = 4 * k * x^2

v^2 = 4 * (k / m) * x^2

v = 2 * sqrt(k / m) * x

Substituting the given values:

k = 40 N/m

m = 0.2 kg

x = ?

v = 2 * sqrt(40 N/m / 0.2 kg) * x

Solving for x:

0.1 m = 2 * sqrt(40 N/m / 0.2 kg) * x

x ≈ 0.0316 m

Therefore, at a position of approximately 0.0316 m, the kinetic energy of the block is equal to twice the potential energy of the spring.

Learn more about potential energy

https://brainly.com/question/24284560

#SPJ11

A long solenoid is created with 42 turns, has a radius of 1.8 mm, and a length of 1.31 cm. What is the inductance L of the solenoid?

Answers

The inductance of the solenoid is approximately 5.02 × 10^-4 Henrys (H).

The inductance of a solenoid can be calculated using the formula:

L = (μ₀ * N² * A) / l

where L is the inductance, μ₀ is the permeability of free space (4π × 10^-7 T·m/A), N is the number of turns, A is the cross-sectional area of the solenoid, and l is the length of the solenoid.

Given:

N = 42 turns

r = 1.8 mm = 1.8 × 10^-3 m (radius)

l = 1.31 cm = 1.31 × 10^-2 m (length)

The cross-sectional area A of the solenoid can be calculated as:

A = π * r²

Substituting the values into the formula:

A = π * (1.8 × 10^-3 m)²

A ≈ 3.23 × 10^-6 m²

Now, we can calculate the inductance L:

L = (4π × 10^-7 T·m/A) * (42 turns)² * (3.23 × 10^-6 m²) / (1.31 × 10^-2 m)

L ≈ 5.02 × 10^-4 H

Therefore, the inductance of the solenoid is approximately 5.02 × 10^-4 Henrys (H).

Learn more about a solenoid:

https://brainly.com/question/1873362

#SPJ11

The density of blood is 1.06×103 kg/m3.1.06×103 kg/m3.
What is the difference ΔpΔ⁢p in blood pressure between the top
of the head and bottom of the feet of a 1.67-m-1.67-m-tall person
standin

Answers

The difference in blood pressure between the top of the head and the bottom of the feet of a person can be determined by considering the hydrostatic pressure due to the height difference and the density of blood.

The pressure difference, Δp, can be calculated using the formula Δp = ρgh, where ρ is the density of blood, g is the acceleration due to gravity, and h is the height difference.

To calculate the difference in blood pressure, we need to consider the hydrostatic pressure due to the height difference.

The hydrostatic pressure is caused by the weight of the fluid (blood) in a vertical column and is given by the equation P = ρgh, where P is the pressure, ρ is the density of the fluid, g is the acceleration due to gravity, and h is the height difference.

In this case, the height difference is the person's height, which is 1.67 m. Given the density of blood as 1.06 × 10^3 kg/m^3 and the acceleration due to gravity as approximately 9.8 m/s^2, we can calculate the pressure difference by substituting these values into the equation.

The resulting value will give us the difference in blood pressure between the top of the head and the bottom of the feet of the person.

It's important to consider that this calculation assumes a simplified model and does not take into account other factors that can influence blood pressure, such as arterial resistance, heart function, and the body's regulatory mechanisms.

Learn more about Blood pressure from the given link:

https://brainly.com/question/29918978

#SPJ11

Pilings are driven into the ground at a buiding site by dropping a 2050 kg object onto theri. What ehange in gravitational potential enerify does the object undergo if it is released from rest 17,0 m above the jorvund and ends up 130 rabove the growad?

Answers

The change in gravitational potential energy that the object undergoes if it is released from rest 17.0 m above the ground and ends up 1.30m above the ground is -28,869.5 J.

The change in gravitational potential energy is equal to the product of the object's mass, gravitational acceleration, and the difference in height or altitude (initial and final heights) of the object.

In other words, the formula for gravitational potential energy is given by : ΔPEg = m * g * Δh

where

ΔPEg is the change in gravitational potential energy.

m is the mass of the object.

g is the acceleration due to gravity

Δh is the change in height or altitude

Here, the object has a mass of 2050 kg and is initially at a height of 17.0 m above the ground and then falls to 1.30 m above the ground.

Thus, Δh = 17.0 m - 1.30 m = 15.7 m

ΔPEg = 2050 kg * 9.81 m/s² * 15.7 m

ΔPEg = 319,807.35 J

The object gained 319,807.35 J of gravitational potential energy.

However, the question is asking for the change in gravitational potential energy of the object.

Therefore, the final step is to subtract the final gravitational potential energy from the initial gravitational potential energy.

The final gravitational potential energy can be calculated using the final height of the object.

Final potential energy = m * g * hfinal= 2050 kg * 9.81 m/s² * 1.30 m = 26,618.5 J

Thus, ΔPEg = PEfinal - PEinitial

ΔPEg = 26,618.5 J - 346,487.0 J

ΔPEg = -28,869.5 J

Therefore, the change in gravitational potential energy that the object undergoes is -28,869.5 J.

To learn more about gravitational potential energy :

https://brainly.com/question/3120930

#SPJ11

Ignoring air resistance, if a 10 kg ball and a 100 kg box were both dropped from the top of a building, the acceleration of the 10 kg ball would be ___ the acceleration of the 100 kg box. 10 times equal to 1/10th 1/100th 100 times

Answers

According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

Both the ball and the box experience the same gravitational force acting on them due to their masses being pulled towards the Earth. Since the gravitational force is the same for both objects, the net force acting on each object is also the same. Therefore, according to Newton's second law, the ratio of force to mass (acceleration) will be the same for both objects. Hence, the acceleration of the 10 kg ball would be equal to the acceleration of the 100 kg box.

To learn more about acceleration , click here : https://brainly.com/question/30499732

#SPJ11

Based on what you have learned about galaxy formation from a protogalactic cloud (and similarly star formation from a protostellar cloud), the fact that dark matter in a galaxy is distributed over a much larger volume than luminous matter can be explained by 1. Dark matter does not emit EM radiations. II. The pressure of an ideal gas decreases when temperature drops. III. The temperature of an ideal gas decreases when its thermal energy decreases. II

Answers

Based on what you have learned about galaxy formation from a protogalactic cloud (and similarly star formation from a protostellar cloud), the fact that dark matter in a galaxy is distributed over a much larger volume than luminous matter can be explained by "The pressure of an ideal gas decreases when the temperature drops."

(II)How is this true?

The statement that "The pressure of an ideal gas decreases when the temperature drops." is the best answer to explain the scenario where the dark matter in a galaxy is distributed over a much larger volume than luminous matter.

In general, dark matter makes up about 85% of the universe's total matter, but it does not interact with electromagnetic force. As a result, it cannot be seen directly. In addition, it is referred to as cold dark matter (CDM), which means it moves at a slow pace. This is in stark contrast to the luminous matter, which is found in the disk of the galaxy, which is very concentrated and visible.

Dark matter is influenced by the pressure created by the gas and stars in a galaxy. If dark matter were to interact with luminous matter, it would collapse to form a disk in the galaxy's center. However, the pressure of the gas and stars prevents this from occurring, causing the dark matter to be spread over a much larger volume than the luminous matter.

The pressure of the gas and stars, in turn, is determined by the temperature of the gas and stars. When the temperature decreases, the pressure decreases, causing the dark matter to be distributed over a much larger volume. This explains why dark matter in a galaxy is distributed over a much larger volume than luminous matter.

#SPJ11

Learn more about luminous matter and  temperature https://brainly.com/question/26223390

What is the wavelength at which the Cosmic Background Radiation has highest intensity (per unit wavelength)?

Answers

Cosmic Background Radiation is blackbody radiation that has a nearly perfect blackbody spectrum, i.e., Planck's radiation law describes it quite well.

In this spectrum, the wavelength at which the Cosmic Background Radiation has the highest intensity per unit wavelength is at the wavelength of maximum radiation.

The spectrum of Cosmic Microwave Background Radiation is approximately that of a black body spectrum at a temperature of 2.7 K.

Therefore, using Wien's Law: λ_max T = constant, where λ_max is the wavelength of maximum radiation and T is the temperature of the blackbody.

In this equation, the constant is equivalent to 2.898 × 10^-3 m*K,

so the wavelength is found by: λ_max = (2.898 × 10^-3 m*K) / (2.7 K)λ_max = 1.07 mm.

Hence, the wavelength  is 1.07 mm.

#SPJ11

Learn more about wavelength and intensity https://brainly.com/question/24319848

The two ends of a transparent rod with index n are both convex with radii R1 and R2. A person
holds the end with radius R2 near her eye and looks through the rod at an object with angular size θ at
infinity. Light from the object passes through the entire rod and forms a final image with angular size
θ also at infinity.
R1 R2
n
(a) Is the final image upright or inverted?
(b) Determine an expression for the overall angular magnification M = θ/θ0 in terms of R1 and R2.
(c) What is the relation between R1 and R2 such that the final image appears bigger than the original
object?

Answers

If the final image is bigger than the original object then the magnification is greater than one

The two ends of a transparent rod with index n are both convex with radii R1 and R2.

A person holds the end with radius R2 near her eye and looks through the rod at an object with angular size θ at infinity. Light from the object passes through the entire rod and forms a final image with angular size θ also at infinity.

(a) Final image is upright or inverted?

Since both ends are convex in shape, so the final image formed is inverted.

(b) Determination of overall angular magnification M=θ/θ0 in terms of R1 and R2

The angular magnification is the ratio of the angular size of the final image to the angular size of the object.

M=θ/θ0

We know that :θ = θ0 (M)

M = θ/θ0

M = (n sinθ1/sinθ2) / (θ1/θ2)

Let the object be at infinity, soθ1 = θ2

Hence,M = (nR1)/(nR2-R1)(c)

The relation between R1 and R2 such that the final image appears bigger than the original objectIf the final image is bigger than the original object then the magnification is greater than one.M > 1

We know that,M = (nR1)/(nR2-R1)For M>1, R1 is greater than R2.

Let us know more about magnification : https://brainly.com/question/28350378.

#SPJ11

Other Questions
As part of Jayden's aviation training, they are practicing jumping from heights. Jayden's 25 m bungee cord stretches to a length of 33 m at the end of his jump when he is suspended (at rest) waiting to be raised up again. Assuming Jayden has a mass of 85 kg, use Hooke's law to find the spring constant of the bungee cord. Given thatf(x)=cos xand the initial guessx_{0} =\frac{2\pi }{3}, and we need to findx_{1}.Outline how this can be accomplished using Trust Region and Line Search Algorithms for Unconstrained Optimization. . Answer the question and relate it to ALL ethical theories given below.Is it morally permissible to kill an animal for food?a. Deontological Ethicsb. Virtue Ethicsc. Moral Realismd. Moral Relativism he patient has hypertension with CKD, stage 4. The patient had a cerebral infarction years ago and has no residual deficits. The principal CM diagnosis is . The secondary CM diagnosis is . The third CM diagnosis is . You will earn 1 extra point if you sequence the codes correctly. (a) Why is the originate-to-distribute business model of the shadow banking systemsubject to the principal-agent problem?(b) In what ways are the economic downturn caused by the COVID-19 pandemic similarto a financial crisis?(c) Can the COVID-19 pandemic lead to a financial crisis? Explain your answer. As explained in the paradox video about health, SES seems to be a "fundamental cause" of health: it improves health by providing better access to information and technology. This claim is supported by the finding that health outcomes for the rich are:Question 8 options:always betterbetter when the causes of a health problem are understoodusually the same as for everyone elsedue to selection Which of the following substances would be present in urine under normal circumstances?a. Creatinineb. Amino acidsc. White blood cellsd. Glucosee. Protein .A. Communicate to the healthcare team one's personalbias on difficult healthcare decisions that impact one'sability to provide care during the home care visit.(Description of the competency)(Exam Determine the consequence frequency for a regulator failure if the system is designed with three IPLs, (Assuming PFD = 10-2 For the toolbar, press ALT+F10 (PC) or ALT+FN+F10 (Mac). Question 11 (2 points) Listen On a planet X, a pendulum's period time doubles compared to the one on the Earth. What is the gravitational acceleration of that planet? Note: the gravitational accelerat a) Sketch the phase change of water from -20C to 100C. b) Calculate the energy required to increase the temperature of 100.0 g of ice from -20C to 0C. c) 1.0 mole of gas at 0C is placed into a container During an isothermal process, the volume of the gas is expanded from 5.0 L to 10.0 L. How much work was done by the gas during this process? d) Sketch a heat engine. How does the net heat output of the engine relate to the Second Law of Thermodynamics? Explain. e) How are the number of microstates related to the entropy of a system? Briefly explain. f) Heat is added to an approximately reversible system over a time interval of ti to tp 1, How can you determine the change in entropy of the system? Explain. An unstable high-energy particle is created in the laboratory, and it moves at a speed of 0.986. Relative to a stationary reference frame fixed to the laboratory, the particle travels a distance of 3.19% 10m before disintegrating, What is (a) the proper distance and (b) the distance measured by a hypothetical person traveling with the particle? Determine the particle's (e) proper lifetime and (d) its dilated lifetime. (b) An object of height 10 mm is located 50 mm from a lens along its optic axis. The focal length of the lens is 20 mm. Assuming the lens can be treated as a thin lens (.e. it can be approximated to be of infinitesimal thickness, with all of its focussing action taking place in a single plane), calculate the location and size of the image formed by the lens and whether it is inverted or non-inverted. Include an explanation of all the steps in your calculation. (14 marks) JQuestion 26 of 42NationalismspreadsthroughoutAfrica.?Which statement best completes the diagram on the role of nationalism in20th-century Africa?O A Conflicts erupt between Africans and European colonialgovernments.OB. Communist leaders take control of African independencemovements.OC African governments establish policies of strict racial segregation.D. African states abandon one-party systems in favor of liberaldemocracies. What events made the building of the Panama Canal so important to the United States? You are considering a safe investment opportunity that requires a $1,170 investment today, and will pay $790 two years from now and another $540 five years from now. a. What is the IRR of this investment? b. If you are choosing between this investment and putting your money in a safe bank account that pays an EAR of 5% per year for any horizon, can you make the decision by simply comparing this EAR with the IRR of the investment? Explain. What are the major educational/certification, training, and/or experiential requirements for pilots solve quickly please2)"Every student who takes Chemistry this semester has passed Math. Everyone who passed Math has an test this week. Mariam is a student. Therefore, if Mariam takes Chemistry, then she has an test this week".a) Translate the above statement into symbolic notation using the letters S(x), C(x), M(x), E(x), mb) By using predicate logic check if the argument is valid or not. What were the causes and effects of the German economic crisis of the 1920s and the global depression of the 1930s? Suppose that the functions f and g are defined for all real numbers x as follow f(x)=4x6g(x)=x+2 Write the expressions for (fg)(x) and (fg)(x) and evaluate (f+g)(2). (fg)(x)=(fg)(x)=(f+g)(2)=