2. Determine the values of k so that the following system in unknowns x,y,z has: (i.) a unique solution, (ii.) no solution, (iii.) more than one solution: = 1 kx + y + z x + ky + z x+y+kz = 1

Answers

Answer 1

The  system has: A unique solution when k is not equal to 2 or -1.

We can solve this problem using the determinant of the coefficient matrix of the system. The coefficient matrix is:

[1  k  1]

[1  k  1]

[1  1  k]

The determinant of this matrix is:

det = 1(k^2 - 1) - k(1 - k) + 1(1 - k)

   = k^2 - k - 2

   = (k - 2)(k + 1)

Therefore, the system has:

A unique solution when k is not equal to 2 or -1.

No solution when k is equal to 2 or -1.

More than one solution when det = 0, which occurs when k is equal to 2 or -1.

Learn more about solution  here: https://brainly.com/question/29263728

#SPJ11


Related Questions

Determine the intersection, if any, of the planes with equations x + y-z + 12 =0 and 2x + 4y - 3z + 8 = 0 (Thinking - 3)"

Answers

The planes do not intersect. Thus, the point of intersection cannot be determined.

To find the intersection of the planes, we can solve the system of equations formed by the two plane equations:

1) x + y - z + 12 = 0

2) 2x + 4y - 3z + 8 = 0

We can use elimination or substitution method to solve this system. Let's use the elimination method:

Multiply equation 1 by 2 to make the coefficients of x in both equations equal:

2(x + y - z + 12) = 2(0)

2x + 2y - 2z + 24 = 0

Now we can subtract equation 2 from this new equation:

(2x + 2y - 2z + 24) - (2x + 4y - 3z + 8) = 0 - 0

-2y + z + 16 = 0

Simplifying further, we get:

z - 2y = -16  (equation 3)

Now, let's eliminate z by multiplying equation 1 by 3 and adding it to equation 3:

3(x + y - z + 12) = 3(0)

3x + 3y - 3z + 36 = 0

(3x + 3y - 3z + 36) + (z - 2y) = 0 + (-16)

3x + y - 2y + z - 3z + 36 - 16 = 0

Simplifying further, we get:

3x - y - 2z + 20 = 0  (equation 4)

Now we have two equations:

z - 2y = -16  (equation 3)

3x - y - 2z + 20 = 0  (equation 4)

We can solve this system of equations to find the values of x, y, and z.

Unfortunately, the system is inconsistent and has no solution. Therefore, the two planes do not intersect.

To know more about planes, refer here:

https://brainly.com/question/28192799

#SPJ4

i just need an answer pls

Answers

The area of the regular octogon is 196.15 square inches.

How to find the area?

For a regular octogon with apothem A and side length L, the area is given by:

area =(2*A*L) * (1 + √2)

Here we know that:

A = 7in

L = 5.8 in

Replacing these values in the area for the formula, we will get the area:

area = (2*7in*5.8in) * (1 + √2)

area = 196.15 in²

Learn more about area at:

https://brainly.com/question/24487155

#SPJ1

(a) Solve the following equations. Give your answer to 3 decimal places when applicable. (i) 12+3e ^+2 =15 [2 marks] (ii) 4ln2x=10 [2 marks] (b) The weekly demand and supply functions for a product given by p=−0.3x^2 +80 and p=0.5x^2 +0.3x+70 respectively, where p is the unit price in dollars and x is the quantity demanded in units of a hundred. (i) Determine the quantity supplied when the unit price is set at $100. [2 marks] (ii) Determine the equilibrium price and quantity. [2 marks]

Answers

a. The solutions to the equations are x = 0 and x ≈ 6.109 for (i) and (ii) respectively.

b. The equilibrium price and quantity are determined by setting the demand and supply functions equal, resulting in x ≈ 7.452 and the corresponding unit price.

(a) Solving the equations:

(i) 12 + [tex]3e^(2x)[/tex] = 15:

1. Subtract 12 from both sides: [tex]3e^(2x)[/tex] = 3.

2. Divide both sides by 3: [tex]e^(2x)[/tex] = 1.

3. Take the natural logarithm of both sides: 2x = ln(1).

4. Simplify ln(1) to 0: 2x = 0.

5. Divide both sides by 2: x = 0.

(ii) 4ln(2x) = 10:

1. Divide both sides by 4: ln(2x) = 10/4 = 2.5.

2. Rewrite in exponential form: 2x = [tex]e^(2.5)[/tex].

3. Divide both sides by 2: x = [tex](e^(2.5))[/tex]/2.

(b) Analyzing the demand and supply functions:

(i) To determine the quantity supplied when the unit price is set at $100:

1. Set p = 100 in the supply function: [tex]0.5x^2[/tex] + 0.3x + 70 = 100.

2. Subtract 100 from both sides: [tex]0.5x^2[/tex] + 0.3x - 30 = 0.

3. Use the quadratic formula to solve for x: x = (-0.3 ± √([tex]0.3^2[/tex] - 4*0.5*(-30))) / (2*0.5).

4. Simplify the expression inside the square root and solve for x.

(ii) To find the equilibrium price and quantity:

1. Set the demand and supply functions equal to each other: [tex]-0.3x^2[/tex]+ 80 =[tex]0.3x^2[/tex] + 0.3x + 70.

2. Simplify the equation and solve for x.

3. Calculate the corresponding unit price using either the demand or supply function.

4. The equilibrium price and quantity occur at the point where the demand and supply functions intersect.

Learn more about equilibrium price visit

brainly.com/question/29099220

#SPJ11

What direction does the magnetic force point

Answers

The Fleming's right hand rule indicates that the direction of the magnetic force of the -q charge is in the -z direction, the correct option is therefore;

F) -z direction

How can the direction of the magnetic force be found using the Fleming's right hand rule?

The direction of the force of the magnetic field due to the charge, can be obtained from the Fleming's right hand rule, which indicates that if the magnetic force is perpendicular to the plane formed by the moving positive charge placed perpendicular to the magnetic field line.

Therefore, if the direction of motion of the charge is the -ve x-axis, and the direction of the magnetic field line is the positive z-axis, then the direction of the magnetic force is the positive y-axis.

Similarly if the direction of motion of the -ve charge is the +ve y-axis, as in the figure and the direction of the magnetic field line is in the positive x-axis, then the direction of the magnetic force is the negative z-axis.

Fleming's Right Hand rule therefore, indicates that the direction of the magnetic force point is the -z-direction

Learn more on the Fleming's Left and Right Hand Rules here:

https://brainly.com/question/30864232

https://brainly.com/question/15781406

#SPJ1

4. What correlation curves upward as you travel from left to
right across a scatterplot? : *
A) Positive, linear
B) Negative, non-linear
C) Positive, non-linear
D) Negative, linear
5. Which of the

Answers

Positive, non-linear correlation curves upward as you travel from left to

right across a scatterplot. The correct Option is C. Positive, non-linear

As you travel from left to right across a scatterplot, if the correlation curve curves upward, it indicates a positive relationship between the variables but with a non-linear pattern.

This means that as the value of one variable increases, the other variable tends to increase as well, but not at a constant rate. The relationship between the variables is not a straight line, but rather exhibits a curved pattern.

For example, if we have a scatterplot of temperature and ice cream sales, as the temperature increases, the sales of ice cream also increase, but not in a linear fashion.

Initially, the increase in temperature may result in a moderate increase in ice cream sales, but as the temperature continues to rise, the increase in ice cream sales becomes more significant, leading to a curve that is upward but not straight.

Learn more about: correlation curve curves

https://brainly.com/question/30642196

#SPJ11

Six friends went to dinner. The bill was $74.80 and they left an
18% tip. The friends split the bill. How much did each friend
pay?

Answers

each friend will pay approximately $14.71.

To calculate how much each friend will pay, we need to consider both the bill amount and the tip.

The total amount to be paid, including the tip, is the sum of the bill and the tip amount:

Total amount = Bill + Tip

Tip = 18% of the Bill

Tip = 0.18 * Bill

Substituting the given values:

Tip = 0.18 * $74.80

Tip = $13.464

Now, we can calculate the total amount to be paid:

Total amount = $74.80 + $13.464

Total amount = $88.264

Since there are six friends splitting the bill evenly, each friend will pay an equal share. We divide the total amount by the number of friends:

Each friend's payment = Total amount / Number of friends

Each friend's payment = $88.264 / 6

Each friend's payment ≈ $14.71 (rounded to two decimal places)

To know more about number visit:

brainly.com/question/24908711

#SPJ11

A 3500 lbs car rests on a hill inclined at 6◦ from the horizontal. Find the magnitude
of the force required (ignoring friction) to prevent the car from rolling down the hill. (Round
your answer to 2 decimal places)

Answers

The magnitude of the force required to prevent the car from rolling down the hill is 1578.88 Newton.

How to calculate the magnitude of the force?

In accordance with Newton's Second Law of Motion, the force acting on this car is equal to the horizontal component of the force (Fx) that is parallel to the slope:

Fx = mgcosθ

Fx = Fcosθ

Where:

F represents the force.m represents the mass of a physical object.g represents the acceleration due to gravity.

Note: 3500 lbs to kg = 3500/2.205 = 1587.573 kg

By substituting the given parameters into the formula for the horizontal component of the force (Fx), we have;

Fx = 1587.573cos(6)

Fx = 1578.88 Newton.

Read more on force here: https://brainly.com/question/25961211

#SPJ4

The magnitude of the force required to prevent the car from rolling down the hill is approximately 367.01 lbs.

To find the magnitude of the force required to prevent the car from rolling down the inclined hill, we can analyze the forces acting on the car.

The weight of the car acts vertically downward with a magnitude of 3500 lbs. We can decompose this weight into two components: one perpendicular to the incline and one parallel to the incline.

The component perpendicular to the incline can be calculated as W_perpendicular = 3500 * cos(6°).

The component parallel to the incline represents the force that tends to make the car roll down the hill. To prevent this, an equal and opposite force is required, which is the force we need to find.

Since we are ignoring friction, the force required to prevent rolling is equal to the parallel component of the weight: F_required = 3500 * sin(6°).

Calculating this value gives:

F_required = 3500 * sin(6°) ≈ 367.01 lbs (rounded to 2 decimal places).

Therefore, the magnitude of the force required to prevent the car from rolling down the hill is approximately 367.01 lbs.

Learn more about magnitude here:

https://brainly.com/question/30337362

#SPJ11

Suppose a polynomial function of degree 4 with rational coefficients has the following given numbers as zeros. Find the other zero(s)
13-√5
The other zero(s) is/are
(Type an exact answer, using radicals and i as needed. Use a comma to separate answers as needed.)

Answers

The zeros of the polynomial are given by 13 - √5, 13 + √5, α, α, where α may or may not be rational.

Given that a polynomial function of degree 4 with rational coefficients has 13 - √5 as one of its zeros. We need to find the other zero of the polynomial.

To find the other zero of the polynomial, let's consider the conjugate of 13 - √5, which is 13 + √5.If α is a root of the polynomial then so is its conjugate, that is α.

Hence, the other zeros of the polynomial will be 13 + √5, and two more zeros (which are not mentioned in the question statement) which may or may not be rational.

To know more about polynomial visit:

https://brainly.com/question/11536910

#SPJ11

a rocket is launched from a tower. the height of the rocket, y in feet, is related to the time after launch, x in seconds, by the given equation. using this equation, find the time that the rocket will hit the ground, to the nearest 100th of second. y = − 16x^2 + 89x+ 50

Answers

The answer is:5.56 seconds (rounded to the nearest 100th of a second).Given,The equation that describes the height of the rocket, y in feet, as it relates to the time after launch, x in seconds, is as follows: y = − 16x² + 89x+ 50.

To find the time that the rocket will hit the ground, we must set the height of the rocket, y to zero. Therefore:0 = − 16x² + 89x+ 50. Now we must solve for x. There are a number of ways to solve for x. One way is to use the quadratic formula: x = − b ± sqrt(b² − 4ac)/2a,

Where a, b, and c are coefficients in the quadratic equation, ax² + bx + c. In our equation, a = − 16, b = 89, and c = 50. Therefore:x = [ - 89 ± sqrt( 89² - 4 (- 16) (50))] / ( 2 (- 16))x = [ - 89 ± sqrt( 5041 + 3200)] / - 32x = [ - 89 ± sqrt( 8241)] / - 32x = [ - 89 ± 91] / - 32.

There are two solutions for x. One solution is: x = ( - 89 + 91 ) / - 32 = - 0.0625.

The other solution is:x = ( - 89 - 91 ) / - 32 = 5.5625.The time that the rocket will hit the ground is 5.5625 seconds (to the nearest 100th of a second). Therefore, the answer is:5.56 seconds (rounded to the nearest 100th of a second).

For more question on equation

https://brainly.com/question/17145398

#SPJ8

The time that the rocket would hit the ground is 2.95 seconds.

How to determine the time when the rocket would hit the ground?

Based on the information provided, we can logically deduce that the height (h) in feet, of this rocket above the​ ground is related to time by the following quadratic function:

h(t) = -16x² + 89x + 50

Generally speaking, the height of this rocket would be equal to zero (0) when it hits the ground. Therefore, we would equate the height function to zero (0) as follows:

0 = -16x² + 89x + 50

16t² - 89 - 50 = 0

[tex]t = \frac{-(-80)\; \pm \;\sqrt{(-80)^2 - 4(16)(-50)}}{2(16)}[/tex]

Time, t = (√139)/4

Time, t = 2.95 seconds.

Read more on time here: brainly.com/question/26746473

#SPJ1

a+15
p+15=2 (a+15)
Find the unkonwn valué using the reduction method

Answers

The solution to the given equations is p = 15 and a = -15.

To solve the given equations using the reduction method, we'll start by isolating one variable in one equation and substituting it into the other equation.

Equation 1: A + 15

Equation 2: p + 15 = 2(a + 15)

Let's isolate "a" in Equation 2:

p + 15 = 2a + 30 [Distribute the 2]

2a = p + 15 - 30 [Subtract 30 from both sides]

2a = p - 15

Now, we substitute this value of "2a" into Equation 1:

A + 15 = p - 15 [Substitute 2a with p - 15]

Next, we can simplify this equation by isolating the variables:

A = p - 15 - 15 [Subtract 15 from both sides]

A = p - 30

Now we have two equations:

Equation 3: A = p - 30

Equation 4: p + 15 = 2(a + 15)

To solve for the unknown values, we'll substitute Equation 3 into Equation 4:

p + 15 = 2((p - 30) + 15) [Substitute A with p - 30]

Next, we simplify and solve for "p":

p + 15 = 2(p - 15 + 15) [Simplify within the parentheses]

p + 15 = 2p

Now, subtract "p" from both sides:

p + 15 - p = 2p - p

15 = p

Therefore, the unknown value "p" is 15.

To find the value of "a," we substitute this value back into Equation 3:

A = p - 30

A = 15 - 30

A = -15

Therefore, the unknown value "a" is -15.

For more such questions on equations visit:

https://brainly.com/question/17145398

#SPJ8

Step 2. Identify three (3) regions of the world. Think about what these regions have in common.

Step 3. Conduct internet research to identify commonalities (things that are alike) about the three (3) regions that you chose for this assignment. You should include at least five (5) commonalities. Write a report about your finding

Answers

I have chosen the following three regions of the world: North America, Europe, and East Asia. The chosen regions share commonalities in terms of economic development, technological advancement, education, infrastructure, and cultural diversity. These similarities contribute to their global influence and make them important players in the contemporary world.

These regions have several commonalities that can be identified through internet research:

Economic Development: All three regions are highly developed and have strong economies. They are home to some of the world's largest economies and play a significant role in global trade and commerce.

Technological Advancement: North America, Europe, and East Asia are known for their technological advancements and innovation. They are leaders in fields such as information technology, telecommunications, and manufacturing.

Education and Research: These regions prioritize education and have renowned universities and research institutions. They invest heavily in research and development, contributing to scientific advancements and intellectual growth.

Infrastructure: The regions boast well-developed infrastructure, including efficient transportation networks, modern cities, and advanced communication systems.

Cultural Diversity: North America, Europe, and East Asia are culturally diverse, with a rich heritage of art, literature, and cuisine. They attract tourists and promote cultural exchange through various festivals and events.

For more such questions on commonalities

https://brainly.com/question/10749076

#SPJ8

Help!!!!!!!!!!!!!!!!!

Answers

Answer:

A.   6,000 units²

Step-by-step explanation:

A = LW

A = 100 units × 60 units

A = 6000 units²

Determine the intervals where the function f(x)={x^{2}+2}/{x^{2}-4} ) is decreasing and/or increasing.

Answers

After determining the derivative's sign, we discover:-

Interval 1: f'(x) is positive, so f(x) is increasing.
Interval 2: f'(x) is negative, so f(x) is decreasing.
Interval 3: f'(x) is positive, so f(x) is increasing.

As a result, the function f(x) = (x2+2)/(x2-4) decreases in the interval (sqrt(3-sqrt(5)), sqrt(3+sqrt(5)), and increases in the intervals (-, sqrt(3-sqrt(5)), and (sqrt(3+sqrt(5)), respectively.

To determine the intervals where the function f(x) = (x^2+2)/(x^2-4) is decreasing and/or increasing, we can follow these steps:

Step 1: Find the critical points of the function.
Critical points occur where the derivative of the function is equal to zero or does not exist. In this case, we need to find where f'(x) = 0 or f'(x) does not exist.

Step 2: Determine the intervals of increase and decrease.
Once we have the critical points, we can determine the intervals of increase and decrease by checking the sign of the derivative in each interval.

Let's go through these steps:

Step 1: Find the critical points:
To find the critical points, we need to find where the derivative of f(x) is equal to zero or does not exist.

First, let's find the derivative of f(x):
f(x) = (x^2+2)/(x^2-4)
To simplify the derivative, we can rewrite f(x) as:
f(x) = (1+2/x^2)/(1-4/x^2)

Now, let's find the derivative:
f'(x) = [(-2/x^3)(1-4/x^2) - (-4/x^3)(1+2/x^2)] / (1-4/x^2)^2

Simplifying further:
f'(x) = (-2 + 8/x^2 + 4/x^2 - 8/x^4) / (1-4/x^2)^2
f'(x) = (-2 + 12/x^2 - 8/x^4) / (1-4/x^2)^2

Now, let's find where f'(x) = 0 or does not exist.

Setting the numerator equal to zero:
-2 + 12/x^2 - 8/x^4 = 0
Multiplying through by x^4:
-2x^4 + 12x^2 - 8 = 0

This is a quadratic equation in terms of x^2. Let's solve it:
2x^4 - 12x^2 + 8 = 0
Dividing through by 2:
x^4 - 6x^2 + 4 = 0

This equation is not easily factorable, so we can use the quadratic formula:
x^2 = (-(-6) ± sqrt((-6)^2 - 4(1)(4))) / (2(1))
x^2 = (6 ± sqrt(36 - 16)) / 2
x^2 = (6 ± sqrt(20)) / 2
x^2 = (6 ± 2sqrt(5)) / 2
x^2 = 3 ± sqrt(5)

So, we have two critical points:
x^2 = 3 + sqrt(5) and x^2 = 3 - sqrt(5)

Step 2: Determine the intervals of increase and decrease:
To determine the intervals of increase and decrease, we need to test the sign of the derivative in each interval.

Let's take three test points in each interval:
Interval 1: (-∞, sqrt(3-sqrt(5)))
Test points: x = -1, x = 0, x = 1

Interval 2: (sqrt(3-sqrt(5)), sqrt(3+sqrt(5)))
Test points: x = 2, x = 3, x = 4

Interval 3: (sqrt(3+sqrt(5)), ∞)
Test points: x = 5, x = 6, x = 7

By plugging in these test points into the derivative f'(x), we can determine the sign of the derivative in each interval.

After evaluating the sign of the derivative, we find:

Interval 1: f'(x) is positive, so f(x) is increasing.
Interval 2: f'(x) is negative, so f(x) is decreasing.
Interval 3: f'(x) is positive, so f(x) is increasing.

So, the function f(x) = (x^2+2)/(x^2-4) is decreasing in the interval (sqrt(3-sqrt(5)), sqrt(3+sqrt(5))), and increasing in the intervals (-∞, sqrt(3-sqrt(5))) and (sqrt(3+sqrt(5)), ∞).

To know more about "Derivative":

https://brainly.com/question/12047216

#SPJ11

Falco Inc. financed the purchase of a machine with a loan at 3.86% compounded semi- annually. This loan will be settled by making payments of $9,500 at the end of every six months for 6 years. a. What was the principal balance of the loan? b. What was the total amount of interest charged?

Answers

a. The principal balance of the loan was the initial amount borrowed, which can be calculated by finding the present value of the payment stream using the loan interest rate and the number of periods.

b. The total amount of interest charged can be calculated by subtracting the principal balance from the total amount repaid over the 6-year period.

a. To find the principal balance of the loan, we need to calculate the present value of the payment stream. The loan has semi-annual compounding, so we can use the formula for present value of an annuity to find the initial amount borrowed. Given that the payments are $9,500 made at the end of every six months for 6 years, and the loan is compounded semi-annually at a rate of 3.86%, we can plug these values into the formula to calculate the principal balance.

b. The total amount of interest charged can be obtained by subtracting the principal balance from the total amount repaid over the 6-year period. Since the loan is repaid with payments of $9,500 every six months for 6 years, we can multiply the payment amount by the total number of payments made over the 6-year period to get the total amount repaid. By subtracting the principal balance from this total amount repaid, we can determine the total interest charged.

By performing the calculations for both parts (a) and (b), we can find the principal balance of the loan and the total amount of interest charged.

Learn more about: initial amount

brainly.com/question/32209767

#SPJ11

MARKED PROBLEM Suppose f(x,y)=ax+bxy, where a and b are two real numbers. Let u=(1,1) and v=(1,0). Suppose that the directional derivative of f at the point (3,2) in the direction of u is 2
​ and that the directional derivative of f at the point (3,2) in the direction of v is −1. Use this information to find the values of a and b and then find all unit vectors w such that the directional derivative of f at the point (3,2) in the direction of w is 0 .

Answers

There are no unit vectors w such that the directional derivative of f at (3,2) in the direction of w is 0.

To find the values of a and b, we can use the given information about the directional derivatives of f at the point (3,2) in the directions of u and v.

The directional derivative of f at (3,2) in the direction of u is given as 2. We can calculate this using the gradient of f and the dot product with the unit vector u:

∇f(3,2) ⋅ u = 2.

The gradient of f is given by ∇f(x,y) = (∂f/∂x, ∂f/∂y), so in our case, it becomes:

∇f(x,y) = (a+by, bx).

Substituting the point (3,2), we have:

∇f(3,2) = (a+2b, 3b).

Taking the dot product with u=(1,1), we get:

(a+2b)(1) + (3b)(1) = 2.

Simplifying this equation, we have:

a + 5b = 2.

Similarly, we can find the directional derivative in the direction of v. Using the same process:

∇f(3,2) ⋅ v = -1.

Substituting the point (3,2) and v=(1,0), we get:

(a+2b)(1) + (3b)(0) = -1.

Simplifying this equation, we have:

a + 2b = -1.

Now, we have a system of two equations:

a + 5b = 2,

a + 2b = -1.

Solving this system of equations, we can subtract the second equation from the first to eliminate a:

3b = 3.

Solving for b, we get b = 1.

Substituting this value of b into the second equation, we can find a:

a + 2(1) = -1,

a + 2 = -1,

a = -3.

Therefore, the values of a and b are a = -3 and b = 1.

To find the unit vectors w such that the directional derivative of f at (3,2) in the direction of w is 0, we can use the gradient of f and set it equal to the zero vector:

∇f(3,2) ⋅ w = 0.

Substituting the values of a and b, and using the point (3,2), we have:

(-3+2)(1) + (2)(0) = 0,

-1 = 0.

This equation is not satisfied for any unit vector w. Therefore, there are no unit vectors w such that the directional derivative of f at (3,2) in the direction of w is 0.

LEarn more about unit vectors  here:

https://brainly.com/question/28028700

#SPJ11

Consider the differential equation Ï + 0. 01€ + 100x = f(t), where f (t) is defined in 3(a). • What is the angular frequency of the term in the Fourier series of the response x (t) with largest amplitude? What is the amplitude of the term in the Fourier series of the response from part 3(b)?

Answers

In order to determine the angular frequency and amplitude of the term in the Fourier series with the largest amplitude for the response x(t) to the given differential equation, we need more information about the function f(t) in part 3(a).

Without the specific form or properties of f(t), we cannot directly calculate the angular frequency or amplitude. The Fourier series decomposition of the response x(t) will involve different terms with different angular frequencies and amplitudes, depending on the specific characteristics of f(t). The angular frequency is determined by the coefficient of the variable t in the Fourier series, and the amplitude is related to the magnitude of the Fourier coefficients.

To find the angular frequency and amplitude of a specific term in the Fourier series, we need to know the function f(t) and apply the Fourier analysis techniques to obtain the coefficients. Then, we can identify the term with the largest amplitude and calculate its angular frequency.

Therefore, without further information about f(t), we cannot determine the angular frequency or amplitude for the specific term in the Fourier series of the response x(t).

Learn more about amplitude here

https://brainly.com/question/30638319

#SPJ11

4. There are major chords built on what three notes (with all white notes and no accidentals)? O CFG O ABC GEB OCDE

Answers

The three major chords built on white notes without accidentals are:

1. C major chord (C, E, G)

2. F major chord (F, A, C)

3. G major chord (G, B, D)

These chords are formed by taking the root note, skipping one white note, and adding the next white note on top. For example, in the C major chord, the notes C, E, and G are played together to create a harmonious sound.

Similarly, the F major chord is formed by playing F, A, and C, and the G major chord is formed by playing G, B, and D. These three major chords are commonly used in various musical compositions and are fundamental building blocks in music theory.

To know more about musical chords, visit,

https://brainly.com/question/14936810

#SPJ4

Let Gn = (0, 1+1/n). Prove that ∩ Gn =
(0,1] is neither closed nor open.

Answers

The set ∩ Gn = (0,1] is neither closed nor open.

To prove that the set ∩ Gn = (0,1] is neither closed nor open, we need to examine its properties.

1. Closedness:

A set is closed if it contains all its limit points. In this case, the set ∩ Gn = (0,1] does not contain its left endpoint 0, which is a limit point.

Therefore, it fails to satisfy the condition for closedness.

2. Openness:

A set is open if every point in the set is an interior point.

In this case, the set ∩ Gn = (0,1] does not contain its right endpoint 1 as an interior point.

Any neighborhood around 1 would contain points outside of the set, violating the condition for openness.

Hence, we can conclude that the set ∩ Gn = (0,1] is neither closed nor open.

It is not closed because it does not contain all its limit points, and it is not open because it does not contain all its interior points.

Learn more about closed nor open:

brainly.com/question/33166130

#SPJ11

Suppose an nth order homogeneous differential equation has
characteristic equation (r - 1)^n = 0. What is the general solution
to this differential equation?

Answers

The general solution to the nth order homogeneous differential equation with characteristic equation[tex](r - 1)^n[/tex] = 0 is given by y(x) = c₁[tex]e^(^x^)[/tex] + c₂x[tex]e^(^x^)[/tex] + c₃x²[tex]e^(^x^)[/tex] + ... + cₙ₋₁[tex]x^(^n^-^1^)e^(^x^)[/tex], where c₁, c₂, ..., cₙ₋₁ are constants.

When we have a homogeneous linear differential equation of nth order, the characteristic equation is obtained by replacing y(x) with [tex]e^(^r^x^)[/tex], where r is a constant. For this particular equation, the characteristic equation is given as [tex](r - 1)^n[/tex] = 0.

The equation [tex](r - 1)^n[/tex] = 0 has a repeated root of r = 1 with multiplicity n. This means that the general solution will involve terms of the form [tex]e^(^1^x^)[/tex], x[tex]e^(^1^x^)[/tex], x²[tex]e^(^1^x^)[/tex], and so on, up to[tex]x^(^n^-^1^)[/tex][tex]e^(^1^x^)[/tex].

The constants c₁, c₂, ..., cₙ₋₁ are coefficients that can be determined by the initial conditions or boundary conditions of the specific problem.

Each term in the general solution corresponds to a linearly independent solution of the differential equation.

The exponential term [tex]e^(^x^)[/tex] represents the basic solution, and the additional terms involving powers of x account for the repeated root.

In summary, the general solution to the nth order homogeneous differential equation with characteristic equation [tex](r - 1)^n[/tex] = 0 is y(x) = c₁[tex]e^(^x^)[/tex]+ c₂x[tex]e^(^x^)[/tex] + c₃x²[tex]e^(^x^)[/tex] + ... + cₙ₋₁[tex]x^(^n^-^1^)e^(^x^)[/tex], where c₁, c₂, ..., cₙ₋₁ are constants that can be determined based on the specific problem.

Learn more about differential equations

brainly.com/question/28921451

#SPJ11

what is the length of leg s of the triangle below?

Answers

Answer: s=4

Step-by-step explanation:

You can see that the 2 angles are 45.  Angles are the same so the lengths across from them are the same so

s=4

You can also solve using pythagorean theorem:

c² = a² + b²

c is always the hypotenuse which is across from the 90° angle

√32² = 4² + s²

32 = 16 +s²                          >subtract 16 from both sides

16 = s²

s= 4

The length of leg s in the right-angled triangle given is 4.

What is the length of leg s?

A triangle is a three-sided polygon with three edges and three vertices. the sum of angles in a triangle is 180 degrees. A right-angled triangle is a triangle in which of its angle measure 90 degrees.

Length of leg s:

[tex]\sin 45 = \dfrac{\text{Opposite}}{\text{Hypotenuse}}[/tex]

[tex]\dfrac{1}{\sqrt{2} } = \dfrac{\text{Opposite}}{\sqrt{32} }[/tex]

[tex]\text{Opposite} =\dfrac{1}{\sqrt{2} } \times \sqrt{32} = \bold{4}[/tex]

Therefore, the length of leg s in the right-angled triangle given is 4.

To learn more about triangles, please check:

https://brainly.com/question/31240589



Write an equation of each line in standard form with integer coefficients. y=7 x+0.4 .

Answers

The equation of the line y = 7x + 0.4 in standard form with integer coefficients is 70x - 10y = -4.

To write the equation of the line y = 7x + 0.4 in standard form with integer coefficients, we need to eliminate the decimal coefficient. Multiply both sides of the equation by 10 to remove the decimal, we obtain:

10y = 70x + 4

Now, rearrange the terms so that the equation is in the form Ax + By = C, where A, B, and C are integers:

-70x + 10y = 4

To ensure that the coefficients are integers, we can multiply the entire equation by -1:

70x - 10y = -4

To learn more about integer coefficients, refer here:

https://brainly.com/question/4928961

#SPJ11

The length of a rectangular poster is 5 more inches than half its width. The area of the poster is 48 square inches. Solve for the dimensions (length and width) of the poster.

Answers

Answer:

the dimensions of the rectangular poster are width = 6 inches and length = 8 inches.

Step-by-step explanation:

Let's assume the width of the rectangular poster is represented by 'w' inches.

According to the given information, the length of the poster is 5 more inches than half its width. So, the length can be represented as (0.5w + 5) inches.

The formula for the area of a rectangle is given by:

Area = length * width

We are given that the area of the poster is 48 square inches, so we can set up the equation:

(0.5w + 5) * w = 48

Now, let's solve this equation to find the value of 'w' (width) first:

0.5w^2 + 5w = 48

Multiplying through by 2 to eliminate the fraction:

w^2 + 10w - 96 = 0

Now, we can factorize this quadratic equation:

(w - 6)(w + 16) = 0

Setting each factor to zero:

w - 6 = 0 or w + 16 = 0

Solving for 'w', we get:

w = 6 or w = -16

Since the width of a rectangle cannot be negative, we discard the value w = -16.

Therefore, the width of the poster is 6 inches.

To find the length, we substitute the value of the width (w = 6) into the expression for the length:

Length = 0.5w + 5 = 0.5 * 6 + 5 = 3 + 5 = 8 inches

Solve the following initial value problem: [alt form: y′′+8y′+20y=0,y(0)=15,y′(0)=−6]

Answers

The solution to the initial value problem y'' + 8y' + 20y = 0, y(0) = 15, y'(0) = -6 is y = e^(-4t)(15cos(2t) + 54sin(2t)). The constants c1 and c2 are found to be 15 and 54, respectively.

To solve the initial value problem y′′ + 8y′ + 20y = 0, y(0) = 15, y′(0) = -6, we first find the characteristic equation by assuming a solution of the form y = e^(rt). Substituting this into the differential equation yields:

r^2e^(rt) + 8re^(rt) + 20e^(rt) = 0

Dividing both sides by e^(rt) gives:

r^2 + 8r + 20 = 0

Solving for the roots of this quadratic equation, we get:

r = (-8 ± sqrt(8^2 - 4(1)(20)))/2 = -4 ± 2i

Therefore, the general solution to the differential equation is:

y = e^(-4t)(c1cos(2t) + c2sin(2t))

where c1 and c2 are constants to be determined by the initial conditions. Differentiating y with respect to t, we get:

y′ = -4e^(-4t)(c1cos(2t) + c2sin(2t)) + e^(-4t)(-2c1sin(2t) + 2c2cos(2t))

At t = 0, we have y(0) = 15, so:

15 = c1

Also, y′(0) = -6, so:

-6 = -4c1 + 2c2

Solving for c2, we get:

c2 = -6 + 4c1 = -6 + 4(15) = 54

Therefore, the solution to the initial value problem is:

y = e^(-4t)(15cos(2t) + 54sin(2t))

Note that this solution satisfies the differential equation and the initial conditions.

To know more about initial value problem, visit:
brainly.com/question/30503609
#SPJ11

What is the quotient?
x + 1)3x² - 2x + 7
O , ? 1
3x-5+
ܕ ? 5 +O3x
Q3+5+
O
ܕ ? ܟ ܀ 5
3x + 5+

Answers

The correct expression is 13x - 5 + (12/x + 1).

The given expression is 3x² - 2x + 7.Dividing 3x² - 2x + 7 by (x + 1) using long division method:  

3x + (-5) with a remainder of

12.x + 1 | 3x² - 2x + 7- (3x² + 3x) -5x + 7- (-5x - 5) 12

Thus, the quotient is 3x - 5 with a remainder of 12.

If we need to write the division in polynomial form, it is written as:

3x² - 2x + 7

= (x + 1) (3x - 5) + 12

By using synthetic division, it can be represented as:  

-1 | 3    -2    7        3   -1   -6    -1   6   1

The quotient is 3x - 5 with a remainder of 12.

for such more questions on expression

https://brainly.com/question/1859113

#SPJ8

A Taxpayer was charged $2,000 for qualified child care expenses and paid $1,500 out of his own funds for the care. His employer paid the remaining $500 as shown on Form W-2 box 10, What amount of the expenses is eligible for the child care credit?
1.0
2.$500
3.. $1,500
4.$2,000

Answers

The amount of qualified child care expenses eligible for the child care credit is $1,500.

The taxpayer was charged $2,000 for qualified child care expenses and paid $1,500 out of his own funds.

Additionally, the employer paid the remaining $500. However, only the expenses paid by the taxpayer out of his own funds are eligible for the child care credit. Therefore, the amount eligible for the credit is $1,500.

The child care credit allows taxpayers to claim a credit for qualified child care expenses incurred while they are working or looking for work.

To be eligible for the credit, the expenses must be for the care of a qualifying child under the age of 13, and the care must enable the taxpayer to work or look for work.

In this scenario, the taxpayer paid $1,500 out of his own funds for the child care expenses, which meets the requirement for the credit.

The $500 paid by the employer does not count towards the credit since it was not paid by the taxpayer. Therefore, the eligible amount for the child care credit is $1,500.

Learn more about calculations

brainly.com/question/30781060

#SPJ11

Pleeeeaase Answer ASAP!

Answers

Answer:

Step-by-step explanation:

Domain is where x direction part of the function where it exists,

The function exists from 0 to 9 including 0 and 9. Can be written 2 ways:

Interval notation

0 ≤ x ≤ 9

Set notation

[0, 9]

Identify the transversal Line is the transversal.

Answers

The transverse line is: Line t

The parallel lines are: m and n

How to Identify Transverse and Parallel Lines?

From the transverse and parallel line theorem of geometry, we know that:

If two parallel lines are cut by a transversal, then corresponding angles are congruent. Two lines cut by a transversal are parallel IF AND ONLY IF corresponding angles are congruent.

Now, from the given image, we see that the transverse line is clearly the line t.

However we see that the lines m and n are parallel to each other and as such we will refer to them as our parallel lines in the given image.

Read more about Transverse and Parallel lines at: https://brainly.com/question/24607467

#SPJ1

Cheung Cellular purchases an Android phone for $544 less trade discounts of 20% and 15%. Cheung's overhead expenses are $50 per unit. a) What should be the selling price to generate a profit of $10 per phone? b) What is the markup on cost percentage at this price? c) What is the markup on selling price percentage at this price? d) What would be the break-even price for a clear-out sale in preparation for the launch of a new model?

Answers

Selling price=  $413.60. Markup on cost percentage = 2.48%. Markup on selling price percentage =2.42%.  Break-even price = Total cost per phone = $403.60.

a) To generate a profit of $10 per phone, we need to determine the total cost per phone and add the desired profit.  The total cost per phone is the purchase price minus the trade discounts and plus the overhead expenses: Total cost per phone = (Purchase price - (Purchase price * Trade discount 1) - (Purchase price * Trade discount 2)) + Overhead expenses = (544 - (0.2 * 544) - (0.15 * 544)) + 50 = 544 - 108.8 - 81.6 + 50 = $403.60. The selling price to generate a profit of $10 per phone is the total cost per phone plus the desired profit: Selling price = Total cost per phone + Desired profit = 403.60 + 10 = $413.60.  b) The markup on cost percentage can be calculated as the profit per phone divided by the total cost per phone, multiplied by 100: Markup on cost percentage = (Profit per phone / Total cost per phone) * 100 = (10 / 403.60) * 100 ≈ 2.48%.

c) The markup on selling price percentage can be calculated as the profit per phone divided by the selling price, multiplied by 100: Markup on selling price percentage = (Profit per phone / Selling price) * 100 = (10 / 413.60) * 100 ≈ 2.42%. d) The break-even price is the price at which the revenue from selling each phone is equal to the total cost per phone, resulting in zero profit. In this case, it is equal to the total cost per phone: Break-even price = Total cost per phone = $403.60.

To learn more about total cost click here: brainly.com/question/30877545

#SPJ11

Use the first principle to determine f'(x) of the following functions: 6.1 f(x)= x² + cos x. 62-f(x) = -x² + 4x − 7. Question 7 Use the appropriate differentiation techniques to determine the f'(x) of the following functions (simplify your answer as far as possible): 7.1 f(x)= (-x³-2x-2+5)(x + 5x² - x - 9). 7.2 f(x) = (-¹)-1. 7.3 f(x)=(-2x²-x)(-4²) Question 8 Differentiate the following with respect to the independent variables: (3) 8.1 y = In-51³ +21-31-6 In 1-32². 8.2 g(t) = 2ln(-3) - In e-²1-³ ↑ ↑ (4) (4) (3) [TOTAL: 55]

Answers

6.1. The derivative of f(x) = x² + cos(x) is f'(x) = 2x - sin(x). 6.2. The derivative of f(x) = -x² + 4x - 7 is f'(x) = -2x + 4.7.1. f'(x) = (-x³ - 2x + 3)(10x - 8) + (-3x² - 2)(5x² - 8x - 9).

7.2. The derivative of f(x) = (-¹)-1 is f'(x) = 0 since it is a constant. 7.3. The derivative of f(x) = (-2x² - x)(-4²) is f'(x) = 32. 8.1. dy/dx = -1/(51³) + (384/((1 - 32²)(1 - 32²))) × x. 8.2. dg/dt = 2e⁻²ᵗ/(e⁻²ᵗ- 1/3)

How did we get the values?

6.1 To find the derivative of f(x) = x² + cos(x) using the first principle, compute the limit as h approaches 0 of [f(x + h) - f(x)] / h.

f(x) = x² + cos(x)

f(x + h) = (x + h)² + cos(x + h)

Now let's substitute these values into the formula for the first principle:

[f(x + h) - f(x)] / h = [(x + h)² + cos(x + h) - (x² + cos(x))] / h

Expanding and simplifying the numerator:

= [(x² + 2xh + h²) + cos(x + h) - x² - cos(x)] / h

= [2xh + h² + cos(x + h) - cos(x)] / h

Taking the limit as h approaches 0:

lim(h→0) [2xh + h² + cos(x + h) - cos(x)] / h

Now, divide each term by h:

= lim(h→0) (2x + h + (cos(x + h) - cos(x))) / h

Taking the limit as h approaches 0:

= 2x + 0 + (-sin(x))

Therefore, the derivative of f(x) = x² + cos(x) is f'(x) = 2x - sin(x).

62. To find the derivative of f(x) = -x² + 4x - 7 using the first principle, we again compute the limit as h approaches 0 of [f(x + h) - f(x)] / h.

f(x) = -x² + 4x - 7

f(x + h) = -(x + h)² + 4(x + h) - 7

Now, substitute these values into the formula for the first principle:

[f(x + h) - f(x)] / h = [-(x + h)² + 4(x + h) - 7 - (-x² + 4x - 7)] / h

Expanding and simplifying the numerator:

= [-(x² + 2xh + h²) + 4x + 4h - 7 + x² - 4x + 7] / h

= [-x² - 2xh - h² + 4x + 4h - 7 + x² - 4x + 7] / h

= [-2xh - h² + 4h] / h

Taking the limit as h approaches 0:

lim(h→0) [-2xh - h² + 4h] / h

Now, divide each term by h:

= lim(h→0) (-2x - h + 4)

Taking the limit as h approaches 0:

= -2x + 4

Therefore, the derivative of f(x) = -x² + 4x - 7 is f'(x) = -2x + 4.

7.1 To find the derivative of f(x) = (-x³ - 2x - 2 + 5)(x + 5x² - x - 9), we can simplify the expression first and then differentiate using the product rule.

f(x) = (-x³ - 2x - 2 + 5)(x + 5x² - x - 9)

Simplifying the expression:

f(x) = (-x³ - 2x + 3)(5x² - 8x - 9)

Now, we can differentiate using the product rule:

f'(x) = (-x³ - 2x + 3)(10x - 8) + (-3x² - 2)(5x² - 8x - 9)

Simplifying the expression further will involve expanding and combining like terms.

7.2 To find the derivative of f(x) = (-¹)-1, note that (-¹)-1 is equivalent to (-1)-1, which is -1. Therefore, the derivative of f(x) = (-¹)-1 is f'(x) = 0 since it is a constant.

7.3 To find the derivative of f(x) = (-2x² - x)(-4²), we can differentiate each term separately using the product rule.

f(x) = (-2x² - x)(-4²)

Differentiating each term:

f'(x) = (-2)(-4²) + (-2x² - x)(0)

Simplifying:

f'(x) = 32 + 0

Therefore, the derivative of f(x) = (-2x² - x)(-4²) is f'(x) = 32.

8.1 To differentiate y = ln(-51³) + 21 - 31 - 6ln(1 - 32²), we can use the chain rule and the power rule.

Differentiating each term:

dy/dx = [d/dx ln(-51³)] + [d/dx 21] - [d/dx 31] - [d/dx 6ln(1 - 32²)]

The derivative of ln(x) is 1/x:

dy/dx = [1/(-51³)] + 0 - 0 - 6[1/(1 - 32²)] × [d/dx (1 - 32²)]

Differentiating (1 - 32²) using the power rule:

dy/dx = [1/(-51³)] - 6[1/(1 - 32²)] * (-64x)

Simplifying:

dy/dx = -1/(51³) + (384/((1 - 32²)(1 - 32²))) × x

8.2 To differentiate g(t) = 2ln(-3) - ln(e⁻²ᵗ - 1/3), we can use the properties of logarithmic differentiation.

Differentiating each term:

dg/dt = [d/dt 2ln(-3)] - [d/dt ln(e⁻²ᵗ - 1/3)]

The derivative of ln(x) is 1/x:

dg/dt = [0] - [1/(e⁻²ᵗ - 1/3)] × [d/dt (e⁻²ᵗ - 1/3)]

Differentiating (e⁻²ᵗ - 1/3) using the chain rule:

dg/dt = -[1/(e⁻²ᵗ - 1/3)] × (e⁻²ᵗ) × (-2)

Simplifying:

dg/dt = 2e⁻²ᵗ/(e⁻²ᵗ - 1/3)

learn more about logarithmic differentiation: https://brainly.com/question/30881276

#SPJ4

The correct answer is f'(x) = -64x - 16

Let's go through each question and determine the derivatives as requested:

6.1 f(x) = x² + cos(x)

Using the first principle, we differentiate f(x) as follows:

f'(x) = lim(h→0) [(f(x + h) - f(x))/h]

= lim(h→0) [(x + h)² + cos(x + h) - (x² + cos(x))/h]

= lim(h→0) [x² + 2xh + h² + cos(x + h) - x² - cos(x))/h]

= lim(h→0) [2x + h + cos(x + h) - cos(x)]

= 2x + cos(x)

Therefore, f'(x) = 2x + cos(x).

6.2 f(x) = -x² + 4x - 7

Using the first principle, we differentiate f(x) as follows:

f'(x) = lim(h→0) [(f(x + h) - f(x))/h]

= lim(h→0) [(-x - h)² + 4(x + h) - 7 - (-x² + 4x - 7))/h]

= lim(h→0) [(-x² - 2xh - h²) + 4x + 4h - 7 + x² - 4x + 7)/h]

= lim(h→0) [-2xh - h² + 4h]/h

= lim(h→0) [-2x - h + 4]

= -2x + 4

Therefore, f'(x) = -2x + 4.

7.1 f(x) = (-x³ - 2x - 2 + 5)(x + 5x² - x - 9)

Expanding and simplifying the expression, we have:

f(x) = (-x³ - 2x + 3)(5x² - 8)

To find f'(x), we can use the product rule:

f'(x) = (-x³ - 2x + 3)(10x) + (-3x² - 2)(5x² - 8)

Simplifying the expression:

f'(x) = -10x⁴ - 20x² + 30x - 15x⁴ + 24x² + 10x² - 16

= -25x⁴ + 14x² + 30x - 16

Therefore, f'(x) = -25x⁴ + 14x² + 30x - 16.

7.2 f(x) = (-1)-1

Using the power rule for differentiation, we have:

f'(x) = (-1)(-1)⁻²

= (-1)(1)

= -1

Therefore, f'(x) = -1.

7.3 f(x) = (-2x² - x)(-4²)

Expanding and simplifying the expression, we have:

f(x) = (-2x² - x)(16)

To find f'(x), we can use the product rule:

f'(x) = (-2x² - x)(0) + (-4x - 1)(16)

Simplifying the expression:

f'(x) = -64x - 16

Therefore, f'(x) = -64x - 16.

Learn more about derivatives from the given link.

https://brainly.com/question/23819325

#SPJ11

QUESTION 1
Which bracket placement should be inserted to make the following equation true.
3+4x2-2x3=3
A (3+4)
B (4X2)
C (2-2)
D (2X3)
QUESTION 2
Which of the following equation is linear?
A. 3x +2y+z=4
B. 3xy+4=1
c. 4/x + y =1
d. y=3x2+1
Question 3
in year 2020, Nonhle's gross monthly salary was r40 000. The income tax rate was 15% of the gross salary and her net salary is gross salary minus income tax. In 2021 her gross salary increased by r5000 and the tax tare was change to 16% of the gross salary. Find the percentage increase in Nonhle's net salary.
Question 4
John and Hess spent 5x Rands on their daughter's fifth birthday. For her sixth birthday, they increase this amount by 6x Rands. For her seventh birthday they spend r700. In total they spend r3100 for these 3 birthdays. Find the value of X.
Question 5
The current ages of two relatives who shared a birthday is 7:1. In 6 years' time the ratio of their ages will be 5:2. find their current ages.
Question 6
Which of the following equations has a graph the does not pass through the point(3,-4)
A. 2x-3y=18
B. y=5x-19
C. 3x=4y
Question 7
Three siblings Trust, Hardlife and Innocent share 42 chocolate sweets according to the ratio 3:6:5 respectively. Their father buys 30 more chocolate sweets and gives 10 to each of the siblings. What is the new ratio of the sibling share of sweets?
Question 8
The linear equation 5y-3x-4=0 can be written in form y=mx+c. Find the value of m and c.

Answers

Question 1: To make the equation =3 true, the bracket placement needed is B (8).

So the equation becomes 3 + (4x2) - 2x3 = 3.

Question 2: The linear equation is A. 3x + 2y + z = 4.

Question 3: In 2021, Nonhle's gross salary increased to r45,000. The new income tax rate is 16%. To find the percentage increase in Nonhle's net salary, we can calculate the difference between the net salary in 2020 and 2021, and then calculate the percentage increase. However, the net salary formula is needed to proceed with the calculation.

Question 4: Let x represent the amount spent on the daughter's fifth birthday. The amount spent on her sixth birthday is 5x + 6x = 11x, and the amount spent on her seventh birthday is r700. The total amount spent is x + 11x + r700 = r3100. Solving this equation will give the value of x.

Question 5: Let the current ages of the relatives be 7x and x. In 6 years, their ages will be 7x + 6 and x + 6. Setting up the ratio equation, we have (7x + 6)/(x + 6) = 5/2. Solving this equation will give the current ages of the relatives.

Question 6: The equation that does not pass through the point (3, -4) is A. 2x - 3y = 18.

Question 7: Initially, the ratio of sweets is 3:6:5. After the father buys 30 more sweets, the total number of sweets becomes 42 + 30 = 72. The new ratio of the sibling's share of sweets can be found by dividing 72 equally into the ratio 3:6:5. Simplifying the ratios will give the new ratio.

Question 8: Rearranging the given linear equation 5y - 3x - 4 = 0 in the form y = mx + c, we have y = (3/5)x + 4/5. Therefore, the value of m is 3/5 and the value of c is 4/5.

Learn more about bracket

https://brainly.com/question/29802545

#SPJ11

Other Questions
What are some reasons why the democratic form of government isoften regarded as the best form of government? The provider ordered heparin 1,200 units/hour. Heparin is available as 40,000 units in 1 L D5W. What is the correct IV flow rate in milliliters per hour? Enter your answer as a whole number. Use Desired-Over-Have method to show work. If the monthly interest rate is .5%, what monthly annuitypayment can the firm offer to the retiring professor?Professor's Annuity Corp. offers a lifetime annuity to retiring professors. For a payment of $ 80,000 at age 65 , the firm will pay the retiring professor $ 600 a month until death. List these factors and explain why the absence of these would be a problem. Would the presence of them motivate you? What about satisfiers-what satisfiers do you think motivate you the most? Why? Hygiene factors of most concern to you Why would the absence of these factors be a problem? Would the presence of them motivate you? What satisfiers do you think motivate you the most? Why 4. Which of the following DOES NOT help to prevent blood loss? a.Option 5E. Blood vessel constriction. b.Option 1A. Formation of a network of fibrin. c.Option 4D. Release of heparin. d.Option 3C. Synthesis of thrombin e.Option 2B. Formation of a platelet plug. f.Other: Congress passed the ________ with the purpose of empowering private citizens with tools to request information from the federal government.a.Truth in Lending Actb.Freedom of Information Actc.Consumer Protection Actd.National Labor Relations Act 2. Durable goods, such as automobiles, home appliances, and machinery, provide a stream of services over an extended period of time. Buyers who already own a durable good have considerable discretion over the timing of buying new equipment to replace their existing item. As durables are relatively costly, buyers may finance their purchases. a. Explain how the demand for a durable good would depend on expectations about future incomes and prices of the good. b. How would interest rates affect the demand for a durable? c. How would the supply of used goods affect the demand for new durables? Condominium ownership combines individual fee simple ownership of private space within the community with which of the following forms of ownership of hallways, building shells, roofs, and community grounds and facilities?a. Tenancy by the entiretyb. Joint tenancyc. Cooperative ownershipd. Tenancy for yearse. Tenancy in common A nurse is caring for a client requiring restraints. What should be included in the plan of care for this client?A.Assess pulses and cap refill every 2 hoursB.Ensure extremity has limited range of motionC.Place a nasogastric tube for nutrients since client will have limited use of handsD. Secure the straps to the side rails using a quick release knot Emergency medicine question: treatment of Heat Stroke What might be the result of poor investigator planning and preparation before the start of digital evidence collection, and processing 2. Discuss whether the social effects of emotion contagion require face to face interaction. In your answer, you should define key concepts, draw upon empirical evidence and include critical appraisal to support your answer. To determine the arbitrary quantity: q = xy xy2 A scientist measure x and y as follows: x = 3.0 + 0.1 and y = 2.0 + 0.1 Calculate the uncertainty in q. What is cleaning soap? How is it made and how does it work? Soap is precipitated out of the solution by adding salt and the process is called salting of soap. Discuss how the common ion effect (a special case of LeChatelier's principle) is used in the salting of soap. What structure does not have an effect on the refraction of light within the eye?1. Cornea2. Lens3. Vitreous humor (body)4. sclera explain why the west coast is colder in 8 lines Suppose that you built the circuit given in Figure 3-2 of your lab instructions with slide wire of total length 7.7cm and try to experimentally determine the value of the unknown resistance Rx where Rc is 7.3. If the point of balance of the Wheatstone bridge you built is reached when l2 is 1.8 cm , calculate the experimental value for Rx. Give your answer in units of Ohms with 1 decimal. The radius of a rod is 0.178 cm, the length of aluminum part is 1.2 m and of the copper part is 2.5 m. Determine the elongation of the rod if it is under a tension of 8450 N. Young's modulus for aluminum is 7 x 10^10 Pa and for copper 1.1 x 10^11 Pa. Answer in units of cm. PREPARATION OF STAINED BLOOD SMEAR QUESTION: 1. Describe the different blood cells and give their specific functions. 2. DRAW: STEPS OF THE DIFFERENT BLOOD TESTS STANDARD RESULT OF ABO BLOOD GROUPINGS need help asap pls!!