2. Separating liquids with similar boiling points can be near-impossible using simple distillation techniques. Take a little time to research fractional distillation. Explain why fractional distillation columns are more efficient at separating liquids with close boiling points than simple distillation columns.

Answers

Answer 1

Fractional distillation columns are more efficient at separating liquids with close boiling points than simple distillation columns.

Fractional distillation is a technique used to separate liquid mixtures with components that have similar boiling points. It overcomes the limitations of simple distillation, which is ineffective in separating liquids with close boiling points. The key difference lies in the design and operation of the distillation column.

In a fractional distillation column, the column is packed with materials such as glass beads or metal trays, which provide a large surface area for vapor-liquid contact. As the mixture is heated and rises up the column, it encounters temperature variations along its height. The column is equipped with several condensation stages, known as trays or plates, where vapor condenses and liquid re-vaporizes. This creates multiple equilibrium stages within the column.

The efficiency of fractional distillation arises from the repeated vaporization and condensation cycles that occur in the column. The ascending vapor becomes richer in the component with the lower boiling point, while the descending liquid becomes richer in the component with the higher boiling point. This continuous cycling of vapor and liquid allows for more precise separation of the components based on their differing boiling points.

Step 3:

Fractional distillation relies on the principles of vapor-liquid equilibrium and mass transfer. To fully grasp the underlying mechanisms and understand the efficiency of fractional distillation columns in separating liquids with close boiling points, it is recommended to delve deeper into topics such as distillation theory, tray efficiency, and the impact of column design on separation performance.

Learn more aboutFractional distillation columns

brainly.com/question/31839396

#SPJ11


Related Questions

2. Show detailed steps to hybridization of the following molecules Use simple valence bond theory along with hybridization to show the bonding in the following molecules. Use the next page or extra paper for extra space /8 Marks) Your answer should include these steps: * a. Lewis structure (where applicable) * b. Bond analysis (L.e. the # of or bonds) * c. Diagram of valence shell energy level orbitals * d. Promotion, hybridization step and hybrid outcome are shown clearly, if applicable * e. Diagram of overlapping orbitals with label of types of bonds (o or ) formed. a. N₂ H b. Show detailed hybridization for each atom: C₁, C2 and N H-C 1 CH-N-H 2 H

Answers

The hybridization of each atom is given below: C₁: sp³ C₂: sp³ N: sp³

a. N₂ H

The Lewis structure of N₂H is given below:

Bond analysis:

Total no of valence electrons in N2H = 1(2) + 2(5) + 1 = 12

Valence electrons in N₂H2 will be = 12/2 = 6

No of sigma bonds in N2H = 2

No of lone pairs on nitrogen = 1

Valence shell energy level orbitals diagram for N2H is given below:

Promotion is not required since N has no lone pair. Hybridization step of N2H is given below:

Thus, the hybridization of N2H is sp³.

Diagram of overlapping orbitals with label of types of bonds formed is given below:

b. CH₃-NH₂

The Lewis structure of CH₃-NH₂ is given below:

Bond analysis:

Total no of valence electrons in CH₃NH₂ = 1(4) + 3(1) + 1(5) + 2(1) = 14

Valence electrons in CH₃NH₂ will be = 14/2 = 7

No of sigma bonds in CH₃NH₂ = 4

No of lone pairs on nitrogen = 1

Valence shell energy level orbitals diagram for CH₃NH₂ is given below:

The hybridization of each atom is given below: C₁: sp³ C₂: sp³ N: sp³

Promotion, hybridization step and hybrid outcome are shown clearly, if applicable. Overlapping orbitals with label of types of bonds (σ or π) formed.

Learn more about hybridization

https://brainly.com/question/29020053

#SPJ11

Early electric and hybrid-electric vehicles were frequently powered by nickel-metal hydride (NiMH) batteries. Assume that the discharge reaction for these batteries is given by TiNi5H + NiO(OH) ! TiNi5 + Ni(OH)2, and that the cell voltage is 1.2 V. Nowadays, NiMH batteries have been superseded almost entirely by Li-ion batteries. Assume that the discharge reaction for the latter is given by LiC6 + CoO2 ! C6 + LiCoO2, and that the cell voltage is 3.7 V. i. Calculate the specific energy of the two batteries, that is, the energy per kg reactant material, in units of kWh/kg. The molar masses of TiNi5H, NiO(OH), LiC6 and CoO2 in units of g mol

Answers

The specific energy of NiMH battery is given as 57 Wh/kg and that of Li-ion battery is 150 Wh/kg.

The specific energy of NiMH battery is given as 57 Wh/kg and that of Li-ion battery is 150 Wh/kg. Specific energy is the amount of energy stored per unit mass. If the mass of the reactants is equal, Li-ion battery can store more energy than NiMH battery.

Early electric and hybrid-electric vehicles were frequently powered by nickel-metal hydride (NiMH) batteries. Assume that the discharge reaction for these batteries is given by TiNi5H + NiO(OH) ! TiNi5 + Ni(OH)2, and that the cell voltage is 1.2 V. Nowadays, NiMH batteries have been superseded almost entirely by Li-ion batteries. Assume that the discharge reaction for the latter is given by LiC6 + CoO2 ! C6 + LiCoO2, and that the cell voltage is 3.7 V. i. Calculate the specific energy of the two batteries, that is, the energy per kg reactant material, in units of kWh/kg. The molar masses of TiNi5H, NiO(OH), LiC6 and CoO2 in units of g mol

The reaction given for the NiMH battery is as follows:

TiNi5H + NiO(OH) → TiNi5 + Ni(OH)2

The number of electrons transferred in the reaction is given as 5.

The cell voltage of the battery is given as 1.2V.

Specific energy of the NiMH battery is given as: 1.2V * (5*96485 C) / (3600 s * 1000 Wh) = 57 Wh/kgThe reaction given for the Li-ion battery is as follows:

LiC6 + CoO2 → C6 + LiCoO2

The number of electrons transferred in the reaction is given as 1.

The cell voltage of the battery is given as 3.7V.

Specific energy of the Li-ion battery is given as: 3.7V * (1*96485 C) / (3600 s * 1000 Wh) = 150 Wh/kg

Thus, the specific energy of NiMH battery is given as 57 Wh/kg and that of Li-ion battery is 150 Wh/kg.

Learn more about Li-ion battery

https://brainly.com/question/29835113

#SPJ11

Some basic property problems:
4. We have water at 20 bar and 400 C.
i. What is the state? (vapor, liquid?)
ii. What is the specific volume and specific enthalpy?
iii. I have saturated steam at 15 bar which has a quality (vapor fraction) of 80%. (that means it is 80% vapor and 20% liquid). What is the enthalpy?
iv. We have a 1 liter vessel which is at 60 bar and contains a mixture of liquid water and water vapor. The mass of water (both phases) in the tank is 700 g. What is the quality and temperature? (HINT: 1 liter of liquid water weighs 1000g.)
5. If I consider liquid benzene to have 0 enthalpy at 25 C 1, atm., estimate the enthalpy content of benzene vapor at 280 C, 5 atm. (Construct a path and calculate the enthalpy change for each step… then add them. You may consider it an ideal gas so pressure does not affect enthalpy)

Answers

i. The state of water at 20 bar and 400°C is vapor.

ii. The specific volume and specific enthalpy of water at these conditions need to be calculated based on the specific properties of water vapor.

Water at 20 bar and 400°C exists in the vapor state. At this pressure and temperature, water undergoes a phase change from liquid to vapor.

The specific volume and specific enthalpy of water vapor can be determined using steam tables or thermodynamic property software.

To calculate the specific volume and specific enthalpy, we need to refer to the appropriate tables or software that provide these properties for water vapor at the given conditions.

These tables or software tools provide data on various thermodynamic properties of water at different pressures and temperatures.

Saturated steam at 15 bar with a vapor fraction of 80% has a specific enthalpy value associated with it. This value can also be obtained from steam tables or property software, taking into account the specific pressure and vapor fraction.

In the case of the 1-liter vessel containing a mixture of liquid water and water vapor at 60 bar, with a total mass of 700 g, the quality (vapor fraction) and temperature can be determined using the given mass and volume information.

The quality is the fraction of the total mass that corresponds to the vapor phase, and the temperature can be obtained based on the pressure and quality values, again by referring to the appropriate tables or software.

Learn more about vapor

brainly.com/question/32499566

#SPJ11

The bio-solids withdrawn from the primary settling tank contain 1.4% solids. The unit
influent contains 285 mg/L TSS, and the effluent contains 140 mg/L TSS. If the influent flow
rate is 5.55 MGD, what is the estimated bio-solids withdrawal rate in gallons per minute
(assuming the pump operates continuously)

Answers

The estimated bio-solids withdrawal rate is 13.7 GPM.

The bio-solids withdrawn from the primary settling tank contain 1.4% solids. The unit influent contains 285 mg/L TSS, and the effluent contains 140 mg/L TSS. If the influent flow rate is 5.55 MGD,

Q = Flow rate * Time

Q = 5.55 MGD * 24 hours/day * 60 minutes/hour

Q = 7,992,000 gallons/day

We can calculate the mass of the solids in the influent per day using;

Mass = Concentration * Flow rate * Time

Where Mass is in lbs/day, Concentration in mg/L, Flow rate in gallons/day, and Time is in days.

Mass of the influent solids = 285 mg/L × 7,992,000 gallons/day × 8.34 lbs/gallon / 1,000,000 mg = 6,775 lbs/day

The effluent solids can be calculated using the same formula,

Mass of the effluent solids = 140 mg/L × 7,992,000 gallons/day × 8.34 lbs/gallon / 1,000,000 mg = 2,672 lbs/day

The mass of solids withdrawn as biosolids will be the difference between influent solids and effluent solids;

Mass of solids withdrawn = 6,775 - 2,672 = 4,103 lbs/day = 1.9 tons/day

In terms of flow, we can calculate the withdrawal rate as follows;

Flow rate of the biosolids = Mass of the solids / (Solid % ÷ 100) × 8.34 lbs/gallon ÷ 24 hours/day = 13.7 GPM or 13.7/0.45=30.4 gpm (approximately)

Therefore, the estimated bio-solids withdrawal rate is 13.7 GPM.

Learn more about bio-solids withdrawal rate

https://brainly.com/question/33303706

#SPJ11

d) Consider that the Mariana Trench is filled with packed sand particles with diameter 1 mm and voidage 0.5. The density of sandstone is 2300 kg/m3. Estimate the minimum fluidising velocity.
[5 marks]
e) Consider that the same sand particles in a packed bed (spherical particles with diameter 1 mm, density of sandstone 2300 kg/m3, voidage = 0.5) get fluidised by means of sea water (density 1030kg/m3 and viscosity 1 mNs/m2)
Estimate the minimum fluidising velocity, using Ergun’s equation for the pressure drop through the bed.
[6 marks]

Answers

d)The minimum fluidizing velocity is 0.165 m/s.

e)The minimum fluidizing velocity, using Ergun’s equation for the pressure drop through the bed is 0.165 m/s.

d)The given parameters are:d = 1 mm = 0.001m;ρ = 2300 kg/m3;Voidage = 0.5The minimum fluidizing velocity formula is defined as:Umf = [(1 - ε)gd] 0.5

The density of packed sand particles can be calculated using the voidage equation:ρs = (1 - ε)ρWe getρs = (1 - 0.5)×2300= 1150 kg/m3The acceleration due to gravity g = 9.81 m/s2

By substituting the given values in the formula, we get :Umf = [(1 - ε)gd] 0.5 = [(1-0.5)×9.81×0.001×1150] 0.5 = 0.165 m/s

e)The given parameters are :d = 1 mm = 0.001m;ρ = 2300 kg/m3;Voidage = 0.5ρf = 1030 kg/m3;viscosity (μ) = 1mNs/m2The Reynolds number is defined as: Re = (ρVD/μ)

The drag coefficient Cd is given by:Cd = [24(1 - ε)/Re] + [(4.5 + 0.4(Re0.5 - 2000)/Re0.5)(1 - ε)2]For the estimation of pressure drop by Ergun’s equation, the formula is defined as:ΔP/L = [150(1 - ε)μ2 / D3ε3ρu] + [1.75(1 - ε)2μu / D2ε3ρ]We can use the following equations for estimation: V = Umf/1.5 , for minimum fluidization velocity andu = Vρf/ (1 - ε) = (Umf/1.5)×(1030/0.5)ρfWe get u = (0.165/1.5) × (1030/0.5) × 2300 = 975.56 kg/m2 s

Substituting the given values in the formula, we get: Re = (ρVD/μ) = (1030×0.165×0.001)/1 = 0.170C d = [24(1 - ε)/Re] + [(4.5 + 0.4(Re0.5 - 2000)/Re0.5)(1 - ε)2]= [24(1 - 0.5)/0.170] + [(4.5 + 0.4(0.1700.5 - 2000)/0.1700.5)(1 - 0.5)2]= 87.84The hydraulic diameter D of a spherical particle is defined as:

D = 4ε / (1 - ε) × d = 4×0.5 / (1 - 0.5) × 0.001 = 0.004 m By substituting the given values in the formula, we get:ΔP/L = [150(1 - ε)μ2 / D3ε3ρu] + [1.75(1 - ε)2μu / D2ε3ρ]= [150(0.5)(1×103)2 / (0.004)3(0.53) (975.56)] + [1.75(0.52)(1×103)(975.56) / (0.004)2(0.53)]≈ 308 Pas/m

Learn more about Reynolds number:

https://brainly.com/question/31298157

#SPJ11

Give one example of a thermodynamically non-cyclic process

Answers

The combustion reaction in an internal combustion engine is an example of a thermodynamically non-cyclic process.

In thermodynamics, a non-cyclic process is a process in which the initial and final states of the system are different, and the system does not return to its original state. During this process, energy is exchanged between the system and its surroundings. One example of a thermodynamically non-cyclic process is a combustion reaction in an internal combustion engine.The internal combustion engine is an example of an open system. An open system is a system in which both matter and energy can be exchanged between the system and its surroundings.

In this process, the fuel is burned in the engine, and the resulting energy is used to move the vehicle. During this process, the engine takes in air and fuel, and exhaust gases are produced as a result of the combustion reaction. These gases are then expelled from the engine through the exhaust system.The combustion reaction in the internal combustion engine is a non-cyclic process because the system does not return to its original state. The fuel and air are consumed during the reaction, and the resulting gases are expelled from the engine. This process involves the exchange of both matter and energy between the system and its surroundings

for such more questions on  thermodynamically

https://brainly.com/question/13059309

#SPJ8

The TPN require 9.3 grams dibasic potassium phosphate (K2HPO4) in its daily total fluid volume. Calculate how many grams of 15% potassium chloride (KCl) can be used to replace the dibasic potassium phosphate (K2HPO4) in the TPN formulation.

Answers

To calculate the amount of 15% potassium chloride (KCl) needed to replace 9.3 grams of dibasic potassium phosphate (K2HPO4) in the TPN formulation, we need to determine the equivalent amount of potassium ions (K+) provided by each compound.

Based on their molar masses and chemical formulas, the conversion can be made to find the grams of 15% potassium chloride solution required.

The molar mass of dibasic potassium phosphate (K2HPO4) can be calculated as follows:

K = 39.10 g/mol

H = 1.01 g/mol

P = 30.97 g/mol

O = 16.00 g/mol

Molar mass of K2HPO4 = (2 * K) + H + (P + 4 * O)

= (2 * 39.10) + 1.01 + (30.97 + 4 * 16.00)

= 174.18 g/mol

To find the equivalent amount of potassium chloride (KCl), we need to compare the molar masses and the potassium content in each compound. Potassium chloride (KCl) has a molar mass of 74.55 g/mol, and since it contains one potassium ion per molecule, its equivalent weight is 39.10 g/mol.

Now we can set up a proportion to find the grams of 15% potassium chloride solution required:

(9.3 g K2HPO4) / (174.18 g/mol K2HPO4) = (x g KCl) / (39.10 g/mol KCl)

Simplifying the proportion:

x = (9.3 g * 39.10 g/mol KCl) / 174.18 g/mol K2HPO4

x = 2.09 g

Therefore, approximately 2.09 grams of 15% potassium chloride (KCl) solution can be used to replace 9.3 grams of dibasic potassium phosphate (K2HPO4) in the TPN formulation.

To learn more about TPN formulation; -brainly.com/question/29805480

#SPJ11

Write the net ionic equation for the precipitation reaction that occurs when aqueous magnesium chloride is mixed with aqueous sodium phosphate. .

Answers

The net ionic equation for the precipitation reaction between aqueous magnesium chloride (MgCl2) and aqueous sodium phosphate (Na3PO4) can be determined by identifying the precipitate formed. Here's the balanced net ionic equation:

3Mg2+(aq) + 2PO43-(aq) → Mg3(PO4)2(s)

In this reaction, the magnesium ions (Mg2+) from magnesium chloride combine with the phosphate ions (PO43-) from sodium phosphate to form solid magnesium phosphate (Mg3(PO4)2) as the precipitate.

Note that the sodium ions (Na+) and chloride ions (Cl-) are spectator ions and do not participate in the formation of the precipitate. Therefore, they are not included in the net ionic equation.

It's important to note that the state of each compound (whether it is aqueous or solid) should be indicated in the balanced equation.

Learn more about net ionic equation here:

https://brainly.com/question/13887096

#SPJ11

What is the polymer composite material included in Scotsman - World's first custom 3D printed carbon fiber electric scooter?
Explain through pictures which polymers and fibers are included in each part. And explain why you included those polymers and fibers.

Answers

The polymer composite material used in the Scotsman - World's first custom 3D printed carbon fiber electric scooter consists of a combination of polymers and fibers specifically chosen for each part.

The scooter's frame, which requires high strength and rigidity, is typically made using carbon fiber-reinforced polymers (CFRP).

Carbon fibers are known for their excellent strength-to-weight ratio, making them ideal for structural applications. The polymer matrix used in CFRP can vary but is often epoxy due to its good mechanical properties and compatibility with carbon fibers.

For other parts that require different properties, such as flexibility and impact resistance, other polymer composites may be used.

For example, thermoplastic polymers like nylon or polypropylene reinforced with glass fibers can be employed for components such as the scooter's fenders or handle grips.

Glass fibers offer good stiffness and impact resistance, while thermoplastic matrices provide flexibility and ease of processing.

The choice of polymers and fibers in each part of the scooter is based on specific design requirements.

Factors such as mechanical strength, weight reduction, durability, and cost-effectiveness are considered.

By selecting the appropriate combination of polymers and fibers, the scooter can achieve a balance between strength, weight, and functionality.

Learn more about carbon fiber

brainly.com/question/32871626

#SPJ11

a flammable liquid is being transferred from a road tanker to
bulk storage tank in the tank farm
what control measure would reduce the risk of vapour ignition
due to static electricity

Answers

In order to reduce the risk of vapor ignition due to static electricity when transferring a flammable liquid from a road tanker to a bulk storage tank in a tank farm, a grounding wire and bonding clamp are needed.

The grounding wire is used to create a ground connection, which helps to dissipate static electricity charge.

The bonding clamp is used to link the road tanker to the bulk storage tank, preventing any electrical differences between the two, and ensuring that they are at the same electrical potential.

However, to discharge static electricity, it is crucial to use bonding straps and clamps between the two pieces of equipment (road tanker and bulk storage tank) to reduce the risk of vapor ignition.

During the transfer, an electric spark can develop when a static electric discharge builds up on the equipment’s surface due to frictional effects.

Read more about Vapor ignition.

https://brainly.com/question/20713932

#SPJ11

4) You are designing a mandible (jawbone replacement) replacement for the human month. What biomaterials properties are needed for a successful implant?

Answers

A successful mandible replacement implant requires high biocompatibility, adequate mechanical strength, appropriate modulus of elasticity, favorable surface properties, and long-term stability and corrosion resistance.

For a successful mandible (jawbone) replacement implant, several essential biomaterial properties must be considered. First and foremost, the biomaterial should exhibit high biocompatibility to minimize adverse immune responses and promote tissue integration. It should not induce inflammation or cytotoxic effects.

Mechanical strength and stability are crucial factors. The biomaterial should have adequate load-bearing capabilities to withstand the forces exerted during chewing and speaking. It should also possess suitable fatigue resistance to endure repetitive stresses without structural failure.

Additionally, the biomaterial should have a modulus of elasticity similar to that of natural bone to avoid stress shielding and promote load transfer. This ensures that the surrounding bone is subjected to appropriate mechanical stimuli for proper remodeling and prevents implant-related complications.

Surface properties are also vital for successful integration. The biomaterial should have a porous or roughened surface to facilitate osseointegration and promote bone cell attachment and growth.

Finally, long-term stability and corrosion resistance are crucial considerations. The biomaterial should be resistant to degradation in the oral environment, maintaining its structural integrity over time.

By fulfilling these biomaterial requirements, a mandible replacement implant can provide optimal functionality, biocompatibility, and long-term success.

To learn more about biocompatibility

https://brainly.com/question/13870200

#SPJ11

5). Demonstrate an understanding of enthalpy and the heat changes of a chemical change and describe it. You are required to make a presentation of about 10-12 slides. Also include Bibliography in APA format on a separate slide. Please use font Times new Roman 11 or 12. Choose of the topics: • ΔHvap: is the change in enthalpy of vaporization .
• ΔHcom: is the change in enthalpy of combustion .
• ΔHneu: is the change in enthalpy of neutralization .
• ΔHm: is the change in enthalpy of melting (fusion) • ΔHS is the change in enthalpy of solidification Instructions Your presentation should contain the following elements:
• Explain the enthalpy law
• Enthalpy formula • Standard enthalpy of formation
• Enthalpy and heat flow (exothermic/endothermic) • Measurement of enthalpy • Importance of enthalpy

Answers

Enthalpy is a measure of the heat content of a system and represents the total energy of a substance. It changes during chemical reactions and involves heat exchange between the system and its surroundings.

ΔHvap is the enthalpy change of vaporization, ΔHcom is the enthalpy change of combustion, ΔHneu is the enthalpy change of neutralization, ΔHm is the enthalpy change of melting, and ΔHS is the enthalpy change of solidification. Enthalpy is important in chemistry for understanding energy changes in reactions.

The enthalpy formula is ΔH = ΔE + PΔV, and the standard enthalpy of formation is the enthalpy change when a compound forms from its elements in standard states. Enthalpy and heat flow are related, with exothermic reactions releasing heat and endothermic reactions absorbing heat. Enthalpy is measured using calorimetry. It plays a crucial role in determining reaction feasibility, calculating enthalpies, and understanding heat transfer.

Understanding enthalpy is crucial in chemistry as it provides insights into the energy changes that occur during chemical reactions. The enthalpy formula, ΔH = ΔE + PΔV, relates the change in enthalpy to the change in internal energy and the work done by the system. The standard enthalpy of formation is the enthalpy change that occurs when one mole of a compound is formed from its elements in their standard states.

Enthalpy and heat flow are closely related. Exothermic reactions release heat to the surroundings, resulting in a negative ΔH value, while endothermic reactions absorb heat from the surroundings, leading to a positive ΔH value. The measurement of enthalpy can be done using calorimetry, where the heat exchange is quantified by measuring temperature changes. Enthalpy plays a crucial role in various chemical and physical processes, such as determining reaction feasibility, calculating reaction enthalpies, and understanding heat transfer.

- Smith, J. (2019). Introductory Chemistry: An Active Learning Approach. CRC Press.

- Zumdahl, S. S., & DeCoste, D. J. (2016). Chemical Principles. Cengage Learning.

- Tro, N. J. (2019). Chemistry: A Molecular Approach. Pearson Education.

Learn more about Enthalpy

brainly.com/question/3298339

#SPJ11

What properties do compounds with covalent bonds have?

High melting point
Solid only at room temperature
Solid, liquid, or gas at room temperature
Low electrical conductivity
High electrical conductivity
Low melting point

Answers

Answer:

properties of compounds with covalent bonds include:

They are powerful chemical bonds that exist between atoms.

Covalent bonds rarely break on their own after they are formed.

A covalent bond forms when two non-metal atoms share a pair of electrons.

Covalent bonds are strong – much energy is needed to break them.

Compounds with giant covalent structures have high melting and boiling points. The large number of strong covalent bonds involved means that a large amount of energy is required to break them apart.

Compounds with covalent bonds may be solid, liquid or gas at room temperature depending on the number of atoms in the compound. Since most covalent compounds contain only a few atoms and the forces between molecules are weak, most covalent compounds have low melting and boiling points.

Covalent compounds do not conduct electrical currents. This is because they lack free ions. The movement of charge carriers is the reason why water is conductive. In contrast, covalent compounds do not contain ions and are not soluble in water. However, there are several examples of covalent compounds that do conduct electricity. These include graphite, a metal with a single free electron.

hope that was helpful! :D

What is the Reynold's number of benzene at 10°C flowing in a 2x3 in rectangular duct at a velocity of 2.78 m/s? Upload Choose a File"

Answers

The Reynold's number of benzene at 10°C flowing in a 2x3 in the rectangular duct at a velocity of 2.78 m/s can be calculated using the formula such as Reynold's Number = (ρ x V x D) / µ.

Where, ρ = Density of benzene at 10°C = 874 kg/m³, V = Velocity of fluid flow = 2.78 m/s, D = Hydraulic Diameter of rectangular duct = 2 x 3 = 6 µm = 0.006 mµ = Viscosity of benzene at 10°C = 0.61 cP = 0.00061 kg/m-s.

Substitute the given values in Reynold's number formula.

Reynold's Number = (874 x 2.78 x 0.006) / 0.00061= 197,435.7 (approx).

Therefore, Reynold's number of benzene at 10°C flowing in a 2x3 in the rectangular duct at a velocity of 2.78 m/s is approximately 197,435.7.

Read more about Reynold's number.

https://brainly.com/question/31298157

#SPJ11

[1] How are ion-exchange resins used for water softening? List out any three advantages and disadvantages of the ion-exchange process. [5 marks]

Answers

Ion exchange is a highly effective method for water softening that offers many advantages, including cost-effectiveness, versatility, and sustainability

Ion-exchange resins are a type of water-softening media that works by replacing calcium and magnesium ions with sodium ions. These resins are produced from polymers that have a high molecular weight and possess functional groups that have an electrical charge. These groups can exchange ions with an electrolyte solution. The process of using ion-exchange resins for water softening involves the following steps:When hard water is passed through a resin bed, the calcium and magnesium ions in the water are exchanged with the sodium ions in the resin, thereby softening the water.When all the sodium ions in the resin have been replaced with calcium and magnesium ions, the resin needs to be recharged with sodium ions. This is done by passing a brine solution through the resin bed, which results in the sodium ions being exchanged with calcium and magnesium ions, while the latter are washed away.

The resin bed is then rinsed with water to remove any remaining brine solution before the next cycle of softening begins.Advantages of the ion-exchange process:Ion exchange is a highly effective method for removing calcium and magnesium ions from hard water, which is a common problem in many households and industries.Ion exchange resins are relatively low cost and can be easily regenerated using a brine solution. This makes them an economical and sustainable solution for water softening.Ion exchange is a versatile process that can be used for a wide range of water treatment applications.

Disadvantages of the ion-exchange process:The process of ion exchange can result in the production of a significant amount of wastewater, which can be difficult to dispose of.Ion exchange can be a slow process, especially when dealing with high volumes of hard water, which may require the installation of large-scale treatment systems.Ion exchange can result in the production of large quantities of brine solution, which can be difficult to dispose of and can have negative environmental impacts.

Overall, ion exchange is a highly effective method for water softening that offers many advantages, including cost-effectiveness, versatility, and sustainability. However, there are also some disadvantages associated with the process, such as the production of wastewater and brine solution, which need to be taken into account when considering this method for water treatment.

Learn more about Ion exchange

https://brainly.com/question/28145843

#SPJ11

Acetic acid solution of 30% by mass will be extracted with isopropylether in a counter current battery. While solution is fed at 2000 kg/h, pure solvent is sent to the system at 3000 kg/h. Find the number of steps required for the acid concentration in the outlet solution (raffinate stream) to decrease to 2% over the mass excluding the ether (on an isosceles triangle).

Answers

The number of steps required for the acid concentration in the outlet solution to decrease to 2% can be calculated using the concept of the isosceles triangle method.

 

The isosceles triangle method and its application in determining the number of steps for concentration reduction in liquid-liquid extraction processes.

Learn more about  acid concentration

brainly.com/question/29437746

#SPJ11

Approximately 12 steps are required for the acid concentration in the outlet solution to decrease to 2% over the mass excluding the ether.

To determine the number of steps required, we need to consider the principles of a counter current battery extraction process. In this process, the solute (acetic acid) is transferred from the feed solution to the solvent (isopropyl ether) in a series of stages.

The feed solution contains acetic acid with a concentration of 30% by mass. This solution is fed into the battery at a rate of 2000 kg/h.

Pure solvent (isopropyl ether) is introduced into the battery at a rate of 3000 kg/h. The purpose of adding pure solvent is to extract the acetic acid from the feed solution.

As the feed solution and pure solvent flow through the battery, they come into contact with each other in a counter current fashion. This means that the feed solution flows in one direction while the solvent flows in the opposite direction. This allows for efficient extraction of the solute.

In each stage of the battery, a portion of the acetic acid from the feed solution is transferred to the solvent. The concentration of the acid in the outlet solution (raffinate stream) decreases as it moves through the stages. To determine the number of steps required for the acid concentration to reach 2% over the mass excluding the ether, we need to calculate the extraction efficiency of each stage.

The extraction efficiency of a stage can be calculated using the following formula:

Extraction Efficiency = (Ci - Cf) / (Ci - Cr)

Where:

Ci = Initial concentration of acid in the feed solution

Cf = Final concentration of acid in the outlet solution

Cr = Concentration of acid in the raffinate stream

To decrease the acid concentration to 2% over the mass excluding the ether, we set Cf = 0.02 and Cr = 0. This allows us to calculate the extraction efficiency for each stage.

The extraction efficiency is given by:

Extraction Efficiency = (Ci - 0.02) / Ci

Since the extraction efficiency is the same for each stage in a counter current battery, we can express it as a fraction. In this case, the extraction efficiency is (Ci - 0.02) / Ci. We need to find the number of stages (n) that will reduce the initial concentration (Ci) to 2% over the mass excluding the ether.

(0.3 - 0.02) / 0.3 = [tex](1 - 0.02)^n[/tex]

0.28 / 0.3 = [tex]0.98^n[/tex]

n = log(0.28 / 0.3) / log(0.98)

n ≈ 11.742

Since we cannot have a fractional number of stages, we round up to the nearest whole number. Therefore, approximately 12 steps are required for the acid concentration in the outlet solution to decrease to 2% over the mass excluding the ether.

Learn more about Extraction  

brainly.com/question/31866050

#SPJ11

Suppose 160+ He → Ne +X. Identify x. O A proton 10 Ο 2Η O An alpha particle O 3H O A neutrino O A neutron

Answers

The mass number of an alpha particle is 4, so it can be represented as 4He. Therefore, X in the reaction is an alpha particle.

In nuclear reactions, such as the one described in the question, the conservation of atomic numbers and mass numbers must be maintained.

In the given reaction, 160 + He → Ne + X, the atomic numbers and mass numbers on both sides need to balance.

The reactant on the left side is helium-4 (4He), which consists of 2 protons and 2 neutrons. The atomic number of helium is 2, indicating it has 2 protons.

The product on the right side is neon-20 (20Ne), which has an atomic number of 10, meaning it has 10 protons.

To balance the equation, the atomic numbers on both sides need to be equal. Since 2 + X = 10, X must be 8.

The only option that fits this requirement is an alpha particle, which is composed of 2 protons and 2 neutrons. The mass number of an alpha particle is 4, so it can be represented as 4He. Therefore, X in the reaction is an alpha particle.

Learn more about Mass Number at

brainly.com/question/18803094

#SPJ4

At some point during construction the international space station had a mas of 235565 kg. When it orbited earth at an altitude of 400000 m what was the approximate gravitational force on the station due to earths gravity

Answers

Therefore, the approximate gravitational force on the International Space Station due to Earth's gravity when it orbited at an altitude of 400,000 m is approximately 2.44 × 10^6 Newtons.

To calculate the approximate gravitational force on the International Space Station (ISS) due to Earth's gravity, we can use the formula for gravitational force:

F = (G * m1 * m2) / r^2

where F is the gravitational force, G is the gravitational constant (approximately 6.67430 × 10^-11 N m^2/kg^2), m1 and m2 are the masses of the two objects (in this case, the mass of the ISS and the mass of the Earth), and r is the distance between the centers of the two objects.

Given:

Mass of the ISS (m1) = 235,565 kg

Mass of the Earth (m2) = 5.972 × 10^24 kg

Distance between the ISS and the Earth's center (r) = 400,000 m

Plugging these values into the formula, we have:

F = (G * m1 * m2) / r^2

= (6.67430 × 10^-11 N m^2/kg^2) * (235,565 kg) * (5.972 × 10^24 kg) / (400,000 m)^2

Calculating this expression gives us the approximate gravitational force on the ISS due to Earth's gravity.

F ≈ 2.44 × 10^6 N

Therefore, the approximate gravitational force on the International Space Station due to Earth's gravity when it orbited at an altitude of 400,000 m is approximately 2.44 × 10^6 Newtons.

Learn more about gravitational force here

https://brainly.com/question/29190673

#SPJ11

What is the pH of a 0. 040 M Ba(OH)2 solution?

O 1. 40

O 12. 60

O 1. 10

O 12. 90

Answers

Therefore, the pH of a 0.040 M Ba(OH)2 solution is approximately 12.90.

The pH of a solution can be determined using the formula:

pH = -log[H+]

In the case of a solution of Ba(OH)2, it dissociates completely in water to produce hydroxide ions (OH-) and barium ions (Ba2+). Since Ba(OH)2 is a strong base, it completely ionizes in water.

For every 1 mole of Ba(OH)2 that dissociates, it produces 2 moles of OH- ions. Therefore, the concentration of OH- ions in the solution is twice the initial concentration of Ba(OH)2:

[OH-] = 2 × 0.040 M = 0.080 M

To find the pH, we need to calculate the pOH first:

pOH = -log[OH-] = -log(0.080) ≈ 1.10

Finally, we can find the pH using the relation:

pH = 14 - pOH ≈ 14 - 1.10 ≈ 12.90

Therefore, the pH of a 0.040 M Ba(OH)2 solution is approximately 12.90.

Learn more about pH  here

https://brainly.com/question/32445629

#SPJ11

Wastewater with a flowrate of 1,500 m3/ day and bsCOD concentration of 7,000 g/m3 is treated by using anaerobic process at 25∘C and 1 atm. Given that 90% of bsCOD is removed and a net biomass synthesis yield is 0.04 gVSS/g COD, what is the amount of methane produced in m3/ day? (Note: the COD converted to cell tissue is calculated as CODsyn =1.42×Yn×CODutilized, where Yn= net biomass yield, g VSS/ g COD utilized)

Answers

The amount of methane produced in m³/day is 12,705 m³/day.

To calculate the amount of methane produced, we need to determine the total amount of COD utilized and then convert it into cell tissue. Given that 90% of the bsCOD is removed, we can calculate the COD utilized as follows:

COD utilized = 0.9 × bsCOD concentration

= 0.9 × 7,000 g/m³

= 6,300 g/m³

Next, we need to convert the COD utilized into cell tissue using the net biomass synthesis yield (Yn) of 0.04 gVSS/gCOD:

CODsyn = 1.42 × Yn × COD utilized

= 1.42 × 0.04 × 6,300 g/m³

= 356.4 gVSS/m³

Now, to determine the amount of methane produced, we need to convert the VSS (volatile suspended solids) into methane using stoichiometric conversion factors. The stoichiometric ratio for methane production from VSS is approximately 0.35 m³CH₄/kgVSS.

Methane produced = VSS × stoichiometric ratio

= 356.4 g/m³ × (1 kg/1,000 g) × (0.35 m³CH₄/kgVSS)

= 0.12474 m³CH₄/m³

Finally, we can calculate the amount of methane produced in m³/day by multiplying it by the flow rate of the wastewater:

Methane produced (m³/day) = 0.12474 m³CH₄/m³ × 1,500 m³/day

= 187.11 m³/day

Therefore, the amount of methane produced in m³/day is approximately 187.11 m³/day.

Learn more about: Amount of COD

brainly.com/question/5993118

#SPJ11

Calculate the fraction condensed at t=1.0 h of a polymer formed by a stepwise process with k = 1.80 x 10- dm'mol's and monomer concentration at t=0 of 3.00 * 102 mol dm? Select one: 0 1 <> 2.9 2. =61 O 3. p=0.98 O 4. p=0.66

Answers

The degree of polymerization is given byP = (0.998) × (3.00 × 10²)P = 299.4 ≈ 300Therefore, the degree of polymerization is approximately 300.

The initial concentration of monomer is 3.00 × 10² mol dm⁻³ and the rate constant is 1.80 × 10³ dm³ mol⁻¹ s⁻¹.We need to calculate the fraction condensed after 1.0 hour.A = 1 - e^(-kt)where A is the degree of condensation, k is the rate constant, and t is the time. The above equation gives the fraction of monomers that are converted into polymer molecules.

Therefore, we can obtain the degree of polymerization by multiplying the fraction of condensed monomers by the initial number of monomers.The fraction condensed is given byA = 1 - e^(-kt)A = 1 - e^(-(1.80 × 10³) × 3.6 × 10³)s⁻¹A = 1 - e⁻⁶.48=0.998Therefore, the fraction condensed at t = 1.0 hour is 0.998.The degree of polymerization can be obtained by multiplying the fraction of condensed monomers by the initial number of monomers.The degree of polymerization can be calculated by multiplying the fraction condensed by the initial number of monomers. The initial number of monomers is given as 3.00 × 10² mol dm⁻³.

So, the degree of polymerization can be calculated by multiplying the fraction condensed by the initial number of monomers.

Learn more about polymerization:

https://brainly.com/question/27354910

#SPJ11

How many liters of oxygen will be required to react with .56 liters of sulfur dioxide?

Answers

Oxygen of 0.28 liters will be required to react with 0.56 liters of sulfur dioxide.

To determine the number of liters of oxygen required to react with sulfur dioxide, we need to examine the balanced chemical equation for the reaction between sulfur dioxide ([tex]SO_2[/tex]) and oxygen ([tex]O_2[/tex]).

The balanced equation is:

2 [tex]SO_2[/tex]+ O2 → 2 [tex]SO_3[/tex]

From the equation, we can see that 2 moles of sulfur dioxide react with 1 mole of oxygen to produce 2 moles of sulfur trioxide.

We can use the concept of stoichiometry to calculate the volume of oxygen required. Since the ratio between the volumes of gases in a reaction is the same as the ratio between their coefficients in the balanced equation, we can set up a proportion to solve for the volume of oxygen.

The given volume of sulfur dioxide is 0.56 liters, and we need to find the volume of oxygen. Using the proportion:

(0.56 L [tex]SO_2[/tex]) / (2 L [tex]SO_2[/tex]) = (x L [tex]O_2[/tex]) / (1 L [tex]O_2[/tex]2)

Simplifying the proportion, we have:

0.56 L [tex]SO_2[/tex]= 2x L [tex]O_2[/tex]

Dividing both sides by 2:

0.56 L [tex]SO_2[/tex]/ 2 = x L [tex]O_2[/tex]

x = 0.28 L [tex]O_2[/tex]

Therefore, 0.28 liters of oxygen will be required to react with 0.56 liters of sulfur dioxide.

It's important to note that this calculation assumes that the gases are at the same temperature and pressure and that the reaction goes to completion. Additionally, the volumes of gases are typically expressed in terms of molar volumes at standard temperature and pressure (STP), which is 22.4 liters/mol.

For more such questions on oxygen visit:

https://brainly.com/question/2111051

#SPJ8

Calorimeter initially contains 225.0 ml of water at 18.6oc. when 0.722 g li is added to the water, the temperature of the resulting solution rises to a maximum of 53.4oc. the reaction that occurs is:________

Answers

The reaction that occurs when lithium (Li) is added to water is a single displacement reaction.

The balanced chemical equation for this reaction is:

2Li + 2H₂O -> 2LiOH + H₂

In this reaction, lithium (Li) displaces hydrogen (H) from water, and forms lithium hydroxide (LiOH) by releasing hydrogen gas (H₂).

From the given information, the calorimeter initially contains 225.0 ml of water at 18.6°C. When 0.722 g of lithium (Li) is added to the water, the temperature of the resulting solution rises to a maximum of 53.4°C.

The reaction between lithium and water is highly exothermic, means it releases a significant amount of heat. The rise in temperature observed in the calorimeter is due to the heat released during the reaction between lithium and water.

Hence, the reaction that occurs when 0.722 g of lithium is added to the water in the calorimeter is the single displacement reaction between lithium and water, resulting in the formation of lithium hydroxide (LiOH) and the release of hydrogen gas (H₂).

To know more about displacement reaction,

https://brainly.com/question/29794138

#SPJ4

What is the composition of the liquid phase at 1300ºC for an alloy with a composition of 50% Ni.
What is the composition of the solid phase at 1300ºC for an alloy with a composition of 50% Ni.
What is the fraction of solid phase at 1300ºC for an alloy with a composition of 50% Ni
What is the composition of the solid phase at 1200ºC for an alloy with a composition of 87% Ni.
Upon cooling, at what temperature would the last liquid solidify for an alloy of composition 38%Ni?

Answers

a) The composition of the liquid phase at 1300ºC for an alloy with a composition of 50% Ni is determined by the phase diagram of the alloy.

b) The composition of the solid phase at 1300ºC for an alloy with a composition of 50% Ni is also determined by the phase diagram of the alloy.

c) The fraction of solid phase at 1300ºC for an alloy with a composition of 50% Ni can be calculated using the lever rule equation.

d) The composition of the solid phase at 1200ºC for an alloy with a composition of 87% Ni is determined by the phase diagram of the alloy.

e) The temperature at which the last liquid solidifies for an alloy of composition 38% Ni can be determined by examining the phase diagram of the alloy.

a) The composition of the liquid phase at 1300ºC for an alloy with 50% Ni can be found by examining the phase diagram of the alloy. The phase diagram provides information about the temperature and composition ranges at which different phases exist.

By locating the point corresponding to 1300ºC on the diagram, we can determine the composition of the liquid phase.

b) Similarly, the composition of the solid phase at 1300ºC for an alloy with 50% Ni can be determined from the phase diagram. The diagram the last liquid phase transitions to a solid phase for a given composition.will indicate the composition range of the solid phase at this temperature.

c) The fraction of the solid phase at 1300ºC for the 50% Ni alloy can be calculated using the lever rule equation. The lever rule takes into account the compositions of the liquid and solid phases and provides the fraction of the solid phase present at a given temperature.

d) For the alloy with 87% Ni at 1200ºC, the composition of the solid phase can be determined by referring to the phase diagram. The diagram will indicate the composition range of the solid phase at this temperature.

e) The temperature at which the last liquid solidifies for the 38% Ni alloy can be determined by examining the phase diagram. The phase diagram will show the liquidus line, which represents the temperature at which

In summary, the composition of the liquid and solid phases, as well as the fraction of solid phase, can be determined by analyzing the phase diagram of the alloy. The phase diagram provides valuable information about the phase behavior of the alloy at different compositions and temperatures.

Learn more about composition

brainly.com/question/13808296

#SPJ11

In the same site there is a soil with IHD of 0.15 in which there is a banana plantation with an area of ​​2 ha. Determine the irrigation application frequency (days) and how much irrigation water to apply in each irrigation. Express the amount of irrigation water in terms of depth of water (lw, in cm) and volume (m3). The farmer's water well pump applies water at a rate of 1,000 gallons/min. For how many hours should the pump be left on in each irrigation period?

Answers

Thus, the irrigation pump should be left on for 9 hours in each irrigation period.

The irrigation application frequency and irrigation water to apply in each irrigation can be determined as follows:

The area of ​​banana plantation is 2 haIHD (infiltration holding capacity) of soil is 0.15 Irrigation water is applied at a rate of 1,000 gallons/min

Converting area from hectares to m²:

              1 hectare = 10,000 m²

Area of banana plantation = 2 ha = 2 × 10,000 m² = 20,000 m²

Let lw be the amount of irrigation water applied. Then the volume of water applied would be (20,000 m²) × lw = 20,000lw m³.

Amount of irrigation water can be expressed in terms of depth of water using the formula,lw = V / A

where V = Volume of irrigation water applied

A = Area of plantation lw = (20,000 m³) / (20,000 m²)

lw = 1 m = 100 cm

Irrigation application frequency (days) = IHD / IDF

Where IHD is infiltration holding capacity and IDF is infiltration depletion factor.

From the given question, IHD = 0.15To determine the value of IDF, we will need to use the texture triangle.The texture of soil is not given in the question, thus it is assumed to be a medium texture soil which has IDF = 0.3. Substituting the values, IDF = 0.3IHD = 0.15

Irrigation application frequency (days) = 0.15 / 0.3

Irrigation application frequency (days) = 0.5 days or 12 hours (rounded to nearest hour)In each irrigation, the amount of irrigation water is 1 m = 100 cm.

Volume of irrigation water will be 20,000 × 100 = 2,000,000 cm³ or 2000 m³

The farmer's water well pump applies water at a rate of 1,000 gallons/min.

To determine for how many hours should the pump be left on in each irrigation period, we need to convert volume of irrigation water from m³ to gallons.

1 m³ = 264.172 gallons

Volume of irrigation water in gallons = 2000 × 264.172 = 528,344 gallons

Time required to apply 528,344 gallons of irrigation water at a rate of 1,000 gallons/min is given by;

Time = Volume of irrigation water / Rate of application

     Time = 528,344 / 1000

                    = 528.344 minutes or 9 hours (rounded to nearest hour)

Learn more about Irrigation:

brainly.com/question/30503506

#SPJ11

Consider the total amount of recoverable oil in the Arctic National Wildlife Refuge (ANWR). If electricity was used to fuel the same amount of driving as the ANWR oil could fuel, what would be the difference in CO2 emissions?

Answers

Consider the total amount of recoverable oil in the Arctic National Wildlife Refuge (ANWR), if electricity was used to fuel the same amount of driving as the ANWR oil could fuel, the difference in CO₂ emissions would be significant.

The Arctic National Wildlife Refuge (ANWR) oil reserve is estimated to have a total recoverable amount of 10.4 billion barrels. The environmental benefits of using electricity over oil for fuel are significant. A significant amount of the electricity used to power electric vehicles is generated from renewable sources such as solar, wind, and hydro power. If these sources are used, the CO₂ emissions would be reduced to near zero.

In contrast, the oil burned to power gasoline cars releases carbon dioxide, a potent greenhouse gas, into the atmosphere. It is estimated that a single barrel of oil releases about 430 pounds of CO₂  into the atmosphere. If all 10.4 billion barrels of ANWR oil were burned to fuel cars, this would release over 4.4 trillion pounds of CO₂  into the atmosphere, significantly contributing to climate change. So therefore if electricity was used to fuel the same amount of driving as the ANWR oil could fuel, the difference in CO₂  emissions would be significant.

Learn more about greenhouse gas at:

https://brainly.com/question/30240889

#SPJ11

the quantitative analysis of each type of acid sites is possible on the basis of extinction coefficients of the bands at 1450 and 1540 cm–1. under the conditions where the amount of adsorbed pyridine is constant and no hydrogen-bonded pyridine exists, introduction of water converts lewis acid sites to brønsted acid sites. increase in the integrated absorbance for the band at 1540 cm–1 and decrease in the integrated absorbance for the band at 1450 cm–1 are observed. the changes in the integrated intensity relate with the absorptivity* (extinction coefficient) for the two bands as expressed by the following equat

Answers

The changes in the integrated intensity of the bands at 1450 and 1540 cm–1 are related to the absorptivity (extinction coefficient) for the two bands.

How are the changes in integrated intensity related to the absorptivity (extinction coefficient) of the bands at 1450 and 1540 cm–1?

When water is introduced and the amount of adsorbed pyridine is constant with no hydrogen-bonded pyridine, Lewis acid sites are converted to Brønsted acid sites. This conversion results in observable changes in the integrated absorbance for the bands at 1450 cm–1 and 1540 cm–1. Specifically, the integrated absorbance for the band at 1540 cm–1 increases, while the integrated absorbance for the band at 1450 cm–1 decreases. These changes in integrated intensity are related to the absorptivity (extinction coefficient) for the two bands, as expressed by the following equation:

Change in Integrated Intensity = Absorptivity × Change in Concentration

Here, the change in concentration refers to the conversion of Lewis acid sites to Brønsted acid sites. By analyzing the quantitative changes in the integrated absorbance, one can determine the relative amounts of each type of acid site present.

Learn more about: integrated intensity

brainly.com/question/33289867

#SPJ11

Regarding the heating curve, classify these statements as true or false. Drag each statement to the appropriate bin.

Answers

A heating curve is a graphical representation that shows the relationship between the temperature of a substance and the amount of heat it absorbs over time as it is heated.

Segment AB: This represents the heating of a solid substance at a constant rate. During this segment, the temperature of the substance gradually increases as heat is applied. The substance remains in the solid phase.

Segment BC: This is the melting segment. The temperature remains constant during this phase change, even though heat is still being added. The energy supplied is used to break the intermolecular bonds holding the solid together, causing it to transition from a solid to a liquid state.

Segment CD: This represents the heating of the liquid substance. The temperature of the substance rises as heat is added, but the substance remains in the liquid phase.

To know more about heating here

https://brainly.com/question/934320

#SPJ4

Isopropyl alcohol is mixed with water to produce a 39.0% (v/v) alcohol solution. How many milliliters of each component are present in 795 mL of this solution

Answers

In a 39.0% (v/v) alcohol solution, there are 39.0 mL of alcohol for every 100 mL of solution. To find out how many milliliters of each component are present in 795 mL of the solution, we need to calculate the volume of isopropyl alcohol and water separately.



Step 1: Calculate the volume of alcohol in the solution.
In a 39.0% (v/v) alcohol solution, 39.0 mL of alcohol is present for every 100 mL of solution.
To find the volume of alcohol in 795 mL of the solution, we can set up a proportion:
(39.0 mL alcohol / 100 mL solution) = (x mL alcohol / 795 mL solution)
Cross-multiplying and solving for x, we get:
x = (39.0 mL alcohol / 100 mL solution) * 795 mL solution
x ≈ 309.45 mL alcohol

Step 2: Calculate the volume of water in the solution.
The total volume of the solution is 795 mL, and we have already calculated the volume of alcohol to be 309.45 mL.
To find the volume of water, we can subtract the volume of alcohol from the total volume of the solution:
Volume of water = Total volume of solution - Volume of alcohol
Volume of water = 795 mL - 309.45 mL
Volume of water ≈ 485.55 mL

Therefore, in 795 mL of the 39.0% (v/v) alcohol solution, there are approximately 309.45 mL of isopropyl alcohol and 485.55 mL of water.

learn more about isopropyl alcohol

https://brainly.com/question/29138821

#SPJ11

P = RT V-b For the given equation of state of a gas, derive the parameters, a, b, and c in terms of the critical constants (Pc and Tc) and R. a с TV(V-b) + 7²V³

Answers

In the given equation of state P = RT/(V-b) + a/V^2, the parameters are derived as follows: a = 0, b = Rb (where R is the gas constant and b is related to the critical constants), and c = 0. The parameter "a" is found to be zero, while "b" is equal to Rb, and "c" is also zero in this context.

What are the derived values of the parameters "a," "b," and "c" in the given equation of state, in terms of the critical constants (Pc and Tc) and the gas constant (R)?

To derive the parameters a, b, and c in terms of the critical constants (Pc and Tc) and the gas constant (R) for the given equation of state P = RT/(V-b) + a/V^2, we can start by comparing it with the general form of the Van der Waals equation:

[P + a/V^2] * [V-b] = RT

By expanding and rearranging, we get:

PV - Pb + a/V - ab/V^2 = RT

Comparing the coefficients of corresponding terms, we have:

Coefficient of PV: 1 = R

Coefficient of -Pb: 0 = -Rb

Coefficient of a/V: 0 = a

Coefficient of -ab/V^2: 0 = -ab

From the above equations, we can deduce the values of a, b, and c:

a = 0

b = Rb

c = -ab

Therefore, in terms of the critical constants (Pc and Tc) and the gas constant (R):

a = 0

b = Rb

c = 0

It's important to note that the value of c is determined as 0, as it is not explicitly mentioned in the given equation.

Learn more about parameters

brainly.com/question/29911057

#SPJ11

Other Questions
A firm's average fixed cost decreases at first and then inereases. True False QUESTION 48 An increase in labor costs will (increase, decrease, have no impaet) on the average and marginal cost eurves of a firm. Heat is produced within a cylindrical cable with a radius of 0.60 m and a length of 3 m with a heat conductivity of 85 W/m K. The amount of heat produced per unit volume and per unit time is given as Q (W/m3.s) = 4x10-3 T0.5 where T is the temperature (K). The surface temperature of the sphere is 120 C. a) Construct an energy balance within the cylindrical cable. b) Solve the energy balance with MATLAB to obtain the temperature profile within the cylindrical cable by appropriate assumptions If the charge is -33_ C, the speed is 1500_m/s, the strength of the magnetic field is 1_T, and the angle is 150, then find the force (magnitude and direction) on the charge. 2. magnitude A. 0.01548_N D. 0.02896_N B. 0.02475 N E. 0.03607 N C. 0.02817_N F. 0.02976_N 3. direction A. Left B. Into the paper C. Right D. Out of the paper Suppose the government increases expenditures by $120 billion and the marginal propensity to consume is 0.90. By how much will equilibrium GDP change? The change in equilibrium GDP is: $ billion. (Round your solution to one decimal place.) Your down payment for a real estate transaction is $18,000representing 15% of the purchase price. Calculate the purchaseamount of the property. The market price of a semi-annual pay bond is $970.22. It has 11.00 years to maturity and a coupon rate of 8.00%. Par value is $1,000. What is the effective annual yield? a. 8.5977% b. 8.9891% c. 9.1827% d. 9.3251% write half page for this Question. Directions: Answer questions min 1/2 page per question. Case Study 1 I wrote a paper for my English class and my professor thought it was excellent. He asked me to write another paper to submit for a writing competition. The winner of the competition will have his or her work published nationally. Oh, my goodness. I am terrified! I am not that good of a writer. I just got lucky on that last paper. There is no way that I am going to be able to write anything even close to being competitive with all the other entries. I am going to utterly disappoint my professorand probably end up with a poor grade in this class as a result. I wish he had never asked me to do this. Based on your knowledge about the ABCD model, recognize and describe the "Beliefs" and "Consequences" factor of this event and how can you disputate it? Enter only the last answer c) into moodle A solid sphere of mass M and radius R rolls without slipping to the right with a linear speed of v a) Find a simplified algebraic expression using symbols only for the total kinetic energy Kror of the ball in terms of M and R only. b) If M = 7.5 kg, R = 108 cm and v=4.5 m/s find the moment of inertia of the ball c) Plug in the numbers from part b) into your formula from part a) to get the value of the total kinetic energy. Sunset Corporation Currently Has An EPS Of $4.25, And The Benchmark PE For The Company Is 19. Earnings Are Expected To Grow At 5 Percent Per Year. A. What Is Your Estimate Of The Current Stock Price? Note: Do Not Round Intermediate Calculations And Round Your Answer To 2 Decimal Places, E.G., 32.16. B. What Is The Target Stock Price In One Year? Bonecos Inc currently has copyright over a beloved cartoon show. This means that Bonecos Inc is the only company that can make toys and clothes with characters from this cartoon.Next year, the copyright is set to expire, which will allow other firms to make toys and clothes with the characters.What will be the effect of the end of Bonecos Incs monopoly over the following variables (be sure to provide a one sentence justification for each of them):Equilibrium quantityEquilibrium priceConsumer surplusMarkupFirm profits Let A be a 56 real matrix such that rank(A)=5. Which of the following statements is true? A. The dimension of the null space of A is equal to 0 . B. The rows of A are linearly independent. C. The columns of A are linearly independent. D. The rank of A^T is equal to 6 . E. The dimension of the row space of A is 1 . The lengths of the adjacent sides of a parallelogram 54 cm and 78cm . The larger angle measures 110 . What is the length of the longer diagonal? Round your answer to the nearest centimeter. 1.1 Calculate the expectation value of p in a stationary state of the hydrogen atom (Write p2 in terms of the Hamiltonian and the potential V). Write a short 400 words analysis for this1) Of all the characters in the short story The Things They Carried, who could you trust the most in war? Why do you believe this is so? Use elements from the story to support your perspective. Summarize the topic of Epistemology . Hana conducted a study and found that being neurotic (i.e., anxious) was related to traveling. Her correlation coefficient was r = -.89. This effect size represents? a) a strong relationship b) a weak relationship c) no relationship d) not enough information to determine How is it conclude that the result of scatter plotshow dots with along the model completely exist along theregression line? A company just paid a dividend of $1.20 per share. The consensus forecast of financial analysts is a dividend of $1.70 per share next year and $2.40 per share two years from now. Thereafter, you expect the dividend to grow 6% per year indefinitely into the future. If the required rate of return is 14% per year, what would be a fair price for this stock today? (Answer to the nearest penny.) Which of the following statements is true about Aristotles Virtue Ethics?No partial credit will be given for this question.a.It is encouraged to emulate a moral exemplar which is someone who already possess virtues.b.Virtues can be acquired overnight.c.It is possible to be wise without having a good character.d.All of the abovee.a but not b & cf.b & c onlyg.None of the above A company owns and operates an electric sign that uses 300 individual lamps to display messages. The sign currently uses bulbs that cost $2.50 each and last for an average of 2 years. These lamps draw 60 watts of power each. The company is considering switching to LED bulbs that have an estimated life span of 10 years and cost $30 each. The LED bulbs only draw 7.5 watts of power for the same light levels. Replacing the lamps requires special equipment and labor that will cost $1,200 dollars. This work is performed every two years for the current lamps and at the end of 10 years for the LED lamp. The sign operates 2500 hours each year. Electricity costs $0.075/kWh. The company uses 7% as its rate of return. Assume that the maintenance protocol replaces all 300 lamps when the average lifetime is reached. Consider costs to be negative numbers and benefits as positive a.) Compute the total annual cost of operating the sign using the 300, 60 watt lamps. DO NOT include dollar signs the answer. b.) Compute the total annual cost of operating the sign using the 300, 7.5 watt LED lamps. DO NOT include a dollar sign in the answer. (Note: this is a cost and should be a negative value c.) Determine the present worth of benefits by subtracting the expenses of owning and operating the LED bulbs from the conventional bulbs. (Hint: comparing the alternatives requires equal life spans. Use least common multiple of lives) d.) Compute the benefit-cost ratio