14.2
Part A
If 1.90×105 J of energy is supplied to a flask of liquid oxygen at -183∘C, how much oxygen can evaporate? The heat of vaporization for oxygen is 210 kJ/kg.
Express your answer to two significant figures and include the appropriate units.
m =
Part B
One end of a 70-cm-long copper rod with a diameter of 2.6 cm is kept at 490 ∘C, and the other is immersed in water at 22 ∘C.
Calculate the heat conduction rate along the rod.
Express your answer to two significant figures and include the appropriate units.
Qt =

Answers

Answer 1

The heat conduction rate along the rod is 4.62 x 10^3 W.

Part A The mass of oxygen that can evaporate can be calculated as follows:

Heat of vaporization of oxygen = 210 kJ/kg

Energy supplied to flask of liquid oxygen = 1.90 x 10^5 J

Temperature of liquid oxygen = -183°C

Now, we know that the heat of vaporization of oxygen is the amount of energy required to convert 1 kg of liquid oxygen into gaseous state at the boiling point.

Hence, the mass of oxygen that can be evaporated = Energy supplied / Heat of vaporization

= 1.90 x 10^5 / 2.10 x 10^5

= 0.90 kg

Therefore, the mass of oxygen that can evaporate is 0.90 kg.

Part B The heat conduction rate along the copper rod can be calculated using the formula:

Qt = (kAΔT)/l

Given:Length of copper rod = 70 cm

Diameter of copper rod = 2.6 cm

=> radius, r = 1.3 cm

= 0.013 m

Temperature at one end of copper rod, T1 = 490°C = 763 K

Temperature at other end of copper rod, T2 = 22°C = 295 K

Thermal conductivity of copper, k = 401 W/mK

Cross-sectional area of copper rod, A = πr^2

We know that the rate of heat conduction is the amount of heat conducted per unit time.

Hence, we need to find the amount of heat conducted first.ΔT = T1 - T2= 763 - 295= 468 K

Now, substituting the given values into the formula, we get:

Qt = (kAΔT)/l

= (401 x π x 0.013^2 x 468) / 0.7

= 4.62 x 10^3 W

Therefore, the heat conduction rate along the rod is 4.62 x 10^3 W.

To know more about vaporization, visit:

https://brainly.com/question/30078883

#SPJ11

Answer 2

The mass of oxygen that can evaporate is approximately 0.905 kg.

The heat conduction rate along the copper rod is approximately 172.9 W.

Part A:

To determine the amount of oxygen that can evaporate, we need to use the heat of vaporization and the energy supplied to the flask.

Given:

Energy supplied = 1.90 × 10^5 J

Heat of vaporization for oxygen = 210 kJ/kg = 210 × 10^3 J/kg

Let's calculate the mass of oxygen that can evaporate using the formula:

m = Energy supplied / Heat of vaporization

m = 1.90 × 10^5 J / 210 × 10^3 J/kg

m ≈ 0.905 kg

Therefore, the mass of oxygen that can evaporate is approximately 0.905 kg.

Part B:

To calculate the heat conduction rate along the copper rod, we need to use the temperature difference and the thermal conductivity of copper.

Given:

Length of the copper rod (L) = 70 cm = 0.7 m

Diameter of the copper rod (d) = 2.6 cm = 0.026 m

Temperature difference (ΔT) = (490 °C) - (22 °C) = 468 °C

Thermal conductivity of copper (k) = 401 W/(m·K) (at room temperature)

The heat conduction rate (Qt) can be calculated using the formula:

Qt = (k * A * ΔT) / L

where A is the cross-sectional area of the rod, given by:

A = π * (d/2)^2

Substituting the given values:

A = π * (0.026/2)^2

A ≈ 0.0005307 m^2

Qt = (401 W/(m·K) * 0.0005307 m^2 * 468 °C) / 0.7 m

Qt ≈ 172.9 W

Therefore, the heat conduction rate along the copper rod is approximately 172.9 W.

To know more about conduction rate, visit:

https://brainly.com/question/31544538

#SPJ11


Related Questions

A dry cell having internal resistance r = 0.5 Q has an electromotive force & = 6 V. What is the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q?
I. 4.5 II. 5.5 III.3.5 IV. 2.5 V. 6.5

Answers

The power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is 4.5 W. Hence, the correct option is I. 4.5.

The expression for the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is as follows:

Given :The internal resistance of a dry cell is `r = 0.5Ω`.

The electromotive force of a dry cell is `ε = 6 V`.The external resistance is `R = 1.5Ω`.Power is given by the expression P = I²R. We can use Ohm's law to find current I flowing through the circuit.I = ε / (r + R) Substituting the values of ε, r and R in the above equation, we getI = 6 / (0.5 + 1.5)I = 6 / 2I = 3 A Therefore, the power dissipated through the internal resistance isP = I²r = 3² × 0.5P = 4.5 W Therefore, the power (in W) dissipated through the internal resistance of the cell, if it is connected to an external resistance of 1.5 Q is 4.5 W. Hence, the correct option is I. 4.5.

To know more about internal resistance visit

https://brainly.com/question/23575577

#SPJ11

A balloon charged with static electricity will stick to an insulating wall because
a.) The charges in the balloon polarize the charges in the wall
b.) None of these, the balloon will not stick to an insulating surface
c.) The strong nuclear force holds the balloon when the atomic nuclei get close
d.) Gravity pulls the atoms in the balloon towards the atoms in the wall

Answers

option a) is the correct answer.

a) The charges in the balloon polarize the charges in the wall.

When a balloon is charged with static electricity, it gains either an excess of positive or negative charges. These charges create an electric field around the balloon. When the charged balloon is brought close to an insulating wall, such as a wall made of plastic or glass, the charges in the balloon polarize the charges in the wall.

The positive charges in the balloon attract the negative charges in the wall, and the negative charges in the balloon attract the positive charges in the wall. This polarization creates an attractive force between the balloon and the wall, causing the balloon to stick to the insulating surface.

Therefore, option a) is the correct answer.

Learn more about charges here:

https://brainly.com/question/18102056

#SPJ11

1) [12 pts] A 20 kg object is attached to a spring with spring constant 1300 kg/s². It is also attached to a dashpot with damping constant c = 360 N-sec/m. The object is pushed upwards from equilibrium with velocity 2 m/s. a. Express the given information as an initial value problem for the displacement of this spring-mass system. b. How would you describe the motion: underdamped, overdamped, or critically damped? c. Consider the same setup above, but now suppose the object is under the influence of an outside force given by F(t) = 20 cos(t). What is the steady-state solution?

Answers

The motion of the system can be described as overdamped. The steady-state solution of the system can be found by setting the equation equal to the steady-state value of the forcing function.

a) The initial value problem for the displacement of the spring-mass system can be expressed as follows:

m * x''(t) + c * x'(t) + k * x(t) = 0

where:

m = mass of the object (20 kg)

x(t) = displacement of the object from equilibrium at time t

x'(t) = velocity of the object at time t

x''(t) = acceleration of the object at time t

c = damping constant (360 N-sec/m)

k = spring constant (1300 kg/s²)

The initial conditions are:

x(0) = initial displacement (0)

x'(0) = initial velocity (2 m/s)

b) The motion of the system can be described as overdamped. This is because the damping constant (c) is larger than the critical damping value, which results in slow and gradual oscillations without overshooting the equilibrium position.

c) Considering the same setup with an additional outside force F(t) = 20 cos(t), the steady-state solution of the system can be found by setting the equation equal to the steady-state value of the forcing function. In this case, the steady-state solution will have the same frequency as the forcing function, but with a different amplitude and phase shift. The particular solution for the steady-state solution can be expressed as:

x(t) = A * cos(t - φ)

where A is the amplitude of the steady-state solution and φ is the phase shift. The specific values of A and φ can be determined by solving the equation with the given forcing function.

To learn more about displacement, click here: https://brainly.com/question/11934397

#SPJ11

1.)What is the uncertainty of your answer to Part b). Given that
the uncertainty of the mass is 0.5 gram, the uncertainty of the
radius is 0.5cm, the uncertainty of the angular velocity is 0.03
rad/s.

Answers

ΔF = √((0.5 * r * ω²)² * (0.0005 kg)² + (2 * m * ω²)² * (0.005 m)² + (2 * m * r)² * (0.03 rad/s)²)

Calculating ΔF will give us the uncertainty in the Centripetal Force.

To calculate the uncertainty of the Centripetal Force (F), we can use the formula for propagation of uncertainties:

ΔF = √((∂F/∂m)² * Δm² + (∂F/∂r)² * Δr² + (∂F/∂ω)² * Δω²)

Where:

ΔF is the uncertainty in Centripetal Force

Δm is the uncertainty in mass

Δr is the uncertainty in radius

Δω is the uncertainty in angular velocity

Using the given values:

Δm = 0.5 gram = 0.0005 kg

Δr = 0.5 cm = 0.005 m

Δω = 0.03 rad/s

The partial derivatives can be calculated as follows:

∂F/∂m = 0.5 * r * ω²

∂F/∂r = 2 * m * ω²

∂F/∂ω = 2 * m * r

Substituting the values into the uncertainty formula:

ΔF = √((0.5 * r * ω²)² * (0.0005 kg)² + (2 * m * ω²)² * (0.005 m)² + (2 * m * r)² * (0.03 rad/s)²)

Calculating ΔF will give us the uncertainty in the Centripetal Force.

Learn more about centripetal force:

https://brainly.com/question/898360

#SPJ11

At one instant, 7 = (-3.61 î+ 3.909 - 5.97 ) mis is the velocity of a proton in a uniform magnetic field B = (1.801-3.631 +7.90 Â) mT. At that instant what are the (a) x.(b) y, and (c) 2 components of the magnetic force on the proton? What are (d) the angle between Vand F and (e)the angle between 7 and B?

Answers

At one instant, 7 = (-3.61 î+ 3.909 - 5.97 ) m is the velocity of a proton in a uniform magnetic field B = (1.801-3.631 +7.90 Â) mT then, (a) x-component of magnetic force on proton is 5.695 x 10⁻¹⁷N ; (b) y-component of magnetic force on proton is -1.498 x 10⁻¹⁷N ; (c) z-component of magnetic force on proton is -1.936 x 10⁻¹⁷N ; (d) angle between v and F is 123.48° (approx) and (e) angle between v and B is 94.53° (approx).

Given :

Velocity of the proton, v = -3.61i+3.909j-5.97k m/s

The magnetic field, B = 1.801i-3.631j+7.90k mT

Conversion of magnetic field from mT to Tesla = 1 mT = 10⁻³ T

=> B = 1.801i x 10⁻³ -3.631j x 10⁻³ + 7.90k x 10⁻³ T

= 1.801 x 10⁻³i - 3.631 x 10⁻³j + 7.90 x 10⁻³k T

We know that magnetic force experienced by a moving charge particle q is given by, F = q(v x B)

where, v = velocity of charge particle

q = charge of particle

B = magnetic field

In Cartesian vector form, F = q[(vyBz - vzBy)i + (vzBx - vxBz)j + (vxBy - vyBx)k]

Part (a) To find x-component of magnetic force on proton,

Fx = q(vyBz - vzBy)

Fx = 1.6 x 10⁻¹⁹C x [(3.909 x 10⁻³) x (7.90 x 10⁻³) - (-5.97 x 10⁻³) x (-3.631 x 10⁻³)]

Fx = 5.695 x 10⁻¹⁷N

Part (b)To find y-component of magnetic force on proton,

Fy = q(vzBx - vxBz)

Fy = 1.6 x 10⁻¹⁹C x [(-3.61 x 10⁻³) x (7.90 x 10⁻³) - (-5.97 x 10⁻³) x (1.801 x 10⁻³)]

Fy = -1.498 x 10⁻¹⁷N

Part (c) To find z-component of magnetic force on proton,

Fz = q(vxBy - vyBx)

Fz = 1.6 x 10⁻¹⁹C x [(-3.61 x 10⁻³) x (-3.631 x 10⁻³) - (3.909 x 10⁻³) x (1.801 x 10⁻³)]

Fz = -1.936 x 10⁻¹⁷N

Part (d) Angle between v and F can be calculated as, cos θ = (v . F) / (|v| x |F|)θ

= cos⁻¹ [(v . F) / (|v| x |F|)]θ

= cos⁻¹ [(3.909 x 5.695 - 5.97 x 1.498 - 3.61 x (-1.936)) / √(3.909² + 5.97² + (-3.61)²) x √(5.695² + (-1.498)² + (-1.936)²)]θ

= 123.48° (approx)

Part (e) Angle between v and B can be calculated as, cos θ = (v . B) / (|v| x |B|)θ

= cos⁻¹ [(v . B) / (|v| x |B|)]θ

= cos⁻¹ [(-3.61 x 1.801 + 3.909 x (-3.631) - 5.97 x 7.90) / √(3.61² + 3.909² + 5.97²) x √(1.801² + 3.631² + 7.90²)]θ

= 94.53° (approx)

Therefore, the corect answers are : (a) 5.695 x 10⁻¹⁷N

(b) -1.498 x 10⁻¹⁷N

(c) -1.936 x 10⁻¹⁷N

(d) 123.48° (approx)

(e) 94.53° (approx).

To learn more about magnetic field :

https://brainly.com/question/14411049

#SPJ11

10 g of sodium chloride (i.e. table salt) are added to a solution that has been saturated with sodium chloride. It will
Dissolve into the solution and leave the solution at its original temperature.
Remain solid in the solution and leave the solution at its original temperature.
Dissolve into the solution, but cause the temperature of the solution to increase because the solubility of solutions increases with temperature.
Remain solid in the solution, but cause the temperature of the solution to decrease because the solubility of solutions decreases with temperature.
Isotopes of an element are those atoms with
The same number of neutrons in the nucleus but different numbers of protons.
The same number of electrons orbiting the nucleus but different numbers of protons in the nucleus.
The same number of protons in the nucleus but different numbers of neutrons.
The same number of protons in the nucleus but different numbers of electrons orbiting it
atom may increase in energy by
remaining at rest.
emitting a photon.
travelling at a constant velocity in empty space.
absorbing a photon.

Answers

10 g of sodium chloride will dissolve into the saturated solution, leaving the solution at its original temperature. Sodium chloride is highly soluble in water, and when added to a saturated solution, it will dissolve to form ions in the solution. The temperature of the solution will not be affected because the dissolution of sodium chloride is an exothermic process. Therefore, option 1 is correct.

Isotopes of an element are atoms with the same number of protons in the nucleus but different numbers of neutrons. Protons determine the element's identity, while neutrons contribute to the isotope's mass. Therefore, option 3 is correct.

An atom may increase in energy by absorbing a photon. When an atom absorbs a photon, it gains energy and transitions to a higher energy state or excited state. This can happen when electrons in the atom absorb energy from the photon and move to higher energy levels or orbitals. Therefore, option 4 is correct.

 To  learn  more  about photon click on:brainly.com/question/20912241

#SPJ11

Imagine you had a device to use for this experiment. The device would shoot a series of 2. 0 g balls along the surface at the box, each with a velocity of 30 cm/s [E60N]. In 2. 0 s it shoots 10 successive 2. 0 balls, all of which collide and rebound off the 100g box, as with the first ball. What would be the total impulse delivered to the box by the 10 collisions?What would be the total change in momentum of the 100g box?What would be the total change in velocity of the 100g box after these 10 collisions?

Answers

The total impulse delivered to the box by the 10 collisions is 0.006 kg·m/s, the total change in momentum of the 100 g box is 0.012 kg·m/s, and the total change in velocity of the 100 g box after these 10 collisions is 0.12 m/s.

The total impulse delivered to the box by the 10 collisions can be calculated using the equation:

Impulse = Change in Momentum

First, let's calculate the momentum of each 2.0 g ball. The momentum of an object is given by the equation:

Momentum = mass x velocity

Since the mass of each ball is 2.0 g and the velocity is 30 cm/s, we convert the mass to kg and the velocity to m/s:

mass = 2.0 g = 0.002 kg
velocity = 30 cm/s = 0.3 m/s

Now, we can calculate the momentum of each ball:

Momentum = 0.002 kg x 0.3 m/s = 0.0006 kg·m/s

Since 10 balls are shot in succession, the total impulse delivered to the box is the sum of the impulses from each ball. Therefore, we multiply the momentum of each ball by the number of balls (10) to find the total impulse:

Total Impulse = 0.0006 kg·m/s x 10 = 0.006 kg·m/s

Next, let's calculate the total change in momentum of the 100 g box. The initial momentum of the box is zero since it is at rest. After each collision, the box gains momentum in the opposite direction to the ball's momentum. Since the box rebounds off the ball with the same momentum, the change in momentum for each collision is twice the momentum of the ball. Therefore, the total change in momentum of the box is:

Total Change in Momentum = 2 x Total Impulse = 2 x 0.006 kg·m/s = 0.012 kg·m/s

Finally, let's calculate the total change in velocity of the 100 g box after these 10 collisions. The change in velocity can be found using the equation:

Change in Velocity = Change in Momentum / Mass

The mass of the box is 100 g = 0.1 kg. Therefore, the total change in velocity is:

Total Change in Velocity = Total Change in Momentum / Mass = 0.012 kg·m/s / 0.1 kg = 0.12 m/s

Therefore, the total impulse delivered to the box by the 10 collisions is 0.006 kg·m/s, the total change in momentum of the 100 g box is 0.012 kg·m/s, and the total change in velocity of the 100 g box after these 10 collisions is 0.12 m/s.

To more about velocity visit:

https://brainly.com/question/34025828

#SPJ11

A battery having terminal voltage Vab =1.3 V delivers a current 1.5 A. Find the internal resistance (in W) of the battery if the emf,ε = 1.6 V.

Answers

In order to find the internal resistance of the battery, we'll use the formula:ε = V + Irwhere ε is the emf (electromotive force), V is the terminal voltage, I is the current, and r is the internal resistance.

So we have:ε = V + Ir1.6 = 1.3 + 1.5r0.3 = 1.5r Dividing both sides by 1.5, we get:r = 0.2 ΩTherefore, the internal resistance of the battery is 0.2 Ω. It's worth noting that this calculation assumes that the battery is an ideal voltage source, which means that its voltage doesn't change as the current changes. In reality, the voltage of a battery will typically decrease as the current increases, due to the internal resistance of the battery.

To know more about resistance visit:

https://brainly.com/question/29427458

#SPJ11

On a car race track, the starting point for a loop with a radius of 20 cm is at height 3r. The virtually frictionless car starts from a standing start at point A.
a) Write down the formula for the energy at points A, B and D.
b) Estimate the potential and kinetic energy at point E.
c) With what speed does it pass through point B?

Answers

a) In the loop, energy at point A consists of potential energy (PA) and kinetic energy (KA). At point B, it includes potential energy (PB) and kinetic energy (KB). At point D, it comprises potential energy (PD) and kinetic energy (KD).

b) At point E, the maximum potential energy (PE) can be calculated as mgh. The minimum kinetic energy (KE) is represented as -mgh.

c) Assuming no energy loss due to friction, the speed at point B is equal to the speed at point A.

a) The formula for the energy at different points in the loop can be written as follows:

At point A:

Total energy (EA) = Potential energy (PA) + Kinetic energy (KA)

At point B:

Total energy (EB) = Potential energy (PB) + Kinetic energy (KB)

At point D:

Total energy (ED) = Potential energy (PD) + Kinetic energy (KD)

b)  At point E, the car is at the highest point of the loop, meaning it has maximum potential energy and minimum kinetic energy. The potential energy at point E (PE) can be calculated using the formula:

PE = m * g * h

Given that the starting point for the loop is at height 3r, the height at point E (h) is equal to 3 times the radius (3r).

PE = m * g * 3r

To estimate the kinetic energy at point E (KE), we can use the conservation of mechanical energy. The total mechanical energy (E) remains constant throughout the motion of the car, so we can equate the initial energy at point A (EA) to the energy at point E (EE):

EA = EE

Since the car starts from rest at point A, the initial kinetic energy (KA) is zero:

EA = PE(A) + KA(A)

0 = PE(E) + KE(E)

Therefore, the kinetic energy at point E is equal to the negative of the potential energy at point E:

KE(E) = -PE(E)

Substituting the formula for potential energy at point E, we have:

KE(E) = -m * g * 3r

So, at point E, the potential energy is given by m * g * 3r, and the kinetic energy is equal to -m * g * 3r. Note that the negative sign indicates that the kinetic energy is at its minimum value at that point.

c) To calculate the speed at point B, we can equate the total energy at point A (EA) to the total energy at point B (EB), assuming no energy loss due to friction:

EA = EB

Since the car starts from a standing start at point A, its initial kinetic energy is zero. Therefore, the formula can be simplified as:

PA = PB + KB

At point A, the potential energy is given by:

PA = m * g * h

Where m is the mass of the car, g is the acceleration due to gravity, and h is the height at point A (3r).

At point B, the potential energy is given by:

PB = m * g * (2r)

Since the car is at the highest point of the loop at point B, all the potential energy is converted into kinetic energy. Therefore, KB = 0.

Substituting these values into the equation, we have:

m * g * h = m * g * (2r) + 0

Simplifying, we find:

h = 2r

So, at point B, the car passes through with the same speed as at point A, assuming no energy loss due to friction.

For more such information on: energy

https://brainly.com/question/13881533

#SPJ8

TIME-DEPENDENT APROXIMATION THEORY
I need information about The selection rules in the dipole approximation and focus it on the metastability of the 2S state of the hydrogen atom.

Answers

The selection rules in the dipole approximation for the metastability of the 2S state of the hydrogen atom dictate that transitions from the 2S state can occur to states with Δℓ = ±1, such as the 2P states. Transitions with Δℓ = 0 are forbidden.

In the context of the dipole approximation, which is commonly used to describe electromagnetic interactions in quantum systems, selection rules determine the allowed transitions between different quantum states. For the metastable 2S state of the hydrogen atom, these selection rules play a crucial role in understanding its behavior.

The 2S state of the hydrogen atom corresponds to an electron in the second energy level with no orbital angular momentum (ℓ = 0). In the dipole approximation, transitions involving electric dipole radiation require a change in the angular momentum quantum number, Δℓ. For the 2S state, the selection rules state that Δℓ can only be ±1, meaning that transitions to states with ℓ = ±1 are allowed. In the case of the hydrogen atom, the relevant states are the 2P states.

The metastability of the 2S state arises from the fact that transitions with Δℓ = 0, which would lead to a decay to the 1S ground state, are forbidden by the selection rules. As a result, the 2S state has a relatively long lifetime compared to other excited states of hydrogen. This metastability is important in various physical phenomena, such as the fine structure of hydrogen spectral lines.

By considering the selection rules in the dipole approximation, we can gain insights into the behavior of the metastable 2S state of the hydrogen atom and understand the allowed transitions that contribute to its unique properties.

To learn more about metastability, click here:https://brainly.com/question/31601885

#SPJ11

Puzzle: Three Questions About Black Holes A Answer the following two questions about black holes with a paragraph justifying your answer: 1. If black holes are "black" (do not emit light) then how do astronomers know that they exist? Give at least two examples. 2. Which is likely to be more common in our Galaxy: white dwarfs or black holes? Why? 3. Suppose that the amount of mass in a black hole doubles. Does the event horizon change? If so, how does it change? If not, explain why.

Answers

1. Astronomers know that black holes exist through indirect observations and the detection of their effects on surrounding matter.

2. White dwarfs are likely to be more common in our Galaxy compared to black holes due to their formation process and evolutionary pathways.

3. The event horizon of a black hole does not change when the amount of mass in it doubles.

How do astronomers gather evidence for the existence of black holes?  

Astronomers can infer the existence of black holes through indirect observations. They detect the effects of black holes on surrounding matter, such as the gravitational influence on nearby stars and gas.

For example, the orbit of a star can exhibit deviations that indicate the presence of a massive unseen object like a black hole.

Additionally, the emission of X-rays from the accretion disks of black holes provides another observational signature.

Which celestial objects are more abundant in our Galaxy: white dwarfs or black holes?

White dwarfs are expected to be more common in our Galaxy compared to black holes. This is because white dwarfs are the remnants of lower-mass stars, which are more abundant in the stellar population.

On the other hand, black holes are formed from the collapse of massive stars, and such events are less frequent. Therefore, white dwarfs are likely to outnumber black holes in our Galaxy.

Does the event horizon of a black hole change when its mass doubles?

When the mass of a black hole doubles, the event horizon, which is the boundary beyond which nothing can escape its gravitational pull, remains unchanged.

The event horizon is solely determined by the mass of the black hole and not its density or size. Thus, doubling the mass of a black hole does not alter its event horizon.

Learn more about existence of black holes

brainly.com/question/31646631

#SPJ11

1. A new fancy driverless car is traveling downhill during a test run and slams on the brakes. The mobile robot, which will eventually take over the world, skids 40 m before hitting a parked car with no remorse whatsoever. You have been hired as a physics expert to help the insurance investigators decide if the monstrosity had been traveling faster than the 25 MPH speed limit at the start of this event. The slope of the hill is 5º. Assuming braking friction has the usual form UN, what is the "critical value" of u for which you would conclude the car was speeding? Can you convince the investigators this killing machine was speeding, or do you need more information? While there are multiple ways to solve this problem, please solve it using work and energy

Answers

The critical value of μ for which we would conclude the car was speeding is approximately 0.087.

To determine if the driverless car was speeding downhill, we can analyze the work and energy involved in the skidding motion.

Given:

Skid distance (d) = 40 m

Slope of the hill (θ) = 5º

Friction coefficient (μ) = ?

We can start by calculating the gravitational potential energy (PE) of the car at the top of the hill:

PE = m * g * h

Where:

m = mass of the car

g = acceleration due to gravity (approximately 9.8 m/s²)

h = height of the hill

Since the car is traveling downhill, the height can be calculated as follows:

h = d * sin(θ)

Next, we need to determine the work done by friction (W_friction) during the skid. The work done by friction can be expressed as:

W_friction = μ * m * g * d

To conclude if the car was speeding, we compare the work done by friction to the initial gravitational potential energy. If the work done by friction is greater than the initial potential energy, it means the car was traveling faster than the speed limit.

Therefore, we set up the following inequality:

W_friction > PE

Substituting the expressions for W_friction and PE, we have:

μ * m * g * d > m * g * h

We can cancel out the mass (m) and acceleration due to gravity (g) on both sides of the inequality:

μ * d > h

Substituting the expressions for h and d, we have:

μ * d > d * sin(θ)

Simplifying further:

μ > sin(θ)

Now we can calculate the critical value of μ by substituting the given slope angle:

μ > sin(5º)

We find,  μ > 0.087

Therefore, the critical value of μ for which we would conclude the car was speeding is approximately 0.087.

Learn more about critical value of μ here-

brainly.com/question/31795155
#SPJ11

When the LR circuit resists success, he wonders. He wires
up the modified RLC circuit shown at the right using an AC
source.
What is the RMS voltage across the capacitor?

Answers

The RMS voltage across the capacitor in the modified RLC circuit can be calculated using the formula: Vc = (1/√2) * (Xc / √(R² + (Xl - Xc)²)), where Xc represents the reactance of the capacitor, Xl represents the reactance of the inductor, and R represents the resistance.

1. Determine the reactance of the capacitor (Xc) using the formula Xc = 1 / (2 * π * f * C), where f is the frequency of the AC source and C is the capacitance.

2. Calculate the reactance of the inductor (Xl) using the formula Xl = 2 * π * f * L, where L is the inductance of the inductor.

3. Find the total impedance (Z) of the circuit using the formula Z = √(R² + (Xl - Xc)²), where R is the resistance.

4. Calculate the RMS voltage across the capacitor (Vc) using the formula Vc = (1/√2) * (Xc / Z).

5. Substitute the values of Xc, Xl, and R into the formulas and calculate the RMS voltage across the capacitor.

By following these steps, you can determine the RMS voltage across the capacitor in the modified RLC circuit.

To know more about RMS voltage refer here:

https://brainly.com/question/32579354#

#SPJ11

A diver on a diving board is undergoing simple harmonic motion. Her mass is 57.0 kg and the period of her motion is 0.900s. The next diver is a male whese period of simple harmonic oscillation is 1.15 5. What is his mass (in kg) the mass of the board is negligible?

Answers

The mass of the male diver is approximately 73.12 kg.

The period of simple harmonic motion is given by the formula:

T = 2π√(m/k),

where T is the period, m is the mass, and k is the spring constant.

In this case, the mass of the board is negligible, so we can assume that the period is only dependent on the diver's mass.

Let's assume the spring constant remains constant for both divers. Therefore, we can set up the following equation

T_female = 2π√(m_female/k) (equation 1)

T_male = 2π√(m_male/k) (equation 2)

Given:

T_female = 0.900 s

T_male = 1.155 s

Dividing equation 1 by equation 2, we get:

T_female / T_male = √(m_female/m_male)

Squaring both sides of the equation, we have:

(T_female / T_male)^2 = m_female / m_male

Rearranging the equation, we find:

m_male = m_female * (T_male / T_female)^2

Substituting the given values, we have:

m_male = 57.0 kg * (1.155 s / 0.900 s)^2

m_male ≈ 57.0 kg * 1.2816

m_male ≈ 73.12 kg

Therefore, the mass of the male diver is approximately 73.12 kg.

Learn more about mass from the given link

https://brainly.com/question/86444

#SPJ11

A 230 kg cast-iron car engine contains wa- ter as a coolant. Suppose the engine's tem- perature is 34°C when it is shut off and the air temperature is 6°C. The heat given off by the engine and water in it as they cool to air temperature is 4.3 x 106 J. What mass of water is used to cool the engine?

Answers

The mass of water used to cool a 230 kg cast-iron car engine from 34°C to 6°C is approximately 3.86 kg. The heat given off during the cooling process is 4.3 x 10^6 J.

The calculation is based on the equation Q = mcΔT, where Q is the heat, m is the mass of water, c is the specific heat capacity, and ΔT is the change in temperature.

To find the mass of water used to cool the engine, we can use the equation:

Q = mcΔT

Where Q is the heat given off by the engine and water, m is the mass of water, c is the specific heat capacity of water (4.18 J/g°C), and ΔT is the change in temperature.

Given:

Q = 4.3 x 10^6 J

ΔT = (34°C - 6°C) = 28°C

c = 4.18 J/g°C

We can rearrange the equation to solve for mass:

m = Q / (cΔT)

Substituting the given values:

m = (4.3 x 10^6 J) / (4.18 J/g°C * 28°C)

m ≈ 3860 g

Therefore, approximately 3860 grams (or 3.86 kg) of water is used to cool the engine.

Learn more about mass from the given link:

https://brainly.com/question/11954533

#SPJ11

You are eating a bowl of soup at 85 degC. The soup bowl has a diameter of 6.0 inches and the air above the bowl is at a temperature o 21 degC. Determine the rate of heat transfer (W) from the soup by a) natural convection where h=4.5 W/m ∧
2−K and (b) forced convection (which occurs when you blow on the soup) where the coefficient of heat transfer h=23 W/m ∧
2−K

Answers

For the given conditions:

(a) The rate of heat transfer from the soup by natural convection is approximately 20.89 W.

(b) The rate of heat transfer from the soup by forced convection (when blowing on the soup) is approximately 92.42 W.

To determine the rate of heat transfer from the soup using natural convection and forced convection, we need to apply the appropriate heat transfer equations.

(a) Natural Convection:

The rate of heat transfer by natural convection can be calculated using the following equation:

Q = h * A * ΔT

where:

Q is the rate of heat transfer,

h is the convective heat transfer coefficient,

A is the surface area of the soup bowl, and

ΔT is the temperature difference between the soup and the surrounding air.

Temperature of the soup (T_s) = 85°C = 85 + 273.15 K = 358.15 K

Temperature of the air (T_air) = 21°C = 21 + 273.15 K = 294.15 K

Diameter of the soup bowl (d) = 6.0 inches = 6.0 * 0.0254 meters (converting to meters)

Radius of the soup bowl (r) = d / 2 = 3.0 * 0.0254 meters

Convective heat transfer coefficient (h_natural) = 4.5 W/m²-K

Surface area of the soup bowl (A) = π * r²

Substituting the values into the equation, we can calculate the rate of heat transfer by natural convection:

Q_natural = h_natural * A * ΔT

Q_natural = 4.5 W/m²-K * π * (3.0 * 0.0254 meters)² * (358.15 K - 294.15 K)

Q_natural ≈ 20.89 W

Therefore, the rate of heat transfer from the soup by natural convection is approximately 20.89 W.

(b) Forced Convection:

The rate of heat transfer by forced convection can be calculated using the same equation as natural convection:

Q = h * A * ΔT

where:

Q is the rate of heat transfer,

h is the convective heat transfer coefficient,

A is the surface area of the soup bowl, and

ΔT is the temperature difference between the soup and the surrounding air.

Convective heat transfer coefficient (h_forced) = 23 W/m²-K

Substituting the values into the equation, we can calculate the rate of heat transfer by forced convection:

Q_forced = h_forced * A * ΔT

Q_forced = 23 W/m²-K * π * (3.0 * 0.0254 meters)² * (358.15 K - 294.15 K)

Q_forced ≈ 92.42 W

Therefore, the rate of heat transfer from the soup by forced convection (when you blow on the soup) is approximately 92.42 W.

To learn more about  heat transfer visit : https://brainly.com/question/16055406

#SPJ11

A ride at the county fair spins people in a circle with radius 5 m, completing one revolution every 5 seconds. What is the speed of a person on this ride (

Answers

The speed of a person on this ride is 6.28 m/s.

The circumference of the circle is equal to the distance travelled by the person in one revolution. The formula for the circumference of a circle is: C = 2πr where C is the circumference of the circle, r is the radius of the circle, and π (pi) is a constant that is approximately equal to 3.14. Substituting the values given in the question: C = 2π(5)C = 31.4 m.

The distance travelled by the person in one revolution is equal to the circumference of the circle, which is 31.4 meters. The person completes one revolution in 5 seconds, so the time it takes to travel 31.4 meters is also 5 seconds.

To find the speed of the person, we divide the distance travelled by the time it takes to travel that distance: v = d/t where v is the speed, d is the distance, and t is the time. Substituting the values found: v = 31.4/5v = 6.28 m/s.

Therefore, the speed of a person on this ride is 6.28 m/s.

Let's learn more about speed:

https://brainly.com/question/13943409

#SPJ11

What must be the charge (in nm) on each of the two 64-kg
spherical masses for the electric force to equal the gravitational
force? Give your answer to one decimal place.

Answers

The force of gravity acting on the masses is given by the formula;

F = Gm₁ m₂/r²

where G is the gravitational constant, m₁ and m₂ are the masses, and r is the distance between the masses.

Since the electric force must be equal to the gravitational force,

F₁ = F₂ = Gm₁ m₂/r²

where F₁ is the electric force on one mass and F₂ is the electric force on the other mass.

Since the two masses are to have the same charge (q),

the electric force on each mass can be given by the formula.

F = kq²/r²

where k is the Coulomb constant, and q is the charge on each mass.

Similarly,

F₁ = F₂ = kq²/r²

Combining the two equations.

kq²/r² = Gm₁ m₂/r²

Dividing both sides by r².

kq²/m₁ m₂ = G

Now, the charges on the masses can be given by

q = √ (Gm₁ m₂/k)

Substituting the given values, and using the fact that the mass of each sphere is given by.

m = (4/3)πr³ρ

where ρ is the density, and r is the radius.

q = √ (6.67 × 10^-11 × 64 × 64 / 9 × 10^9)

q = √ 291.56q = 17.06 × 10^-9 C (to one decimal place)

the charge on each mass must be 17.06 nm.

To know more about gravity visit:

https://brainly.com/question/31321801

#SPJ11

From a distance of 2000 m, the sound intensity level of a rocket launch is 110 dB. What is the sound intensity level (in dB ) of the rocket launch from a distance of 20,000 m ? (For this question, your answer must be exact. There is no margin for rounding error.)

Answers

The sound intensity level of the rocket launch from a distance of 20,000 m is 90 dB.

The sound intensity level (SIL) is given by the formula:

SIL = 10 * log₁₀(I / I₀)

where I is the sound intensity and I₀ is the reference sound intensity (usually taken as 10^(-12) W/m²).

SIL₁ = 110 dB (sound intensity level at 2000 m)

d₁ = 2000 m (distance at SIL₁)

d₂ = 20000 m (distance at which we need to find the SIL)

We can use the inverse square law for sound propagation, which states that the sound intensity is inversely proportional to the square of the distance:

I₁ / I₂ = (d₂ / d₁)²

Substituting the values:

I₁ / I₂ = (20000 m / 2000 m)²

I₁ / I₂ = 10²

I₁ / I₂ = 100

Since SIL is directly proportional to the sound intensity, we can say that:

SIL₁ - SIL₂ = 10 * log₁₀(I₁ / I₀) - 10 * log₁₀(I₂ / I₀)

SIL₁ - SIL₂ = 10 * (log₁₀(I₁) - log₁₀(I₂))

SIL₂ = SIL₁ - 10 * log₁₀(I₁ / I₂)

Given SIL₁ = 110 dB, we need to calculate SIL₂.

Now, let's calculate SIL₂:

SIL₂ = 110 dB - 10 * log₁₀(I₁ / I₂)

SIL₂ = 110 dB - 10 * log₁₀(100)

SIL₂ = 110 dB - 10 * 2

SIL₂ = 110 dB - 20

SIL₂ = 90 dB

Learn more about the sound intensity at https://brainly.com/question/14349601

#SPJ11

10. An ocean wave has an amplitude of 2 meters. Weather conditions suddenly change such that the wave has an amplitude of 4 meters. The amount of energy transported by the wave is ? a. Halved b. doubl

Answers

An ocean wave has an amplitude of 2 meters. Weather conditions suddenly change such that the wave has an amplitude of 4 meters. The amount of energy transported by the wave is B. Doubled.

The amount of energy transported by an ocean wave is determined by the amplitude of the wave. When weather conditions change abruptly, such that the amplitude of the wave doubles, the energy transported by the wave is quadrupled. In this particular instance, if an ocean wave has an amplitude of 2 meters, the energy transported by the wave can be computed as E = 0.5ρAv², where E is the energy transported by the wave, ρ is the density of the water, A is the wave’s amplitude, and v is the velocity of the wave.

The new energy transported by the wave when the weather conditions suddenly change such that the wave has an amplitude of 4 meters can be determined by the formula E’ = 0.5ρA’v². Here, A’ is the new amplitude of the wave, which is equal to 4 meters, and v² is proportional to the amount of energy the wave is carrying. Thus, the amount of energy transported by the wave after the sudden change in weather conditions is four times the amount of energy carried by the wave before the change. So the correct answer is B. Doubled.

Learn more about amplitude at:

https://brainly.com/question/9351212

#SPJ11

Calculate the moment of inertia of a plate of side 10 cm (square)
and mass 0.2 kg.

Answers

The moment of inertia of a plate with side length 10 cm and mass 0.2 kg is 0.0083 kg·m².

The moment of inertia of a rectangular plate about an axis passing through its center and perpendicular to its plane can be calculated using the formula: I = (1/12) * m * (a² + b²), where I is the moment of inertia, m is the mass of the plate, and a and b are the side lengths of the plate.

In this case, since the plate is a square, both side lengths are equal to 10 cm. Substituting the values into the formula, we have I = (1/12) * 0.2 kg * (0.1 m)² = 0.0083 kg·m².

Therefore, the moment of inertia of the given plate is 0.0083 kg·m².

learn more about "inertia ":- https://brainly.com/question/1140505

#SPJ11

At what temperature must a hot reservoir operate in order to achieve a 30% Carnot efficiency when the cold reservoir operates at 200 °C?

Answers

The Carnot efficiency formula is given by : η=1-(Tc/Th), where η is the Carnot efficiency, Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.

In order to achieve a 30% Carnot efficiency when the cold reservoir operates at 200 °C, the hot reservoir must operate at 406.7 °C.The explanation:According to the Carnot efficiency formula, the Carnot efficiency is given by:η=1-(Tc/Th)where η is the Carnot efficiency,

Tc is the temperature of the cold reservoir and Th is the temperature of the hot reservoir.Substituting the given values, we get:0.3=1-(200/Th)0.3=Th/Th - 200/Th0.3=1-200/Th200/Th=0.7Th=200/0.7Th=285.7+121Th=406.7Thus, the hot reservoir must operate at 406.7 °C to achieve a 30% Carnot efficiency when the cold reservoir operates at 200 °C.

TO know more about that efficiency visit:

https://brainly.com/question/30861596

#SPJ11

5 [0/2 Points] DETAILS PREVIOUS ANSWERS OSUNIPHYS1 3.5.P.069. MY NOTES ASK YOUR TEACHER PRACTICE ANOTHER A rescue helicopter is hovering over a person whose boat has sunk. One of the rescuers throws a life preserver straight down to the victim with an initial velocity of 1.1 m/s and observes that it takes 1.9 s to reach the water. (a) List the knowns in this problem. (Select all that apply) Ay (b) How high (in m) above the water was the preserver released? Note that the downdraft of the helicopter reduces the effects of air resistance on the falling life preserver, so that an acceleration equal to that of gravity is reasonable. 26.57 xm Additional Materials Reading T

Answers

Air resistance, also known as drag, is the force exerted by the air on an object moving through it. The life preserver was released from a height of 11.3 meters above the water.

Air resistance opposes the motion of the object and is caused by the interactions between the object and the molecules of the air.

When an object moves through the air, the air molecules collide with the object's surface. These collisions create a resistance that acts in the opposite direction to the object's motion. The magnitude of air resistance depends on factors such as the speed of the object, the surface area exposed to the air, and the shape of the object.

(a) The knowns in this problem are:

Initial velocity (v₀) of the life preserver = 1.1 m/s

Time is taken (t) for the life preserver to reach the water = 1.9 s

Acceleration (a) due to gravity, which is assumed to be equal to 9.8 m/s²

(b) To determine the height above the water where the life preserver was released, we can use the equation of motion:

[tex]h = v_0t + (1/2)at^2[/tex]

Substituting the known values:

v₀ = 1.1 m/s

t = 1.9 s

a = 9.8 m/s²

[tex]h = (1.1 m/s)(1.9 s) + (1/2)(9.8 m/s^2)(1.9 s)^2\\h = 2.09 m + 9.21 m\\h = 11.3 m[/tex]

Therefore, the life preserver was released from a height of 11.3 meters above the water.

For more details regarding air resistance, visit:

https://brainly.com/question/19165683

#SPJ4

(c) If Y grams of liquid water were completely converted to energy, how many joules would result? Then, if that same number of grams of solid ice were completely converted to energy, would that result in more, fewer, or the same number of joules? Explain your answer.

Answers

Converting Y grams of solid ice to energy would result in fewer joules compared to the same mass of liquid water.

Converting Y grams of liquid water releases more joules than converting the same mass of solid ice due to different energy transformations.

To calculate the amount of energy released when Y grams of liquid water are completely converted, we can use the specific heat capacity of water and the heat of vaporization. Then, we can compare it to the energy released when the same mass of solid ice is converted.

1. Energy released from Y grams of liquid water:

  a) First, we need to consider the energy required to raise the temperature of the water from its initial temperature to its boiling point (100°C).

  Energy = mass × specific heat capacity × temperature change

  Since we are converting the water completely, the final temperature will be the boiling point.

  Energy = Y grams × 4.18 J/g°C × (100°C - initial temperature)

  b) Next, we need to account for the energy required to convert the liquid water at its boiling point to water vapor without a change in temperature. This is known as the heat of vaporization.

  Energy = mass × heat of vaporization

  Energy = Y grams × 2260 J/g (approximate heat of vaporization for water)

  The total energy released when Y grams of liquid water are completely converted would be the sum of the energy calculated in steps (a) and (b).

2. Energy released from Y grams of solid ice:

  When the same mass of solid ice is completely converted, it undergoes two energy transformations:

  a) Energy required to raise the temperature of ice from its initial temperature to its melting point (0°C).

  Energy = mass × specific heat capacity × temperature change

  Energy = Y grams × 2.09 J/g°C × (0°C - initial temperature)

  b) Energy required to convert the solid ice at its melting point to liquid water without a change in temperature. This is also known as the heat of fusion.

  Energy = mass × heat of fusion

  Energy = Y grams × 334 J/g (approximate heat of fusion for ice)

  The total energy released when Y grams of solid ice are completely converted would be the sum of the energy calculated in steps (a) and (b).

Comparing the energy released from Y grams of liquid water to that released from Y grams of solid ice, we find that the energy released from the conversion of liquid water to vapor is significantly greater than the energy released from the conversion of solid ice to liquid water. This is because the heat of vaporization (2260 J/g) is much larger than the heat of fusion (334 J/g). Therefore, converting Y grams of solid ice to energy would result in fewer joules compared to the same mass of liquid water.

To know more about mass, click here:

brainly.com/question/11954533

#SPJ11

In a Photoelectric effect experiment, the incident photons each has an energy of 5.162×10−19 J. The power of the incident light is 0.74 W. (power = energy/time) The work function of metal surface used is W0​ =2.71eV.1 electron volt (eV)=1.6×10−19 J. If needed, use h=6.626×10−34 J⋅s for Planck's constant and c=3.00×108 m/s for the speed of light in a vacuum. Part A - How many photons in the incident light hit the metal surface in 3.0 s Part B - What is the max kinetic energy of the photoelectrons? Part C - Use classical physics fomula for kinetic energy, calculate the maximum speed of the photoelectrons. The mass of an electron is 9.11×10−31 kg

Answers

The maximum speed of the photoelectrons is 1.355 × 10^6 m/s.

The formula for energy of a photon is given by,E = hf = hc/λ

where E is the energy of a photon, f is its frequency, h is Planck's constant, c is the speed of light, and λ is the wavelength. For this question,

h = 6.626 × 10^-34 J s and

c = 3.00 × 10^8 m/s .

Part A

The energy of each incident photon is 5.162×10−19 J

The power of the incident light is 0.74 W.

The total number of photons hitting the metal surface in 3.0 s is calculated as:

Energy of photons = Power × Time => Energy of 1 photon × Number of photons = Power × Time

So,

Number of photons = Power × Time/Energy of 1 photon

Therefore, Number of photons = 0.74 × 3.0 / 5.162 × 10^-19 = 4293.3 ≈ 4293.

Thus, 4293 photons in the incident light hit the metal surface in 3.0 s.

Part B

The energy required to remove an electron from the metal surface is known as the work function of the metal.

The work function W0 of the metal surface used is 2.71 eV = 2.71 × 1.6 × 10^-19 J = 4.336 × 10^-19 J.

Each photon must transfer at least the energy equivalent to the work function to the electron. The maximum kinetic energy of the photoelectrons is given by:

KE

max = Energy of photon - Work function KE

max = (5.162×10−19 J) - (2.71 × 1.6 × 10^-19 J) = 0.822 × 10^-18 J.

Thus, the max kinetic energy of the photoelectrons is 0.822 × 10^-18 J.

Part C

The maximum speed vmax of the photoelectrons is given by the classical physics formula for kinetic energy, which is:

KEmax = (1/2)mv^2

Where m is the mass of an electron, and v is the maximum speed of photoelectrons.The mass of an electron is 9.11×10−31 kg.

Thus, vmax = sqrt[(2 × KEmax) / m]`vmax = sqrt[(2 × 0.822 × 10^-18 J) / 9.11 × 10^-31 kg] = 1.355 × 10^6 m/s

Therefore, the maximum speed of the photoelectrons is 1.355 × 10^6 m/s.

Learn more about photoelectrons with the given link,

https://brainly.com/question/1359033

#SPJ11

The magnetic field produced by an MRI solenoid 2.7 m long and 1.4 m in diameter is 2.2 T . Find the magnitude of the magnetic flux through the core of this solenoid. Express your answer using two significant figures.

Answers

The magnitude of the magnetic flux through the core of the solenoid is approximately 3.4 Tm².

Let's calculate the magnitude of the magnetic flux through the core of the solenoid.

The magnetic flux through the core of a solenoid can be calculated using the formula:

Φ = B * A

Where:

The magnetic flux (Φ) represents the total magnetic field passing through a surface. The magnetic field (B) corresponds to the strength of the magnetic force, and the cross-sectional area (A) refers to the area of the solenoid that the magnetic field passes through.

The solenoid has a length of 2.7 meters and a diameter of 1.4 meters, resulting in a radius of 0.7 meters. The magnetic field strength inside the solenoid is 2.2 Tesla.

The formula to calculate the cross-sectional area of the solenoid is as follows:

A = π * r²

Substituting the values, we have:

A = π * (0.7 m)²

A = 1.54 m²

Now, let's calculate the magnetic flux:

Φ = B * A

Φ = 2.2 T * 1.54 m²

Φ ≈ 3.39 Tm²

Rounding to two significant figures, the magnitude of the magnetic flux through the core of the solenoid is approximately 3.4 Tm².

Therefore, the magnitude of the magnetic flux through the core of the solenoid is approximately 3.4 Tm².

Learn more about magnitude at: https://brainly.com/question/30337362

#SPJ11

A tank of compressed air of volume 1.00 m3 is
pressurized to 28.0 atm at T = 273 K. A valve is opened,
and air is released until the pressure in the tank is 14.9 atm. How
many molecules were released?

Answers

2.939 × 10²⁴ molecules were released from the tank. We use the ideal gas law equation to determine the number of molecules released.

To determine the number of molecules released when the air pressure in a tank is reduced, we can use the ideal gas law equation, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature.

PV = nRT

28.0 atm = [tex]28.0 \times 1.01325 \times 10^5 Pa = 2.8394 \times 10^6 Pa[/tex]

14.9 atm = [tex]14.9 \times 1.01325 \times 10^5 Pa = 1.5077 \times 10^6 Pa[/tex]

1.00 m³ = 1000 liters

T = 273 K

Using the ideal gas law to calculate the initial number of moles:

[tex]n_1 = (P_1 \times V) / (R \times T)\\ = (2.8394 \times 10^6 Pa \times 1000 L) / (8.314 J/(mol \cdot K) \times 273 K)\\= 128.76 mol[/tex]

[tex]n_2 = (P_2 \times V) / (R \times T) \\= (1.5077 \times 10^6 Pa \times 1000 L) / (8.314 J/(mol \cdot K)\times 273 K) \\ = 79.93 mol[/tex]

Number of moles = 128.76 mol - 79.93 mol = 48.83 mol

Number of molecules

[tex]= 48.83 mol \times 6.0221 \times 10^{23} molecules/mol\\ \approx 2.939 \times 10^24 molecules[/tex]

Therefore, approximately 2.939 × 10²⁴ molecules were released from the tank.

Learn more about the ideal gas equation here:

https://brainly.com/question/11544185

#SPJ11

A flat piece of diamond is 10.0 mm thick. How long will it take for light to travel across the diamond?

Answers

The time it takes for light to travel across the diamond is approximately 8.07 x 10^(-11) seconds.

To calculate the time it takes for light to travel across the diamond, we can use the formula:

Time = Distance / Speed

The speed of light in a vacuum is approximately 299,792,458 meters per second (m/s). However, the speed of light in a medium, such as diamond, is slower due to the refractive index.

The refractive index of diamond is approximately 2.42.

The distance light needs to travel is the thickness of the diamond, which is 10.0 mm or 0.01 meters.

Using these values, we can calculate the time it takes for light to travel across the diamond:

Time = 0.01 meters / (299,792,458 m/s / 2.42)

Simplifying the expression:

Time = 0.01 meters / (123,933,056.2 m/s)

Time ≈ 8.07 x 10^(-11) seconds

Therefore, it will take approximately 8.07 x 10^(-11) seconds for light to travel across the diamond.

To learn more about refractive index, Visit:

https://brainly.com/question/83184

#SPJ11

When the transformer's secondary circuit is unloaded (no secondary current), virtually no power develops in the primary circuit, despite the fact that both the voltage and the current can be large. Explain the phenomenon using relevant calculations.

Answers

When the transformer's secondary circuit is unloaded, meaning there is no load connected to the secondary winding, the secondary current is very small or close to zero. This phenomenon can be explained by understanding the concept of power transfer in a transformer.

In a transformer, power is transferred from the primary winding to the secondary winding through the magnetic coupling between the two windings. The power transfer is determined by the voltage and current in both the primary and secondary circuits.

The power developed in the primary circuit (P_primary) can be calculated using the formula:

P_primary = V_primary * I_primary * cos(θ),

where V_primary is the primary voltage, I_primary is the primary current, and θ is the phase angle between the primary voltage and current.

Similarly, the power developed in the secondary circuit (P_secondary) can be calculated as:

P_secondary = V_secondary * I_secondary * cos(θ),

where V_secondary is the secondary voltage, I_secondary is the secondary current, and θ is the phase angle between the secondary voltage and current.

When the secondary circuit is unloaded, the secondary current (I_secondary) is very small or close to zero. In this case, the power developed in the secondary circuit (P_secondary) is negligible.

Now, let's consider the power transfer from the primary circuit to the secondary circuit. The power transfer is given by:

P_transfer = P_primary - P_secondary.

When the secondary circuit is unloaded, P_secondary is close to zero. Therefore, the power transfer becomes:

P_transfer ≈ P_primary.

Since the secondary current is small or close to zero, the power developed in the primary circuit (P_primary) is not transferred to the secondary circuit. Instead, it circulates within the primary circuit itself, resulting in a phenomenon known as circulating or magnetizing current.

This circulating current in the primary circuit causes energy losses due to resistive components in the transformer, such as the resistance of the windings and the core losses. These losses manifest as heat dissipation in the transformer.

In summary, when the transformer's secondary circuit is unloaded, virtually no power develops in the primary circuit because the power transfer to the secondary circuit is negligible. Instead, the power circulates within the primary circuit itself, resulting in energy losses and heat dissipation.

To learn more about transformer

https://brainly.com/question/31661535

#SPJ11

How much gravitational potential energy (in J) (relative to the ground on which it is built) is stored in an Egyptian pyramid, given its mass is about 7 × 10^9 kg and its center of mass is 39.0 m
above the surrounding ground? (Enter a number.)

Answers

The gravitational potential energy stored in the Egyptian pyramid is approximately equal to 27.3 × 10^9 J.

To calculate the gravitational potential energy, we shall use the given formula:

Potential Energy (PE) = mass (m) * gravitational acceleration (g) * height (h)

Mass of the pyramid (m) = 7 × 10^9 kg

Height of the pyramid (h) = 39.0 m

Gravitational acceleration (g) = 9.8 m/s^2 (approximate value on Earth)

Substituting the values stated above into the formula, we have:

PE = (7 × 10^9 kg) * (9.8 m/s^2) * (39.0 m)

PE = 27.3 × 10^9 J

Therefore, we can state that the gravitational potential energy that can be stored in the Egyptian pyramid is 27.3 × 10^9 joules (J).

To learn more about gravitational potential energy visit : https://brainly.com/question/15896499

#SPJ11

Other Questions
eter has just been hired as a real estate agent. Teach him three most relevant psychological concepts with examples that will directly enhance his understanding of buyer-seller negotiations in this section. A simple circuit has a voltage of \( 10 \mathrm{~V} \) and a resistance of \( 40 \Omega \). V current? A fuel-powered loader raises a 950-kg load from the ground to a loading platform, which is 4 m above the ground. The loader consumes 1.07 x 10 J of energy from the fuel while raising the load. a) Calculate the efficiency of the loader.b) Draw an energy flow diagram for this situation. Silver is a metallic element, with well-known physical properties. The volumemass density p of silver (to 4 sig. figs) is StatementsIneffectiveSlightly EffectiveModerately EffectiveHighly EffectiveTell the associate privately rotations are not based on who a manager likes, to stop spreading rumors, and to come to you with concerns An oscillator consists of a block of mass 0.800 kg connected to a spring, When set into oscillation with amplitude 26.0 cm, it is observed to repeat its motion every 0.650 s. (a) Find the period. (b) Find the frequency Hz (c) Find the angular frequency rad/s (d) Find the spring constant. N/m (e) Find the maximum speed. m/s (f) Find the maximum force exerted on the block. N Evan and Peter have a radio show that has 2 parts. They need 4 fewer than 11 songs in the first part. In the second part, they need 5 fewer than 3 times the number of songs in the first part. Write an expression for the number of songs they need for their show. A. (114)+31145 B. (114)+3(114)5 C. (114)+34115 D. (114)+35(114)Part B How many songs do they need for their show? A. 39 songs B. 31 songs C. 25 songs D. 23 songs. A particle with a charge q=7C is placed in a magnetic field of .4T which points from North to South. If the particle starts from rest, calculate: a) The initial force on the charged particle b) The time it takes before the charged particle is moving in its circular path with angular velocity =52 rads/s What plan might you devise to manage workload including priortizing multiple consults and simultanesouly respond to inquiries from agenciesand providers timely. how does Paine evaluate the effect of British rule on the colonists rule? Johnny came back to haunt FranceIs a n irony. What does it mean? Why does the skin of your mother's fingers shrink when she washes clothes for a longtime?a. What is responsible for these changes? Explain the process in brief. (a)The coffee demand is expressed as followsQd = 30-3/5PQd = demand for coffee, P = price of coffeeQuestion:A. Find the value of Qd if P = 5, P = 15, P = 25B. Make a table of Qd values at P = 5, P = 15, P = 25 C. Draw the relationship between Qd and P.(b)Coffee Supply is expressed as follows:Qs-4P+3=0Where : Qs = supply of coffee, P = price of coffeeQuestion:A. Find the value of Qs if P = 3, P = 7, P = 12B. Make a table of Qs values at P = 3, P = 7, P = 12 C. Draw the relationship between Qs and P.(c)Qd = 15-1/5PQs = -1+3/5PuestionA. Make a table of the values of Qd and Qs at P = 5,10, 15, 20, 25B. What is the equilibrium price where Qd = Qs? 5. Which of these is not a question asked as the last point of a four-point interpretation paragraph? What is the purpose of this study? What were the strengths of this study? What were the weaknesses of this study? What should be done in the next study? 5. The sociological perspective can best be summarized as:a. an approach to understanding society by examining a person's mental state.b. an approach to understanding society by taking a helping perspective. c. the perspective sociologists bring to social life. d. an approach to understanding human behavior by placing it within the broader context of society and social interaction. Digoxin injection is available in a concentration of 0.5 mg/2 ml. The physician orders a 250 meg dose in 250 ml. of D5W. How many milliliters will the patient need? Global warming is most closely associated with what Ryan obtained a loan of $12,500 at 5.9% compounded quarterly. How long (rounded up to the next payment period) would it take to settle the loan with payments of $2,810 at the end of every quarter? year(s) month(s) Express the answer in years and months, rounded to the next payment period The following is not one of the main considerations used in determining the interest rate used in evaluating pubic projects. A. The opportunity cost of capital to the government agency responsible for the project B. The interest rate paid on issued bonds that finance the project C. The opportunity cost of capital to the taxpayers who are beneficiaries of the project D. The general inflation rate experienced by the public who are beneficiaries of the project What is the relationship shown by this scattered plot?