1)a) Pressure is the force exerted per unit area, measured in units such as pascals (Pa) or pounds per square inch (psi).
b) The value of standard atmospheric pressure is approximately 101.3 kilopascals (kPa) or 1 atmosphere (atm).
c) One application of liquid pressure in our daily life is in hydraulic systems, like car brakes, where liquid pressure is used to transmit force and amplify it.
d) The instruments used to measure the pressure of compressed air include pressure gauges or manometers.
e) An instrument called a barometer is used to measure atmospheric pressure.
f) The unit of compressed air is typically measured in pounds per square inch (psi) or pascals (Pa).
g) Standard atmospheric pressure is the pressure exerted by the Earth's atmosphere at sea level. It is approximately equal to 1 atm or 101.3 kPa.
h) The property of liquid that is applicable in water supply systems in cities is its ability to flow and exert pressure, allowing water to be distributed through pipes and reach different levels in buildings.
i) The property of liquid that supports its use in hydraulic machines is its incompressibility, allowing it to transmit force and energy effectively.
2) a)Atmospheric pressure is the force exerted by the weight of the Earth's atmosphere on a surface.
b) The equation P = dgh. This equation can be derived by considering the weight of the fluid column and the force it exerts on a unit area at the base.
c) A mercury barometer consists of a glass tube filled with mercury, inverted into a dish of mercury. The mercury in the tube adjusts its height based on the atmospheric pressure.
d) The importance of atmospheric pressure can be seen in its role in weather patterns, maintaining the balance of gases in the atmosphere, and facilitating breathing for humans and animals.
e) Applications of liquid pressure include hydraulic systems in machinery, such as lifts and cranes, hydraulic brakes in vehicles, and water towers for maintaining water pressure in buildings.
f) Events in daily life directly related to pressure include inflating a balloon, using a bicycle pump to inflate tires, and squeezing toothpaste out of a tube.
1)a) Pressure is defined as the force per unit area. Its unit in the S.I system is newtons per square meter (N/m²) or Pascal (Pa).
b) The value of standard atmospheric pressure at sea level is 101.3 kPa (kilopascals) or 1 atm (atmosphere). c) Liquid pressure has numerous applications in our daily life, but one of the most common ones is the hydraulic braking system used in cars.
d) An instrument used to measure the pressure of compressed air is called a pressure gauge. e) An instrument used to measure atmospheric pressure is called a barometer.
f) The unit of compressed air is generally psi (pounds per square inch).
g) Standard atmospheric pressure is the pressure exerted by the atmosphere at sea level and is equal to 101.3 kPa or 1 atm.
h) The property of liquids that is applicable in water supply systems in cities is their incompressibility. i) The property of liquids that supports their use in hydraulic machines is their incompressibility.
2)a) Atmospheric pressure is defined as the force per unit area exerted by the weight of the atmosphere on the surface. It is proven with the help of the following activity: Take a glass full of water and place a cardboard over it. Hold the cardboard tight and invert the glass. The water will not spill out of the glass, which is because the atmospheric pressure is greater on the cardboard than the pressure inside the glass.
b) The pressure exerted by a fluid can be derived using P = dgh, where P is the pressure, d is the density, g is the acceleration due to gravity, and h is the height of the fluid column.
c) A mercury barometer is made up of a glass tube that is closed at one end and filled with mercury. The tube is inverted and placed in a container of mercury. The pressure of the atmosphere on the open surface of the container forces the mercury in the tube to rise to a height that is proportional to the atmospheric pressure.
d) The importance of atmospheric pressure can be explained by the following points: it enables breathing, regulates the weather, and causes the ocean tides.
e) Some applications of liquid pressure include hydraulic brakes in cars, hydraulic lifts, and hydraulic jacks.
f) Some events that are directly related to pressure include gas escaping from a pressurized container, balloons being inflated, and soda cans being opened.
Know more about Pressure here:
https://brainly.com/question/28012687
#SPJ8
An aeroplaneflying above groundnd490m with 100 meterpersecond how far on ground it will strike
The airplane will strike the ground at a horizontal distance of 490 meters.
To determine how far the airplane will strike on the ground, we need to consider the horizontal distance traveled by the airplane during its flight.
The horizontal distance traveled by an object can be calculated using the formula:
Distance = Speed × Time
In this case, the speed of the airplane is given as 100 meters per second and the time it takes to cover the distance of 490 meters is unknown. Let's denote the time as t.
Distance = 100 m/s × t
Now, to find the value of time, we can rearrange the equation as follows:
t = Distance / Speed
t = 490 m / 100 m/s
t = 4.9 seconds
Therefore, it takes the airplane 4.9 seconds to cover a horizontal distance of 490 meters.
Now, to calculate the distance on the ground where the airplane will strike, we can use the formula:
Distance = Speed × Time
Distance = 100 m/s × 4.9 s
Distance = 490 meters
It's important to note that this calculation assumes a constant speed and a straight flight path. In reality, various factors such as wind conditions, changes in speed, and maneuvering can affect the actual distance traveled by the airplane.
for more questions on horizontal distance
https://brainly.com/question/29147679
#SPJ8
PLEASE ANSWER FASG I WILL MARK BRAINELIST PLEASEEEEE
The number of protons in the nucleus of an atom determines the species of the atom, i.e., the element to which the atom belongs. An atom has the same number of protons and neutrons. But the electron number cannot be used instead because (5 points)
a. electrons are not within the nucleus
b. electrons are negatively charged
c. electrons can be removed from or added to an atom
d. electrons are lighter than protons
The electron number cannot be used instead because electrons can be removed from or added to an atom (option C)
Why the electron number cannot be used instead?The element of an atom is determined by its proton count, while the electron count can exhibit variability. Take, for instance, a sodium atom, which encompasses 11 protons and 11 electrons. However, it has the capacity to relinquish one electron, transforming into a sodium ion housing only 10 electrons.
This occurs due to the relatively loose binding of electrons to the nucleus, enabling their removal through the influence of an electric field or alternative mechanisms.
Learn about electron here https://brainly.com/question/13998346
#SPJ1