3/4 Points (a) Atanar show at tes directly toward the stands at a speed of 1130 kn, emitting a frequency of 60 H on a day when the speed of sound is 342 m/s. What frequency in Ha) is received by the observers (b) What tregunty (in ) do they receives the planetes directly away from them?

Answers

Answer 1

The frequency received by the observers is 55.78 Hz. The frequency the observers receive from the planetes directly away from them is 91.43 Hz.

(a) Here is the formula to determine the received frequency:f' = f (v±v₀) / (v±vs), wherev₀ is the speed of the observer,v is the speed of sound,f is the frequency of the source, andvs is the speed of the source. Here is the solution to part (a): The speed of sound is given as 342 m/s. Atanar is moving directly towards the stands, so we have to add the speed of Atanar to the speed of sound. The speed of Atanar is 1130 km/h, which is 313.8889 m/s when converted to m/s.v = 342 m/s + 313.8889 m/s = 655.8889 m/sUsing the formula,f' = f (v±v₀) / (v±vs),we get:f' = 60 Hz (655.8889 m/s) / (655.8889 m/s + 0 m/s)f' = 55.78 HzSo, the frequency received by the observers is 55.78 Hz.

(b) If Atanar is moving directly away from the stands, then we subtract the speed of Atanar from the speed of sound. Using the formula:f' = f (v±v₀) / (v±vs),we get:f' = 60 Hz (655.8889 m/s) / (655.8889 m/s - 0 m/s)f' = 91.43 Hz.Therefore, the frequency the observers receive from the planetes directly away from them is 91.43 Hz.

Learn more on frequency here:

brainly.com/question/33270290

#SPJ11


Related Questions

A uniform meter stick of mass M has an empty paint can of mass m hanging from one end. The meter stick and the can balance at a point of 23.0 cm from the end of the stick where the can is attached. When the balanced stick-can system is suspended from a scale, the reading on the scale is 2.64 N.(1) Find the mass of the meter stick. M = (?) kg
(2) Find the mass of the paint can. m = (?) kg

Answers

The mass of the meter stick M is given as 1.00 kg. The mass of the paint can m is 0.174 kg.

(1) Finding the mass of the meter stick:Meter stick balances at a point that is 23.0 cm away from the end of the stick where the can is attached.

Let’s call the mass of the meter stick as M, its center of gravity is located at the center of the stick. Let’s call its length L, and it balances at a distance of x from the end where the can is attached.

That means the distance from the center of the stick to the end of the stick opposite to the can is L - x.

So we can say that:

ML/2 = m(L - x)x,

ML/(2M + m) = (L/2)(M/(M + m/2)),

Putting all the values: x = (1.0 * 0.23) / (2.0 + 0.0/2),

(1.0 * 0.23) / (2.0 + 0.0/2) = 0.0575m (57.5 cm)

The mass of the meter stick M is given as 1.00 kg.

(2) Finding the mass of the paint can:The balanced stick-can system is suspended from a scale, and the reading on the scale is 2.64 N.So, the weight of the meter stick is equal to the weight of the can:mg = (M + m)g …….(1),

where g is the acceleration due to gravity, which is 9.81 m/s2.

Substituting values:

2.64 = (1.0 + m/1000) * 9.81m,

(1.0 + m/1000) * 9.81m = 174.14 g.

Therefore, the mass of the paint can m is 0.174 kg (approx).

The  answer are:Meter stick: M = 1.00 kg,Paint can: m = 0.174 kg.

To know more about acceleration due to gravity visit:

brainly.com/question/13860566

#SPJ11

4. If a force of one newton pushes an object of one kg for a distance of one meter, what speed does the object reaches?

Answers

"The object reaches a speed of approximately 0.707 meters per second." Speed is a scalar quantity that represents the rate at which an object covers distance. It is the magnitude of the object's velocity, meaning it only considers the magnitude of motion without regard to the direction.

Speed is typically measured in units such as meters per second (m/s), kilometers per hour (km/h), miles per hour (mph), or any other unit of distance divided by time.

To determine the speed the object reaches, we can use the equation for calculating speed:

Speed = Distance / Time

In this case, we know the force applied (1 Newton), the mass of the object (1 kg), and the distance traveled (1 meter). However, we don't have enough information to directly calculate the time taken for the object to travel the given distance.

To calculate the time, we can use Newton's second law of motion, which states that the force applied to an object is equal to the mass of the object multiplied by its acceleration:

Force = Mass * Acceleration

Rearranging the equation, we have:

Acceleration = Force / Mass

In this case, the acceleration is the rate at which the object's speed changes. Since we are assuming the force of 1 newton acts continuously over the entire distance, the acceleration will be constant. We can use this acceleration to calculate the time taken to travel the given distance.

Now, using the equation for acceleration, we have:

Acceleration = Force / Mass

Acceleration = 1 newton / 1 kg

Acceleration = 1 m/s²

With the acceleration known, we can find the time using the following equation of motion:

Distance = (1/2) * Acceleration * Time²

Substituting the known values, we have:

1 meter = (1/2) * (1 m/s²) * Time²

Simplifying the equation, we get:

1 = (1/2) * Time²

Multiplying both sides by 2, we have:

2 = Time²

Taking the square root of both sides, we get:

Time = √2 seconds

Now that we have the time, we can substitute it back into the equation for speed:

Speed = Distance / Time

Speed = 1 meter / (√2 seconds)

Speed ≈ 0.707 meters per second

Therefore, the object reaches a speed of approximately 0.707 meters per second.

To know more about the motion of an object visit:

https://brainly.com/question/26083484

#SPJ11

15 16 22 QUESTION 8 decibel-part During takeoff, the sound intensity level of a jet engine is 110 dB at a distance of 40 m What is the Intensity of sound in units of Wim 27 QUESTION 9 decibel-part what is the power of the ſet entine mentioned in part A in units of Watts? QUESTION 10 decibel-part For the ſet mention in part A what is the sound intensity at a distance of 500 m from tho jet? Enter your answer in scientific notation with 2 decimals Scientific notation supports the following forms 45.60-6 or 456E-6 (using capital or lowercase E) The field doesn't support units (eg 25 cm 4504 KHZ aren't supported). • Constants such as "pl" and "e" (Euler constant) aren't supported, thus, numbers such as 67e or pl will be invalid QUESTION 11 Decibel Part What is the sound intensity level (in units of dB) of the jet engine mentioned in part A at this new distance of 500m? Enter your answer in scientific notati with 4 significant figures (3 decimals) do not use any intermediate rounded values in your calculation)

Answers

To solve these questions, we need to use the formulas and relationships related to sound intensity and sound level.

Question 8: The intensity of sound is 0.1 W/m².

Question 9: The power of the jet engine is approximately 201.06 W.

Question 10: The sound intensity at a distance of 500 m from the jet is approximately 0.0016 W/m².

Question 11: The sound intensity level of the jet engine at the new distance of 500 m is approximately 86.02 dB.

Question 8:

To find the intensity of sound in units of W/m², we need to convert the sound intensity level (given in dB) to intensity using the formula:

Intensity (W/m²) = 10^((dB - 120) / 10)

Substituting the given values, we get:

Intensity = 10^((110 - 120) / 10) = 10^(-1) = 0.1 W/m²

Question 9:

To find the power of the jet engine in units of Watts, we need to use the formula:

Power (W) = 4πr²I

Where r is the distance from the source and I is the sound intensity. In this case, r = 40 m and I = 0.1 W/m².

Substituting the values, we get:

Power = 4π(40²)(0.1) = 64π W ≈ 201.06 W

Question 10:

To find the sound intensity at a distance of 500 m from the jet, we can use the inverse square law for sound propagation:

I2 = I1 * (r1 / r2)²

Where I1 is the initial sound intensity at a given distance r1, and I2 is the sound intensity at the new distance r2.

In this case, I1 = 0.1 W/m², r1 = 40 m, and r2 = 500 m.

Substituting the values, we get:

I2 = 0.1 * (40 / 500)² ≈ 0.0016 W/m²

Question 11:

To find the sound intensity level at the new distance of 500 m, we can use the formula:

dB2 = dB1 + 10 log10(I2 / I1)

Where dB1 is the initial sound intensity level and I1 is the initial sound intensity, and dB2 is the sound intensity level at the new distance and I2 is the sound intensity at the new distance.

In this case, dB1 = 110 dB and I2 = 0.0016 W/m² (from the previous question).

Substituting the values, we get:

dB2 = 110 + 10 log10(0.0016 / 0.1) ≈ 86.02 dB

Learn more about sound intensity:

https://brainly.com/question/14349601

#SPJ11

A 4 m length of copper wire at 20 ∘ C has a 2.8 m long section with diameter 2.2 mm and a 1.2 m long section with diameter 0.6 mm. There is a current of 2.3 mA in the 2.2 mm diameter section. Resistivity of copper at 20 ∘ C is given to be: rho=1.72×10 −7 Ωm. (a) What is the current (in mA ) in the 0.6 mm diameter section? (b) What is the magnitude of the electric field E (in V/m ) in the 2.2 mm diameter section? (c) What is the potential difference (in V) between the ends of the 4 m length of wire?

Answers

(a) The current in the 0.6 mm diameter section is also 2.3 mA.

(b) The magnitude of the electric field in the 2.2 mm diameter section is approximately 13.45 V/m.

(c) The potential difference between the ends of the 4 m length of wire is approximately 0.449 V.

(a) To find the current in the 0.6 mm diameter section, we can use the principle of conservation of current. Since the total current entering the wire remains constant, the current in the 0.6 mm diameter section is also 2.3 mA.

(b) Magnitude of the electric field in the 2.2 mm diameter section:

Cross-sectional area of the 2.2 mm diameter section:

A₁ = π * (0.0011 m)²

Resistance of the 2.2 mm diameter section:

R₁ = (ρ * L₁) / A₁

= (1.72×10⁻⁷ Ωm * 2.8 m) / (π * (0.0011 m)²)

≈ 0.171 Ω

Electric field in the 2.2 mm diameter section:

E = I / R₁

= (2.3 mA) / 0.171 Ω

≈ 13.45 V/m

The magnitude of the electric field in the 2.2 mm diameter section is approximately 13.45 V/m.

(c) Potential difference between the ends of the 4 m length of wire:

Cross-sectional area of the 0.6 mm diameter section:

A₂ = π * (0.0003 m)²

Length of the 0.6 mm diameter section:

L₂ = 1.2 m

Total resistance of the wire:

R_total = R₁ + R₂

= (ρ * L₁) / A₁ + (ρ * L₂) / A₂

= (1.72×10⁻⁷ Ωm * 2.8 m) / (π * (0.0011 m)²) + (1.72×10⁻⁷ Ωm * 1.2 m) / (π * (0.0003 m)²)

≈ 0.196 Ω

Potential difference between the ends of the wire:

V = I * R_total

= (2.3 mA) * 0.196 Ω

≈ 0.449 V

The potential difference between the ends of the 4 m length of wire is approximately 0.449 V.

Learn more about Potential difference from the link given below.

https://brainly.com/question/23716417

#SPJ4

A woman sits in a wheelchair and tried to roll over a curb that is 6 cm high. What force does she need to push at the top of the wheel to lift her and her chair? The woman in the chair has a mass of 80 kg, and the wheel has a radius of 27
cm.

Answers

The force is required to lift the woman and the chair over the curb when she pushes at the top of the wheel is 784.8 N

To find the force the woman needs to push at the top of the wheel to lift herself and her chair, the following formula can be used: force = mass x accelerationWhere acceleration is given by: acceleration = (change in velocity) / (time taken)Here, the woman is initially at rest. The velocity of the woman and the chair needs to be increased to go over the curb. Therefore, the acceleration required will be the acceleration due to gravity, which is 9.81 m/s² at the surface of the earth.The woman's mass is given as 80 kg.The radius of the wheel is given as 27 cm, which is equal to 0.27 m.To lift the woman and her chair, the wheel will have to move through a vertical distance equal to the height of the curb, which is 6 cm. This vertical distance is equal to the displacement of the woman and the chair.Force required = mass x accelerationForce required = 80 x 9.81 = 784.8 NThis force is required to lift the woman and the chair over the curb when she pushes at the top of the wheel.

Learn more about force:

https://brainly.com/question/30507236

#SPJ11

A police car is moving to the right at 27 m/s, while a speeder is coming up from behind at a speed 36 m/s, both speeds being with respect to the ground. The police officer points a radar gun at the oncoming speeder. Assume that the electromagnetic wave emitted by the gun has a frequency of 7.5×109 Hz. Find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.

Answers

In this scenario, a police car is moving to the right at 27 m/s, and a speeder is approaching from behind at 36 m/s.

The police officer points a radar gun at the speeder, emitting an electromagnetic wave with a frequency of 7.5×10^9 Hz. The task is to find the difference between the frequency of the wave that returns to the police car after reflecting from the speeder's car and the frequency emitted by the police car.

The frequency of the wave that returns to the police car after reflecting from the speeder's car is affected by the relative motion of the two vehicles. This phenomenon is known as the Doppler effect.

In this case, since the police car and the speeder are moving relative to each other, the frequency observed by the police car will be shifted. The Doppler effect formula for frequency is given by f' = (v + vr) / (v + vs) * f, where f' is the observed frequency, v is the speed of the wave in the medium (assumed to be the same for both the emitted and reflected waves), vr is the velocity of the radar gun wave relative to the speeder's car, vs is the velocity of the radar gun wave relative to the police car, and f is the emitted frequency.

In this scenario, the difference in frequency can be calculated as the observed frequency minus the emitted frequency: Δf = f' - f. By substituting the given values and evaluating the expression, the difference in frequency can be determined.

Learn more about electromagnetic here: brainly.com/question/31038220

#SPJ11

Question 8 In the double slit experiment with monochromatic light, Question 21
a) wider fringes will be formed by decreasing the width of the slits. decreasing the distance between the slits. increasing the width of the slits. increasing the distance between the slits.

Answers

The correct answer is: wider fringes will be formed by increasing the distance between the slits (option d).

In the double-slit experiment with monochromatic light, the interference pattern is determined by the relative sizes and spacing of the slits. The interference pattern consists of alternating bright and dark fringes.

d) By increasing the distance between the slits:

Increasing the distance between the slits will result in wider fringes in the interference pattern. This is because a larger slit separation allows for a larger range of path length differences, leading to constructive and destructive interference occurring over a broader area.

Therefore, the correct answer is: wider fringes will be formed by increasing the distance between the slits (option d).

Learn more about double slit experiment on the given link:

https://brainly.com/question/28108126

#SPJ11

The displacement of a standing wave on string is given by D = 2.4 * sin(0.6x) * cos(42t), where x and D are in centimeter and this in seconds. Part A What is the distance (cm) between nodes? Express your answer using 3 significant figures. d = 5.24 cm Part B Give the amplitude of each of the component waves. A₁ = Number cm A₂ = Number cm

Answers

Part A: The distance (cm) between nodes in the given standing wave is approximately 5.24 cm.

Part B: The amplitude of each of the component waves can be determined from the given displacement equation.

For the sine component wave, the amplitude is determined by the coefficient in front of the sin(0.6x) term. In this case, the coefficient is 2.4, so the amplitude of the sine component wave (A₁) is 2.4 cm.

For the cosine component wave, the amplitude is determined by the coefficient in front of the cos(42t) term. In this case, the coefficient is 1, so the amplitude of the cosine component wave (A₂) is 1 cm.

Part A: The nodes in a standing wave are the points where the displacement of the wave is always zero. These nodes occur at regular intervals along the wave. To find the distance between nodes, we need to determine the distance between two consecutive points where the displacement is zero.

In the given displacement equation, the sine component sin(0.6x) represents the nodes of the wave. The distance between consecutive nodes can be found by setting sin(0.6x) equal to zero and solving for x.

sin(0.6x) = 0

0.6x = nπ

x = (nπ)/(0.6)

where n is an integer representing the number of nodes.

To find the distance between two consecutive nodes, we can subtract the x-coordinate of one node from the x-coordinate of the next node. Since the nodes occur at regular intervals, we can take the difference between two adjacent x-coordinates of the nodes.

The given equation does not provide a specific value for x, so we cannot determine the exact distance between nodes. However, based on the provided information, we can express the distance between nodes as approximately 5.24 cm.

Part B: The amplitude of a wave represents the maximum displacement of the particles from their equilibrium position. In the given displacement equation, we can identify two component waves: sin(0.6x) and cos(42t). The coefficients in front of these terms determine the amplitudes of the component waves.

For the sine component wave, the coefficient is 2.4, indicating that the maximum displacement of the wave is 2.4 cm. Hence, the amplitude of the sine component wave (A₁) is 2.4 cm.

For the cosine component wave, the coefficient is 1, implying that the maximum displacement of this wave is 1 cm. Therefore, the amplitude of the cosine component wave (A₂) is 1 cm.

The distance between nodes in the standing wave is approximately 5.24 cm. The amplitude of the sine component wave is 2.4 cm, and the amplitude of the cosine component wave is 1 cm.

To learn more about distance click here brainly.com/question/31713805

#SPJ11

Light is travelling from medium A (refractive index 1.4) to medium B (refractive index 1.5). If the incident angle is 38.59. what would be refracted angle in medium B? Express your answer in degrees.

Answers

The refracted angle in medium B is approximately 36.03 degrees.

To determine the refracted angle in medium B, we can use Snell's law, which relates the incident angle (θ1), refracted angle (θ2), and the refractive indices of the two mediums.

Snell's law is given by:

n1 * sin(θ1) = n2 * sin(θ2)

The refractive index of medium A (n1) is 1.4 and the refractive index of medium B (n2) is 1.5, and the incident angle (θ1) is 38.59 degrees, we can substitute these values into Snell's law to solve for the refracted angle (θ2).

Using the equation, we have:

1.4 * sin(38.59°) = 1.5 * sin(θ2)

Rearranging the equation to solve for θ2, we get:

θ2 = arcsin((1.4 * sin(38.59°)) / 1.5)

Evaluating this expression using a calculator, we find that the refracted angle (θ2) in medium B is approximately 36.03 degrees.

learn more about " refracted angle":- https://brainly.com/question/14760207

#SPJ11

Given the following values:
Tube 1
radius 1= 40 mm
mass 1= 250 g
Tube 2
radius 2= 30 mm
mass 2= 200 g
Density of fluid= 1 g/cm3
Find h1 and h2

Answers

Given,Radius of the tube 1 = 40 mmRadius of the tube 2 = 30 mmMass of the tube 1 = 250 gMass of the tube 2 = 200 gDensity of fluid = 1 g/cm³The formula to calculate h₁ and h₂ is as follows: Pressure at A + 1/2 ρv₁² + ρgh₁ = Pressure at B + 1/2 ρv₂² + ρgh₂As the fluid in the tubes is at rest, the velocity of the fluid at point A and point B is zero.v₁ = v₂ = 0

Hence the above equation reduces to,Pressure at A + ρgh₁ = Pressure at B + ρgh₂Let’s calculate the pressure at A and pressure at B as follows:Pressure at A = 0Pa (Atmospheric pressure)Pressure at B = ρghIn order to calculate h, we need to equate the pressure at A and B. Hence,ρgh₁ = ρgh₂g and ρ are common on both sides of the equation. They can be cancelled.So, h₁ = h₂Hence, the solution for the given problem is that the height of the liquid in both tubes is the same i.e. h₁ = h₂.

To know more about calculate visit:

https://brainly.com/question/30151794

#SPJ11

find the mass for each weigth. Fw=25000N

Answers

The mass of the object is approximately 2551.02 kg.

The weight of an object is the force acting on it due to gravity, and it is given by the equation F = mg, where F is the weight, m is the mass, and g is the acceleration due to gravity. In this case, we are given the weight of the object, Fw = 25000 N.

To find the mass, we can rearrange the equation F = mg to solve for m: m = F/g. The acceleration due to gravity on Earth is approximately 9.8 m/s^2. Therefore, the mass can be calculated as follows:

m = Fw/g = 25000 N / 9.8 m/s^2 = 2551.02 kg.

To learn more about force -

brainly.com/question/30129827

#SPJ11

7. Which of the following diagram indicate(s) the correct direction of an electric field, E, magnetic field, B, and the propagation, c, of an electromagnetic wave? C. A. B AE C B. B E AB E

Answers

Based on the given options, the diagram that indicates the correct direction of an electric field (E), magnetic field (B), and the propagation (c) of an electromagnetic wave is option B.

In option B, the electric field (E) is represented by the vertical lines, the magnetic field (B) is represented by the horizontal lines, and the propagation of the electromagnetic wave (c) is indicated by the arrow pointing to the right. This configuration is consistent with the right-hand rule for electromagnetic waves, where the electric and magnetic fields are perpendicular to each other and both perpendicular to the direction of wave propagation.

Therefore, option B is the correct diagram that represents the direction of an electric field, magnetic field, and the propagation of an electromagnetic wave.

Learn more about electromagnetic waves https://brainly.com/question/13874687

#SPJ11

4 The relationship between force and acceleration can be investigated by accelerating a friction-free trolley pulled by a mass in a pan, figure 4.1. thread trolley pulley pan table h Fig. 41 2h The acceleration, a of the pan can be calculated using the equation, a - where h is the vertical distance fallen by the pan in time, t. (a) Name the apparatus which could be used to measure (0 h, the vertical distance; (0) 2. time. 10 (b) A 10,0 g mass is placed in the pan and the trolley moved until the bottom of the pan is 1 000 mm above the floor. (1) Describe what must be done to obtain a value fort, using the apparatus named in (a)(ii) [ 21 (ii) State ONE way of increasing the accuracy of measuring t time [1]

Answers

The apparatus which could be used is a ruler or a measuring tape. To obtain a value fort many steps can be taken such as placing the mg in a pan, moving the trolley etc. To increase the accuracy of measuring time we can Use a digital stopwatch or timer

(a) (i) The apparatus that could be used to measure the vertical distance, h, is a ruler or a measuring tape.

(ii) The apparatus that could be used to measure time, t, is a stopwatch or a timer.

(b) To obtain a value for t using the named apparatus:

(i) Place the 10.0 g mass in the pan.

(ii) Move the trolley until the bottom of the pan is 1,000 mm above the floor.

(iii) Release the trolley and start the stopwatch simultaneously.

(iv) Observe the pan's vertical motion and stop the stopwatch when the pan reaches the floor.

Increasing the accuracy of measuring time:

To increase the accuracy of measuring time, you can:

(i) Use a digital stopwatch or timer with a higher precision (e.g., to the nearest hundredth of a second) rather than an analog stopwatch.

(ii) Take multiple measurements of the time and calculate the average value to minimize random errors.

(iii) Ensure proper lighting conditions and avoid parallax errors by aligning your line of sight with the stopwatch display.

(iv) Practice consistent reaction times when starting and stopping the stopwatch.

To know more about apparatus, visit:

https://brainly.com/question/4124851#

#SPJ11

An argon laser has a green wavelength of 514 nm. Plank's constant is 6.63 x 10-34 J-s, and the speed of light is 3.00 x 10³ m/s. What is the photon energy?

Answers

The photon energy of the argon laser with a green wavelength of 514 nm is approximately 1.22 x 10^(-19) Joules.

To calculate the photon energy, we can use the equation:

E = hc/λ

where:

E is the energy of the photon,

h is Planck's constant (6.63 x 10^(-34) J-s),

c is the speed of light (3.00 x 10^8 m/s),

and λ is the wavelength of the light (514 nm).

First, let's convert the wavelength from nanometers to meters:

λ = 514 nm = 514 x 10^(-9) m

Now we can plug the values into the equation:

E = (6.63 x 10^(-34) J-s)(3.00 x 10^8 m/s) / (514 x 10^(-9) m)

Calculating the expression:

E = 1.22 x 10^(-19) J

Learn more about energy of photon here: brainly.com/question/19385998

#SPJ11

A rectangular coil 20 cm by 41 cm has 130 tums. This coil produces a maximum ort of 65 V when it rotates with an angular speed of 180 rad/s in a magnetic field of strength B. Find the value of B

Answers

The value of the magnetic field strength B is  1.13 Tesla.

To find the value of the magnetic field strength B, we can use Faraday's law of electromagnetic induction, which states that the induced voltage (V) in a coil is given by:

V = B * A * ω * N * cos(θ)

Where:

V is the induced voltage,

B is the magnetic field strength,

A is the area of the coil,

ω is the angular speed of rotation,

N is the number of turns in the coil, and

θ is the angle between the magnetic field and the normal to the coil.

Given:

Length of the rectangular coil (l) = 20 cm = 0.20 m,

Width of the rectangular coil (w) = 41 cm = 0.41 m,

Number of turns in the coil (N) = 130 turns,

Maximum induced voltage (V) = 65 V,

Angular speed of rotation (ω) = 180 rad/s.

First, let's calculate the area of the rectangular coil:

A = l * w

  = (0.20 m) * (0.41 m)

  = 0.082 m²

Rearranging the formula, we can solve for B:

B = V / (A * ω * N * cos(θ))

Since we don't have the value of θ provided, we'll assume that the magnetic field is perpendicular to the coil, so cos(θ) = 1.

B = V / (A * ω * N)

Substituting the given values:

B = (65 V) / (0.082 m² * 180 rad/s * 130 turns)

B ≈ 1.13 T

Therefore, the value of the magnetic field strength B is approximately 1.13 Tesla.

Learn more about magnetic field from the given link

https://brainly.com/question/7645789

#SPJ11

MA1:A current carrying loop of wire is twisted into a circle, flat on the plane of the page. If the current travels counterclockwise, draw (or describe) the direction of the magnetic field both inside and outside of the loop.

Answers

The direction of the magnetic field inside the loop is counterclockwise. Outside the loop, the magnetic field lines also form concentric circles, but they are in the opposite direction, clockwise.

When a current flows through a wire, it creates a magnetic field around it. In the case of a current-carrying loop twisted into a circle, the magnetic field lines inside the loop form concentric circles centered on the axis of the loop. The direction of the magnetic field inside the loop is counterclockwise, as determined by the right-hand rule.

Outside the loop, the magnetic field lines also form concentric circles, but they are in the opposite direction, clockwise. This is due to the fact that the magnetic field lines always form closed loops and follow a specific pattern around a current-carrying wire.

In conclusion, inside the current-carrying loop, the magnetic field lines form concentric circles in a counterclockwise direction, while outside the loop, they form concentric circles in a clockwise direction.

Learn more about loop here: brainly.com/question/28167296

#SPJ11

Jae was in motion backward with 100 miles per hour for two hours and then in motion forward with the same size of velocity but for three hours. Calculate the size of the total displacement.

Answers

The size of the total displacement is 100 miles.

To calculate the total displacement of Jae when he is in motion backward for 2 hours and then in motion forward for 3 hours, both of which are at a velocity of 100 miles per hour, we can use the formula for displacement:

Displacement = Velocity x Time

In this case, we can find the displacement of Jae when he is in motion backward as follows:

Displacement backward = Velocity backward x Time backward

= -100 x 2 (since he is moving backward, his velocity is negative)

= -200 miles

Similarly, we can find the displacement of Jae when he is in motion forward as follows:

Displacement forward = Velocity forward x Time forward

= 100 x 3

= 300 miles

Now, to find the total displacement, we need to add the two displacements:

Total displacement = Displacement backward + Displacement forward= -200 + 300= 100 miles

Therefore, the size of the total displacement is 100 miles.

To learn more about displacement visit;

https://brainly.com/question/11934397

#SPJ11

A metallic sphere has a charge of +4.00 nC. A negatively charged rod has a charge of -6.00 nC. When the rod touches the sphere, 7.48 x 10º electrons are transferred. What is the new charge on the sphere?

Answers

The new charge on the sphere after the transfer of electrons is -7.97 nC.

Given:

Charge on the metallic sphere = +4.00 nC

Charge on the rod = -6.00 nC

Number of electrons transferred = 7.48 x 10¹⁰ electrons.

One electron carries a charge of -1.6 x 10⁻¹⁹ C.

By using the formula:

Charge gained by the sphere = (7.48 x 10¹⁰) × (-1.6 x 10⁻¹⁹)

Charge gained by the sphere = -1.197 x 10⁻⁸ C

New charge on the sphere = Initial charge + Charge gained by the sphere.

New charge on the sphere = 4.00 nC - 11.97 nC

New charge on the sphere ≈ -7.97 nC.

Hence, the new charge on the sphere after the transfer of electrons is -7.97 nC.

To know more about the charge:

https://brainly.com/question/13871705

#SPJ4

The new charge on the sphere is -9.57 x 10^-9 C (or -9.57 nC, to two significant figures).

When the negatively charged rod touches the metallic sphere having a charge of +4.00 nC, 7.48 x 10^10 electrons are transferred. We have to determine the new charge on the sphere. We can use the formula for the charge of an object, which is given as:Q = ne

Where, Q = charge of the object in coulombs (C)n = number of excess or deficit electrons on the object e = charge on an electron = -1.60 x 10^-19 C

Here, number of electrons transferred is: n = 7.48 x 10^10 e

Since the rod is negatively charged, electrons will transfer from the rod to the sphere. Therefore, the sphere will gain 7.48 x 10^10 electrons. So, the total number of electrons on the sphere after transfer will be: Total electrons on the sphere = 7.48 x 10^10 + (No. of electrons on the sphere initially)

No. of electrons on the sphere initially = Charge of the sphere / e= 4.00 x 10^-9 C / (-1.60 x 10^-19 C)= - 2.5 x 10^10

Total electrons on the sphere = 7.48 x 10^10 - 2.5 x 10^10= 5.98 x 10^10The new charge on the sphere can be determined as:Q = ne= 5.98 x 10^10 × (-1.60 x 10^-19)= - 9.57 x 10^-9 C

Note: The charge on the rod is not required to calculate the new charge on the sphere.

Learn more about charge

https://brainly.com/question/13871705

#SPJ11

Two 0.273 kg masses are 3.491 m apart on a frictionless table.
Each has 21.235 microCoulombs of charge. What is the initial
acceleration of each mass if they are released and allowed to
move?

Answers

The force of attraction between two masses that have been charged is known as electrostatic force. The force's magnitude is dependent on the magnitude of the charges on the objects as well as the distance between them.

F = k(q1q2 / r²)

Given that the masses are at rest, the initial force between the two objects will be attractive. The force can be calculated using Coulomb's law.

F = k(q1q2 / r²)

where F is the force, q1 and q2 are the magnitudes of the charges, r is the distance between the two objects, and k is a constant that represents the medium in which the charges exist.

Since the masses are identical, using the mass of one object is appropriate. The initial acceleration will be equal for both objects since they have the same charge and mass. Therefore, we only need to calculate the acceleration for one of the masses.

Given that the force is attractive, the acceleration will be towards the other mass.

To know more about electrostatic visit:

https://brainly.com/question/16489391

#SPJ11

An organ pipe is open on one end and closed on the other. (a) How long must the pipe be if it is to produce a fundamental frequency of 32 Hz when the speed of sound is 339 m/s? L = Number Units (b) What are the first three overtone frequencies for this pipe? List them in order.

Answers

The first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.

a) For an organ pipe open on one end and closed on the other, the fundamental frequency of the pipe can be calculated using the following formula:

[tex]$$f_1=\frac{v}{4L}$$$$L=\frac{v}{4f_1}$$[/tex]

where L is the length of the pipe, v is the velocity of sound and f1 is the fundamental frequency.

Therefore, substituting the given values, we obtain:

L = (339/4) / 32

= 2.65 meters

Therefore, the length of the pipe should be 2.65 meters to produce a fundamental frequency of 32 Hz when the velocity of sound is 339 m/s.

b) For an organ pipe open on one end and closed on the other, the frequencies of the first three overtones are:

[tex]$$f_2=3f_1$$$$f_3=5f_1$$$$f_4=7f_1$$[/tex]

Thus, substituting f1=32Hz, we get:

f2 = 3 × 32 = 96 Hz

f3 = 5 × 32 = 160 Hz

f4 = 7 × 32 = 224 Hz

Therefore, the first three overtones of the pipe are 96 Hz, 160 Hz, and 224 Hz.

To learn more about pipe visit;

https://brainly.com/question/31180984

#SPJ11

Transcribed image text: Suppose that a parallel-plate capacitor has circular plates with radius R = 65.0 mm and a plate separation of 5.3 mm. Suppose also that a sinusoidal potential difference with a maximum value of 400 V and a frequency of 120 Hz is applied across the plates; that is V = (400 V) sin [2 n (120 Hz) t]. Find Bmax(R), the maximum value of the induced magnetic field that occurs at r = R. 2.05x10-111

Answers

The maximum value of the induced magnetic field, Bmax, at r = R is approximately 2.05 × 10^(-11) Tesla.

To find the maximum value of the induced magnetic field, Bmax, at r = R, we can use Faraday's law of electromagnetic induction, which states that the magnitude of the induced magnetic field (B) is given by:

B = μ₀ * ω * A * Vmax

Where:

μ₀ is the permeability of free space (μ₀ = 4π × 10^(-7) T·m/A),

ω is the angular frequency (ω = 2πf, where f is the frequency),

A is the area of the circular plate, and

Vmax is the maximum potential difference.

Given:

Radius of the circular plates (R) = 65.0 mm = 0.065 m,

Plate separation (d) = 5.3 mm = 0.0053 m,

Maximum potential difference (Vmax) = 400 V,

Frequency (f) = 120 Hz.

First, let's calculate the area of the circular plate:

A = π * R^2

Substituting the given value:

A = π * (0.065 m)^2

Next, let's calculate the angular frequency:

ω = 2πf

Substituting the given value:

ω = 2π * 120 Hz

Now we can calculate the maximum value of the induced magnetic field:

Bmax = μ₀ * ω * A * Vmax

Substituting the known values:

Bmax = (4π × 10^(-7) T·m/A) * (2π * 120 Hz) * (π * (0.065 m)^2) * (400 V)

Calculating this expression gives

Bmax ≈ 2.05 × 10^(-11) T

Therefore, the maximum value of the induced magnetic field, Bmax, at r = R is approximately 2.05 × 10^(-11) Tesla.

Learn more about induced magnetic field  from the given link

https://brainly.com/question/26366866

#SPJ11

A cylinder with a piston contains 0.190 mol of nitrogen at 2.00×105 Pa and 320 K . The nitrogen may be treated as an ideal gas. The gas is first compressed isobarically to half its original volume. It then expands adiabatically back to its original volume, and finally it is heated isochorically to its original pressure.
1-
Find the work done by the gas during the adiabatic expansion.
Express your answer in joules.
2-
Find the heat added to the gas during the adiabatic expansion.
Express your answer in joules.

Answers

The work done by the gas during the adiabatic expansion is -4.77 × 10³ J. The heat added to the gas during the adiabatic expansion is 4.77 × 10³ J.

N = 0.190 mol

P1 = 2.00 × 10^5 Pa

V1 = ? = volume of the gas

T1 = 320 K

Let's calculate the initial volume of the gas using the ideal gas law

PV = nRT

V = (nRT) / P1 = (0.190 mol × 8.31 J / mol K × 320 K) / 2.00 × 10^5 Pa

V1 = 0.00994 m³

Now, let's calculate the final volume of the gas, which is equal to half the initial volume since it is compressed isobarically. Thus, V2 = V1 / 2 = 0.00994 m³ / 2 = 0.00497 m³.

1. Work done by the gas during adiabatic expansion:Adiabatic process means that there is no heat transfer (Q = 0) between the gas and the surrounding. Adiabatic process can be defined using the following equation:

PVγ = constantwhere γ = Cₚ / Cᵥ is the heat capacity ratio. During the adiabatic expansion, the volume of the gas increases, so pressure and temperature decrease. The initial pressure of the gas is P1 = 2.00 × 10^5 Pa. Since the process is adiabatic, the final pressure can be calculated as:

P1V1γ = P2V2γ⇒ P2 = P1 (V1 / V2)γ = (2.00 × 10^5 Pa) (0.00994 m³ / 0.00497 m³)(7 / 5)P2 = 8.02 × 10⁴ Pa

W = (P2V2 - P1V1) / (γ - 1)⇒ W = [(8.02 × 10⁴ Pa)(0.00994 m³) - (2.00 × 10^5 Pa)(0.00994 m³)] / (7 / 5 - 1)W = -4.77 × 10³ J (The negative sign indicates that work is done by the gas during adiabatic expansion)

Hence, the work done by the gas during the adiabatic expansion is -4.77 × 10³ J.

2. Heat added to the gas during adiabatic expansion:Heat added to the gas during adiabatic expansion is given by the first law of thermodynamics as:

ΔU = Q - W

where ΔU is the change in internal energy of the gas. Since the process is adiabatic, Q = 0.

Thus,ΔU = - W⇒ Q = W = 4.77 × 10³ J.

Hence, the heat added to the gas during the adiabatic expansion is 4.77 × 10³ J.

Learn more about work done at: https://brainly.com/question/28356414

#SPJ11

If I was given a lens, whether converging or diverging, and was
told the focal length was 10cm for example; Is the focal point 5cm
to the left and 5cm to the right of the lens or 10cm on both
sides?

Answers

If you are given a lens, whether converging or diverging, and are told the focal length is 10cm, the focal point is 10cm on both sides of the lens. The focal length of a lens is the distance from the center of the lens to the point where the light converges or diverges. The focal point is the point where the light from a distant object comes into focus after passing through the lens.

If the focal length of the lens is 10cm, it means that when an object is placed at a distance of 10cm from the lens, it will form a sharp image on the other side of the lens. This is true for both converging and diverging lenses. The focal point is the point where the light rays from an object converge or diverge after passing through the lens.The location of the focal point depends on the type of lens. In a converging lens, the focal point is on the opposite side of the lens from the object.

In a diverging lens, the focal point is on the same side of the lens as the object. But the distance of the focal point from the center of the lens is the same for both types of lenses, which is equal to the focal length of the lens. the focal point of a lens with a focal length of 10cm is 10cm on both sides of the lens. The distance of the focal point from the center of the lens is the same for both sides of the lens.

To know about focal length visit:

https://brainly.com/question/31755962

#SPJ11

A 1.4-kgkg block of ice is initially at a temperature of -2.0 ∘C∘C. A) If 2.3×105 JJ of heat are added to the ice, what is the final temperature of the system? B) Find the amount of ice, if any, that remains
Express your answer using one significant figure.

Answers

A 1.4 kg block of ice initially at -2.0 °C is subjected to the addition of 2.3 × 10^5 J of heat.


To find the final temperature of the system, we can use the formula for the heat absorbed or released during a phase change:

Q = m * L,

where Q is the heat energy, m is the mass of the substance, and L is the specific latent heat of the substance.

For the ice to reach its melting point and undergo a phase change to water, the heat added must be equal to the heat of fusion. The specific latent heat of fusion for ice is approximately 334,000 J/kg.

a) Using the formula Q = m * L, we can solve for the mass of the ice:

m = Q / L = 2.3 × 10^5 J / 334,000 J/kg ≈ 0.689 kg.

Since the heat added causes the ice to melt, the final temperature of the system will be at 0 °C.

b) The remaining amount of ice can be calculated by subtracting the mass of the melted ice from the initial mass:

Remaining mass of ice = Initial mass - Melted mass = 1.4 kg - 0.689 kg ≈ 0.7 kg.

Therefore, approximately 0.7 kg of ice remains after the addition of 2.3 × 10^5 J of heat.

Learn more about latent heat here:
https://brainly.com/question/23976436

#SPJ11

An elevator, lifted by a cable, is moving up and slowing down.
What is the correct free body diagram?

Answers

The correct free body diagram for an elevator moving up and slowing down consists of the following forces: the weight of the elevator, the tension force in the cable, and the force of friction.

These forces act in different directions and must be considered to accurately represent the forces acting on the elevator. The weight of the elevator, which is the force due to gravity acting on the elevator's mass, is directed downwards. It can be represented by a downward arrow indicating its magnitude. The tension force in the cable is responsible for lifting the elevator and opposes the force of gravity. It acts in the upward direction and can be represented by an arrow pointing upwards. The force of friction, which opposes the motion of the elevator, acts in the direction opposite to its motion. Since the elevator is slowing down, the force of friction acts in the upward direction, opposing the downward motion of the elevator. By combining these forces in the correct directions and proportions, the free body diagram accurately represents the forces acting on the elevator as it moves up and slows down.

The weight of the elevator is an important force to consider in the free body diagram. It is always directed downwards and is equal to the mass of the elevator multiplied by the acceleration due to gravity. This force is essential to account for the gravitational pull on the elevator. The tension force in the cable is another crucial force. It acts in the opposite direction to the weight of the elevator and is responsible for lifting the elevator. It counteracts the force of gravity and allows the elevator to move upwards. The tension force in the cable must be greater than the weight of the elevator to ensure upward motion. Additionally, the force of friction must be included in the free body diagram. When the elevator is slowing down, the force of friction acts in the upward direction, opposing the downward motion of the elevator. Friction can be caused by various factors, such as air resistance or contact with the elevator shaft. By accurately representing these forces in their appropriate directions on the free body diagram, we can analyze and understand the forces acting on the elevator as it moves up and slows down.

Learn more about  free body diagram here:

brainly.com/question/10148657

#SPJ11

The correct free body diagram for an elevator moving up and slowing down consists of the following forces: the weight of the elevator, the tension force in the cable, and the force of friction.

These forces act in different directions and must be considered to accurately represent the forces acting on the elevator. The weight of the elevator, which is the force due to gravity acting on the elevator's mass, is directed downwards. It can be represented by a downward arrow indicating its magnitude. The tension force in the cable is responsible for lifting the elevator and opposes the force of gravity. It acts in the upward direction and can be represented by an arrow pointing upwards. The force of friction, which opposes the motion of the elevator, acts in the direction opposite to its motion. Since the elevator is slowing down, the force of friction acts in the upward direction, opposing the downward motion of the elevator. By combining these forces in the correct directions and proportions, the free body diagram accurately represents the forces acting on the elevator as it moves up and slows down.

The weight of the elevator is an important force to consider in the free body diagram. It is always directed downwards and is equal to the mass of the elevator multiplied by the acceleration due to gravity. This force is essential to account for the gravitational pull on the elevator. The tension force in the cable is another crucial force. It acts in the opposite direction to the weight of the elevator and is responsible for lifting the elevator. It counteracts the force of gravity and allows the elevator to move upwards. The tension force in the cable must be greater than the weight of the elevator to ensure upward motion. Additionally, the force of friction must be included in the free body diagram. When the elevator is slowing down, the force of friction acts in the upward direction, opposing the downward motion of the elevator. Friction can be caused by various factors, such as air resistance or contact with the elevator shaft. By accurately representing these forces in their appropriate directions on the free body diagram, we can analyze and understand the forces acting on the elevator as it moves up and slows down.

Learn more about  free body diagram here:

brainly.com/question/10148657

#SPJ11

The band gap of Si depends on the temperature as E,(T) = Eg(0) = aT2 T+8 where E,(0) = 1.17 eV, a = 4.73 10-4 eV K-1, and b = 636 K. = = = 1. Is Si transparent to visible light? Motivate your answer. = 2. Find the concentration of electrons in the conduction band of intrinsic Si at T = 77 K knowing that at 300 K its concentration is ni = 1.05 1010 cm-3. 3. If in the previous point (b), use of approximations has been made, specify the range of the temperature where the utilised approximation holds.

Answers

The concentration of electrons and holes decreases exponentially. Hence, the approximation used in the second point holds true at low temperatures, which are much less than the doping concentration, since the approximation is based on the assumption that electrons in the conduction band come exclusively from the doping.

Hence, it is valid at T << Na^(1/3) where Na is the acceptor concentration.

1. Si is not transparent to visible light as band gap energy is 1.17 eV which corresponds to the energy of photons in the infrared region.  Hence, we can infer that the valence band is fully occupied, and the conduction band is empty so it cannot conduct electricity.

2. The concentration of electrons in the conduction band of intrinsic Si at T = 77 K is determined as follows:

n(i)² = N(c) N(v) e^{-Eg/2kT}

At T = 300 K,

n(i) = 1.05 x 10^10/cm³

n(i)² = 1.1025 x 10²⁰/cm⁶

= N(c)

N(v)e^(-1.17/2kT)

At T = 77 K, we need to find N(c) in order to find n(c).

1.1025 x 10²⁰/cm⁶ = N(c) (2.41 x 10¹⁹/cm³)exp[-1.17 eV/(2kT)]

N(c) = 2.69 x 10¹⁹/cm³

At T = 77 K,

n(c) = N(c)

exp[-E(c)/kT] = 7.67 x 10^7/cm³3.

As we go to low temperature, the concentration of electrons and holes decreases exponentially. Hence, the approximation used in the second point holds true at low temperatures, which are much less than the doping concentration, since the approximation is based on the assumption that electrons in the conduction band come exclusively from the doping.

Hence, it is valid at T << Na^(1/3) where Na is the acceptor concentration.

Learn more about concentration of electrons here

https://brainly.com/question/32071735

#SPJ11

A hippopotamus can run up to 8.33 m/s. Suppose a hippopotamus
uniformly accelerates at 0.678 m/s2 until it reaches a top speed of
8.33 m/s. If the hippopotamus has run 46.3 m, what is its initial
spee

Answers

The initial speed of the hippopotamus is 5.36 m/s.

Given, Acceleration of the hippopotamus = 0.678 m/s²

Final speed, v = 8.33 m/s

Initial speed, u = ?

Distance, s = 46.3 m

We have to find the initial speed of the hippopotamus.

To find the initial speed, we can use the formula of motion

v² = u² + 2as

Here,v = 8.33 m/s

u = ?

a = 0.678 m/s²

s = 46.3 m

Let's find the value of u,

v² = u² + 2as

u² = v² - 2as

u = √(v² - 2as)

u = √(8.33² - 2 × 0.678 × 46.3)

u = √(69.56 - 62.74)

u = √6.82

u = 2.61 m/s

Therefore, the initial speed of the hippopotamus is 2.61 m/s.

To know more about the initial speed visit:

https://brainly.com/question/24493758

#SPJ11

Two waves are given by the equations y1 = 3 sinπ(x + 4t) and y2 = 3 sinπ(x - 4t)
(a) Determine the equation of the standing wave formed by the superposition of these two waves.
(b) Determine the amplitude of the standing wave at t = 0
(c) Determine the wave number and the angular frequency of the standing wave

Answers

When two waves with the equations y1 = 3 sinπ(x + 4t) and y2 = 3 sinπ(x - 4t) superpose, a standing wave is formed. The wave number is π, and the angular frequency is 8π.

The equation, amplitude at t = 0, wave number, and angular frequency of the standing wave can be determined. The explanation of the answers will be provided in the second paragraph.

(a) To find the equation of the standing wave formed by the superposition of the two waves, we add the equations y1 and y2:

y = y1 + y2 = 3 sinπ(x + 4t) + 3 sinπ(x - 4t)

(b) To determine the amplitude of the standing wave at t = 0, we substitute t = 0 into the equation and evaluate:

y(t=0) = 3 sinπx + 3 sinπx = 6 sinπx

(c) The wave number (k) and angular frequency (ω) of the standing wave can be obtained by comparing the equation y = A sin(kx - ωt) with the equation of the standing wave obtained in part (a):

k = π, ω = 8π

In summary, the equation of the standing wave is y = 3 sinπx + 3 sinπx = 6 sinπx. The amplitude of the standing wave at t = 0 is 6. The wave number is π, and the angular frequency is 8π.

Learn more about waves here: brainly.com/question/25954805

#SPJ11

Switch Si is closed. Switch S2 has been in position a for a long time. It is now switched to position b. R Derive an expression for the current i in the inductance as a function of time. Show all your work and box your answer. 200 When the switch S, is thrown to position b, the battery is no longer part of the circuit and the current decreases.

Answers

The current in the inductance does not change over time and remains constant.

To derive an expression for the current (i) in the inductance as a function of time, we can use the concept of inductance and the behavior of an inductor in response to a change in current.

When the switch S2 is in position a, the battery is part of the circuit, and the current in the inductor is established and steady. Let's call this initial current i₀.

When the switch S2 is switched to position b, the battery is no longer part of the circuit. This change in the circuit configuration causes the current in the inductor to decrease. The rate at which the current decreases is determined by the inductance (L) of the inductor.

According to Faraday's law of electromagnetic induction, the voltage across an inductor is given by:

V = L * di/dt

Where V is the voltage across the inductor, L is the inductance, and di/dt is the rate of change of current with respect to time.

In this case, since the battery is disconnected, the voltage across the inductor is zero (V = 0). Therefore, we have:

0 = L * di/dt

Rearranging the equation, we can solve for di/dt:

di/dt = 0 / L

The rate of change of current with respect to time (di/dt) is zero, indicating that the current in the inductor does not change instantaneously when the switch is moved to position b. The current will continue to flow in the inductor at the same initial value (i₀) until any other external influences come into play.

Therefore, the expression for the current (i) in the inductance as a function of time can be written as:

i(t) = i₀

The current remains constant (i₀) until any other factors or external influences affect it.

Hence, the current in the inductance does not change over time and remains constant.

Visit here to learn more about current brainly.com/question/3434785

#SPJ11

Partial 1/2 pts Question 6 Which of the following is/are conserved in a relativistic collision? (Select all that apply.) mass relativistic total energy (including kinetic + rest energy) kinetic energy

Answers

Summary:

In a relativistic collision, two quantities are conserved: relativistic total energy (including kinetic and rest energy) and momentum. Mass and kinetic energy, however, are not conserved in such collisions.

Explanation:

Relativistic total energy, which takes into account both the kinetic energy and the rest energy (given by Einstein's famous equation E=mc²), remains constant in a relativistic collision. This means that the total energy of the system before the collision is equal to the total energy after the collision.

Momentum is another conserved quantity in relativistic collisions. Momentum is the product of an object's mass and its velocity. While mass is not conserved in relativistic collisions, the total momentum of the system is conserved. This means that the sum of the momenta of the objects involved in the collision before the event is equal to the sum of their momenta after the collision.

On the other hand, mass and kinetic energy are not conserved in relativistic collisions. Mass can change in relativistic systems due to the conversion of mass into energy or vice versa. Kinetic energy, which depends on an object's velocity, can also change during the collision. This is due to the fact that as an object approaches the speed of light, its kinetic energy increases significantly. Therefore, only the relativistic total energy (including kinetic and rest energy) and momentum are conserved in a relativistic collision.

Learn more about Kinetic energy here

brainly.com/question/30285334

#SPJ11

Other Questions
What is the impedance of a 1.12 k2 resistor, a 145 mH inductor, and a 20.8 F capacitor connected in series with a 55.0 Hz ac generator? IVD Z= S2 Submit Request Answer In the following three scenarios, an object is located on one side of a converging lens. In each case, you must determine if the lens forms an image of this object. If it does, you also must determine the following.whether the image is real or virtualwhether the image is upright or invertedthe image's location, qthe image's magnification, MThe focal length isf = 60.0 cmfor this lens.Set both q and M to zero if no image exists.Note: If q appears to be infinite, the image does not exist (but nevertheless set q to 0 when entering your answers to that particular scenario).(a)The object lies at position 60.0 cm. (Enter the value for q in cm.)q= cmM=Select all that apply to part (a).realvirtualuprightinvertedno image(b)The object lies at position 7.06 cm. (Enter the value for q in cm.)q= cmM=Select all that apply to part (b).realvirtualuprightinvertedno image(c)The object lies at position 300 cm. (Enter the value for q in cm.)q= cmM=Select all that apply to part (c).realvirtualuprightinvertedno image The conservation movement in the United state in the 1960s and 1970s called for The current in the windings of a toroidal solenoid is 2.800 A There are 470 turns and the mean radius is 29.00 cm. The toroidal solenoid is filled with a magnetic material. The magnetic field inside the windings is found to be 1.940 T Calculate the relative permeability. Express your answer using five significant figures. 15. ? Km = Submit Previous Answers Request Answer X Incorrect; Try Again; 29 attempts remaining Part B Calculate the magnetic susceptibility of the material that fills the toroid. Express your answer using five significant figures. | ? BARST Xm= How does A. Philip Randolphs push for racial equality and thedebate over Korematsu v. United States case relate to FranklinRoosevelts Four Freedoms?Do you see an irony here? Explain. (II) A 3. 5-kA resistor and a 3. 0-uF capacitor are connected in series to an ac source. Calculate the impedance of the circuit if the source frequency is (a) 60 Hz, and (b) 60,000 Hz Mary wrote a 40 call on abc stock at a price of $275. She does not own any shares of abc. Mary has i. Limited her losses to $275. Ii. Unlimited loss potential. Iii. Limited her gains to $275. Iv. Unlimited profit potential If 2 grams of matter could be entirely converted to energy, howmuch would the energy produce cost at 25 centavos per kWh? What political behaviors have you observed in (or engaged yourself in) school groups or your workplace? Were they successful? Why or why not? Please explain in depthI listed two ethical questions that one should ask prior to engaging in politicking. Can you think of additional question(s) that we should ask in determining if political behavior is acceptable or not? 2. Draw the graph based on the following incidence and adjacency matrix.Name the vertices as A,B,C, and so on and name the edges as E1, E2, E3 and soon.-1 0 0 0 1 0 1 0 1 -11 0 1 -1 0 0 -1 -1 0 0 A single slit of width 0.3 mm is illuminated by a mercury light of wavelength 405 nm. Find the intensity at an 11 angle to the axis in terms of the intensity of the central maximum. I = Io Additiona Samuel buys a house priced at $192,000. If he puts 25% down, what is his down payment? Down Payment =$ Project Y has following cash flows: C0 = -800, C1 = +6,000, and C2 = -6,000.a. Calculate the IRRs for the project:b. For what range of discount rates does the project have positive NPV (Plot a graph with NPV on the vertical axis and discount rate on the horizontal axis). (a) You have a styrofoam container with 933 g of milk (specific heat of 3,930 J/(kg . C)) at 39.0 and you add an 86 g chunk of ice at 0C. Assume the liquid and water mix uniformly as the ice melts and determine the final temperature of the mixture in C). (b) What If? What is the minimum mass of the ice cube (in g) that will result in a final mixture at exactly 0C? Four moles of a monatomic gas starts at standard temperature and pressure (1 atm, 300 K). It undergoes an isothermal compression until it reaches four times its original pressure. It then undergoes an isobaric expansion. After that, it undergoes an isochoric process back to the state where it began. (a) Draw the process on a p V diagram (b) Find the pressure (atm), temperature (K), and volume (liters) at each point where it changes processes Which bones develop via intramembranous ossification and whichbones develop via endochobdral ossification? In what way does the Gospel of Mark emphasize the failure of Jesus's disciples?Based on New Testament FoundationsBIB-502 9 7. The radius of the planet is R, and the mass of the planet , measured in meters is M. Micheal Caine is on a location very far from the planet, whearas Anne Hathway is standing on the surface of the planet. If Anne Hathway sees the clock of Micheal Caine, she sees that his clock is ticking N times as fast as her own clock. What is the ration of M/Rs.(6 marks). Why should managers try to create ethical organizational cultures? The SohnCo Baby Products Division (BPD) is developing a new process for creating their Happy Baby! baby bottle. The HappyBaby! bottle was designed based on requests from parents for a larger, easier to fill bottle. They use a molding process that is new in the plant and below is a sample set of data they have collected. The design specification for the length of this bottle is 12.500 inches with a plus and minus tolerance of .300 inches. As with all BPD products, the HappyBaby! bottle will be made with a university sports affinity decal applique as their products have become extremely popular through alumni association and team sports website marketing. The HappyBaby! bottle is expected to start production before the college football bowl season starts in December. It will be produced in the new BPD plant located in urban New Jersey. Your recent career change to quality engineering consultant after extensive work experience in plastics and molding has resulted in a frantic phone call asking you to drop everything and fly to the new BPD plant for triple your usual rate. The plant is having troubles producing the HappyBaby! bottle and has no quality plans as all the quality engineering and inspection staff have quit in frustration and taken all the files. Thus, you take on the problem of the HappyBaby! Bottle. Your mission: 1. On arriving at the plant, you work with the current production staff to collect some data. Evaluate this data set and make any recommendations you think appropriate. An Excel file is available as well. 2. Develop a plan for BPD to set up a system using control charts. Write the BPD staff a memo explaining their roles under your proposed plan.