35.0 g of copper pellets are removed from a 300∘C oven and immediately dropped into 70.0 mL of water at 24.0 ∘C in an insulated cup. Here is some information that may be helpful to you: ccopper = 385 Jkg∘C cwater = 4190 Jkg∘C Melting Point of Copper = 1080 ∘C For water 1 mL = 1 g = 1 cm3. What will the new water temperature be?

Answers

Answer 1

The new water temperature after adding 35.0 g of copper pellets, removed from a 300°C oven, into 70.0 mL of water at 24.0°C can be calculated using the principles of heat transfer and specific heat capacities.

In the first step, we need to calculate the heat lost by the copper pellets as they cool down from 300°C to the final temperature. The heat lost can be calculated using the equation:

[tex]Q_{copper} = m{copper} \times c_{copper} \times (T_{final} - T_{initial})[/tex]

where mcopper is the mass of copper, ccopper is the specific heat capacity of copper, Tfinal is the final temperature, and Tinitial is the initial temperature. Plugging in the values, we get:

Qcopper = 35.0 g * 385 J/(kg∙°C) * (Tfinal - 300°C)

Next, we calculate the heat gained by the water as it heats up from 24.0°C to the final temperature. The heat gained can be calculated using the equation:

[tex]Q_{water}[/tex] = [tex]m_{water}[/tex] × [tex]c_{water}[/tex]× ([tex]T_{final}[/tex] - [tex]T_{initial}[/tex]  )

where [tex]m_{water}[/tex] is the mass of water, [tex]c_{water}[/tex] is the specific heat capacity of water, Tfinal is the final temperature, and Tinitial is the initial temperature. Plugging in the values, we get:

[tex]Q_{water}[/tex] = 70.0 g × 4190 J/(kg∙°C) × ([tex]T_{final}[/tex] - 24.0°C)

Since the system is insulated, the heat lost by the copper pellets is equal to the heat gained by the water. Therefore, we can set Qcopper equal to Qwater and solve for the final temperature, [tex]T_{final}[/tex] .

To learn more about temperature refer:

https://brainly.com/question/4735135

#SPJ11


Related Questions

how does catalytic hydrogenation affect the physical properties of the oils?

Answers

Catalytic hydrogenation of oils typically leads to the alteration of their physical properties.

Catalytic hydrogenation is a chemical process in which hydrogen gas is used to reduce the number of double bonds in unsaturated oils, converting them into more saturated fats. This process increases the melting point of the oils, making them more solid or semi-solid at room temperature.

As a result, the oils become more viscous and have a higher melting point, leading to changes in their texture and consistency. This transformation is often desired in the food industry to improve the stability and shelf life of oils and fats, as well as to create solid or semi-solid products like margarine or shortening.

You can learn more about Catalytic hydrogenation at

https://brainly.com/question/13910028

#SPJ11

It transforms the physical properties of oils by decreasing their melting points, increasing their fluidity and shelf life. Additionally, it results in the oils being more resistant to oxidation, which helps to increase their shelf life.

Catalytic hydrogenation is the process of adding hydrogen to an organic molecule in the presence of a catalyst to produce a saturated product. Hydrogenation is carried out in order to change the physical and chemical properties of oils. Thus, the correct answer is:It transforms the physical properties of oils by decreasing their melting points, increasing their fluidity and shelf life. Additionally, it results in the oils being more resistant to oxidation, which helps to increase their shelf life.

To know more about oxidation visit:

https://brainly.com/question/13182308

#SPJ11

what is pH is 11.89 a) the concentration of a solution of a) KoH for which b) CaCOH), for which the pH is 11.68 ? K+ (aq) + oH Taq) (KOH) = (0H KOH (aq)

Answers

The pH value of 11.89 denotes that the solution is basic and highly concentrated.

PH is a measure of the acidity or basicity of a solution. It ranges from 0 to 14, with a pH of 7 indicating a neutral solution, a pH less than 7 indicating an acidic solution, and a pH greater than 7 indicating a basic solution.pH = -log[H+]where [H+] is the hydrogen ion concentration in moles per liter of the solution.The concentration of a solution of KOH for which CaCOH has a pH of 11.68 can be calculated using the formula given below.

pH = pKw/2 + pOHwhere Kw is the ionization constant for water, which is equal to 1.0 x 10^-14 at 25°C.pOH = 14 - pH/2pOH = 14 - 11.68/2 = 8.66[OH-] = 10^-pOH = 10^-8.66 = 1.5 x 10^-9 mol/LKOH dissociates into K+ and OH- ions in solution.KOH → K+ + OH-From the equation, the concentration of OH- ions is equal to the concentration of KOH in solution.[OH-] = [KOH]Substituting [OH-] = 1.5 x 10^-9 mol/L into the equation gives:[KOH] = 1.5 x 10^-9 mol/LThe concentration of a solution of KOH for which pH is 11.89 can be calculated using the equation given below.pH = pKw/2 - log[KOH]pH = 14/2 - log[1.28 x 10^-3]pH = 11.89

To know more about solution visit:

https://brainly.com/question/15757469

#SPJ11

If the titrant has a molarity of 0.2750 M and 25.35 mL was used to reach the equivalence point and there are 30.00 mL of analyte present, what is the molarity of the analyte?

Answers

If the titrant has a molarity of 0.2750 M and 25.35 mL was used to reach the equivalence point and there are 30.00 mL of analyte present. The approximate molarity of the analyte is 0.2314 M.

To find the molarity of the analyte, we can use the equation:

Molarity of analyte × Volume of analyte = Molarity of titrant × Volume of titrant

Rearranging the equation, we get:

Molarity of analyte = (Molarity of titrant × Volume of titrant) / Volume of analyte

Plugging in the given values:

Molarity of analyte = (0.2750 M × 25.35 mL) / 30.00 mL

Calculating this expression, we find:

Molarity of analyte ≈ 0.2314 M

Therefore, the molarity of the analyte is approximately 0.2314 M.

You can learn more about molarity  at

https://brainly.com/question/30404105

#SPJ11

If the titrant has a molarity of 0.2750 M and 25.35 mL was used to reach the equivalence point and there are 30.00 mL of analyte present, then  the molarity of the analyte is 0.2325 M.

the molarity of the analyte can be found as follows:

As the equivalence point was reached, this implies that the number of moles of the analyte is equal to the number of moles of the titrant present, and this is shown by the equation below:

Moles of the titrant = Moles of the analyte

Equating the moles of the titrant to the moles of the analyte, we have;

Number of moles of the titrant = Molarity of the titrant × Volume of the titrant in liters

Or, Number of moles of the titrant = 0.2750 × 0.02535 = 0.00697625 moles

From the equation shown earlier, we know that the number of moles of the analyte is equal to the number of moles of the titrant, thus:

Number of moles of the analyte = 0.00697625 moles

The volume of the analyte used was 30.00 mL, which is equivalent to 0.03000 L, hence;

Molarity of the analyte = Number of moles of the analyte/ Volume of the analyte

Molarity of the analyte = 0.00697625 moles/0.03000 L = 0.2325 M

Therefore, the molarity of the analyte is 0.2325 M.

To know more about molarity visit:

https://brainly.com/question/31545539

#SPJ11

1. Explain the changes in the states of matter during the formation of ice form liquid water


2. Why was water first boiled? too of ice​

Answers

1. The changes in the states of matter during the formation of ice form liquid water is called freezing or solidification. 2. Water is first boiled to ensure that any impurities, such as dissolved gases or contaminants, are removed

1. The formation of ice from liquid water involves a phase change called freezing or solidification. As the temperature of liquid water decreases, the water molecules lose energy, and their movement slows down. At a certain temperature, known as the freezing point (0 degrees Celsius or 32 degrees Fahrenheit), the kinetic energy of the water molecules decreases to the point where the attractive forces between them can overcome their movement. This leads to the formation of a regular and ordered arrangement of water molecules, resulting in the solid state of matter, which is ice.

During freezing, the water molecules arrange themselves in a lattice structure with hydrogen bonds between them, creating a rigid and organized pattern. This transition from the liquid state to the solid state involves a release of heat energy, known as the latent heat of fusion.

2. Water is first boiled to ensure that any impurities, such as dissolved gases or contaminants, are removed. Boiling water helps to purify it by killing bacteria, viruses, and other microorganisms that may be present.

When water is boiled, its temperature increases and reaches the boiling point (100 degrees Celsius or 212 degrees Fahrenheit at sea level). At this temperature, the thermal energy being supplied to the water causes the water molecules to gain enough energy to overcome the intermolecular forces holding them together. As a result, the water molecules transition from the liquid state to the gaseous state, forming water vapor or steam.

Boiling water is an effective method of disinfection and purification because the high temperatures involved can destroy or inactivate many types of harmful microorganisms. It is commonly used for sterilizing equipment, preparing food, and ensuring safe drinking water.

In summary, water is first boiled to remove impurities and ensure its safety for various applications. The process of boiling involves the transition of water from the liquid state to the gaseous state through the input of thermal energy.

Know more about solidification here:

https://brainly.com/question/29428130

#SPJ8

how many moles of t-butyl alcohol are used in this experiment provided that the density of the alcohol is 0.775 g/ml?

Answers

The number of moles of t-butyl alcohol used in this experiment is 0.262 moles if the density of the alcohol is 0.775 g/ml.

The given information is as follows: Density of t-butyl alcohol (ρ) = 0.775 g/ml Volume of t-butyl alcohol used (V) = 25.0 mL

From the given data, we can calculate the mass of the t-butyl alcohol using the formula:

Mass = Volume × Density

= 25.0 mL × 0.775 g/mL

= 19.375 g

We can find the molar mass of t-butyl alcohol (C4H9OH) using the periodic table: Carbon (C) has an atomic mass of 12.01 g/mol Hydrogen (H) has an atomic mass of 1.008 g/mol Oxygen (O) has an atomic mass of 16.00 g/mol

Thus, the molar mass of t-butyl alcohol is:

Molar mass of C4H9OH

= 4(12.01 g/mol) + 10(1.008 g/mol) + 1(16.00 g/mol)

= 74.12 g/mol

Now, we can calculate the number of moles of t-butyl alcohol using the above formula: Moles of t-butyl alcohol = Mass/Molar mass= 19.375 g/74.12 g/mol= 0.262 moles.

Therefore, the number of moles of t-butyl alcohol used in this experiment is 0.262 moles if the density of the alcohol is 0.775 g/ml.

To know more about t-butyl alcohol visit

https://brainly.com/question/12123467

#SPJ11

Oxidation States of Manganese Use the half-reaction method to determine the net-ionic redox reaction between the permanganate ion and the bisulfite ion in test tube #5. АР B I U S IX S2 I

Answers

the net-ionic redox reaction between permanganate ion and bisulfite ion in test tube #5 is MnO4− + 5HSO3− + 8H+ → MnSO4 + 5SO42− + 4H2O.

Manganese has multiple oxidation states. The most important ones are +2, +4, +6, and +7. In order to determine the net-ionic redox reaction between permanganate ion and bisulfite ion in test tube #5, we first write a balanced equation for the reaction that will occur between these two ions. To balance the equation, we will first write the oxidation states of manganese for both the permanganate and bisulfite ions. Oxidation States of Manganese: Manganese has an oxidation state of +7 in permanganate ion and +4 in MnSO4 (produced by the reaction).

Half Reactions: Next, we need to separate the reaction into two half-reactions: one for oxidation and one for reduction. The half-reaction for oxidation is:

MnO4− → MnSO4 + H2O + e−

The half-reaction for reduction is:

H+ + HSO3− + e− → SO42− + H2O

Combining the two half-reactions, we get:

MnO4− + 8H+ + 5HSO3− → MnSO4 + 5SO42− + 4H2O

Thus, the net-ionic redox reaction between permanganate ion and bisulfite ion in test tube #5 is

MnO4− + 5HSO3− + 8H+ → MnSO4 + 5SO42− + 4H2O.

To know more about redox reaction visit:

https://brainly.com/question/28300253

#SPJ11

Given the following half-reactions: Al3+ + 3e-→ Al E° =-1.66 V Calculate the equilibrium constant at 25°C for the reaction Al3+ (aq) + 6F-(aq) 근 Alf6 3-(aq) (Enter your answer to two significant figures.) K= Submit Answer Try Another Version 10 item attem

Answers

The Nernst equation can be used to calculate the equilibrium constant of a reaction, given the half-reactions and the standard electrode potentials of the species involved in the reaction. We can use the Nernst equation to calculate the equilibrium constant (K) for the reaction below:Al3+ (aq) + 6F-(aq) → AlF63-(aq).

The half-reactions for the reaction are:Al3+ + 3e- → Al E° = -1.66 VF- → F- + e- E° = -2.87 V.

The Nernst equation is: E = E° - (RT/nF) ln(Q) where E is the electrode potential, E° is the standard electrode potential, R is the gas constant, T is the temperature in Kelvin, n is the number of electrons transferred, F is the Faraday constant, and Q is the reaction quotient.

For the reaction above: Q = [AlF63-] / ([Al3+] [F-]6) n = 6 (since 6 electrons are transferred) E°cell = E°(AlF63-) - E°(Al3+) - E°(F-)E°cell = -1.66 V - (-2.87 V) - 6(0.0257 V) * log ([AlF63-] / ([Al3+] [F-]6))E°cell = 1.21 V.

At equilibrium, Ecell = 0:0 = 1.21 V - (0.0257 V) * log (K)K = 2.12 x 1015.

Therefore, the equilibrium constant at 25°C for the reaction Al3+ (aq) + 6F-(aq) → AlF63-(aq) is K = 2.12 x 1015.

To know more about equilibrium constant visit:

https://brainly.com/question/28559466

#SPJ11

c. what is the poh equation? how can poh be determined from ph? (1 point)

Answers

The pOH equation relates the hydroxide ion concentration in a solution to its pOH value, which is the negative logarithm of the hydroxide ion concentration. The pOH can be determined from the pH by subtracting the pH from 14.

How can the pOH value be determined from the pH?

pOH is a measure of the alkalinity or basicity of a solution, just like pH measures acidity. The pOH value is obtained by taking the negative logarithm (base 10) of the hydroxide ion concentration in a solution. It is expressed by the equation: pOH = -log[OH-].

To determine the pOH from the pH, you can use the relationship that exists between pH, pOH, and the concentration of hydrogen ions (H+) and hydroxide ions (OH-) in water. In pure water, the concentration of hydrogen ions is equal to the concentration of hydroxide ions, so pH + pOH = 14. This equation is derived from the self-ionization of water: H2O ⇌ H+ + OH-.

By subtracting the pH value from 14, you can calculate the pOH value. For example, if the pH is 6, then the pOH would be 14 - 6 = 8. This means the solution is basic, as a higher pOH indicates a higher concentration of hydroxide ions.

Learn more about pOH

brainly.com/question/854299

#SPJ11

What is the oxidation state of Manganese in KMnO4? Input the answer with the proper sign (+ or -), followed by the roman numeral. х +7

Answers

Potassium permanganate (KMnO4) is a strong oxidizing agent that has a deep purple color and is a stable compound at room temperature. The oxidation state of manganese in KMnO4 is +7.

Potassium permanganate's chemical formula is KMnO4, with potassium ions (K+) and permanganate ions (MnO4-) combining to form it. Potassium ions have a charge of +1, while permanganate ions have a charge of -1. In the compound, the sum of the charges of the cations and anions is zero.

Therefore, if we know that each of the four oxygen atoms in the permanganate ion has a charge of -2, we can figure out the charge on the manganese atom by adding up the charges of all the ions. Since the compound has no charge, the manganese atom must have a +7 oxidation state, denoted by the Roman numeral VII. Therefore, the oxidation state of Manganese in KMnO4 is +7, which is represented as Mn(VII).In summary, the oxidation state of manganese in KMnO4 is +7, represented by the Roman numeral VII.

To know more about Potassium permanganate visit:

https://brainly.com/question/14571753

#SPJ11

For each of these, identify the functional group. Then, draw an isomer that contains a different functional group.

a. CH3CH2 OH

b. CH3CH2 H C O

c. CH3CH2 OCH3 C O

Answers

Functional groups are atoms or groups of atoms within molecules that give them characteristic chemical and physical properties.

Different functional groups have different properties, which allow for differentiation between different types of molecules. The functional groups for the given compounds are:

a. CH3CH2OH contains the hydroxyl functional group (-OH)

b. CH3CH2HCO contains the carbonyl functional group (-C=O)

c. CH3CH2OCH3CO contains both the ether functional group (-O-) and the carbonyl functional group (-C=O).

Isomers are different forms of a compound that have the same molecular formula but different structural formulas.

For each of the given compounds, an isomer with a different functional group can be drawn as follows:

a. CH3CH2OH, isomer with a different functional group: CH3CH2Br, which contains the halogen functional group (-Br).

b. CH3CH2HCO, isomer with a different functional group: CH3CH2CH2OH, which contains the hydroxyl functional group (-OH).

c. CH3CH2OCH3CO, isomer with a different functional group: CH3CH2OCH2CH3, which contains the ether functional group (-O-).

To know more about molecules refer to:

https://brainly.com/question/475709

#SPJ11

Write balanced complete ionic and net ionic equations for each of the following reactions.
2HClO4(aq)+Na2CO3(aq)→H2O(l)+CO2(g)+2NaClO4(aq)
Express your answer as a complete ionic equation. Identify all of the phases in your answer.

Answers

Finally, it is concluded that the balanced complete ionic and net ionic equations for the given reaction are

2H+(aq) + 2ClO4-(aq) + CO32-(aq) → CO2(g) + H2O(l).

The complete balanced equation for the given chemical reaction is as follows:

2HClO4(aq) + Na2CO3(aq) → H2O(l) + CO2(g) + 2NaClO4(aq)

The balanced complete ionic equation for the given reaction can be written as follows:

2H+(aq) + 2ClO4-(aq) + 2Na+(aq) + CO32-(aq) → H2O(l) + CO2(g) + 2Na+(aq) + 2ClO4-(aq

)Net Ionic Equation: CO32-(aq) + 2H+(aq) → CO2(g) + H2O(l)

The spectator ions are Na+(aq) and ClO4-(aq).

These ions are present on both the reactant and the product side.

They don't have any impact on the reaction and therefore are removed to get the net ionic equation.

Finally, it is concluded that the balanced complete ionic and net ionic equations for the given reaction are

2H+(aq) + 2ClO4-(aq) + CO32-(aq) → CO2(g) + H2O(l).

To know more about ionic equations visit:

https://brainly.com/question/13887096

#SPJ11

hwat is the charge mosst expected for the most stable ion of aluminum

Answers

The charge most expected for the most stable ion of aluminum is +3.

The electronic configuration of aluminum is 1s²2s²2p⁶3s²3p¹. Aluminum is a metal that easily loses its three valence electrons to form a +3 ion. It is because it has an incomplete valence electron shell that readily reacts to complete it. It releases its valence electrons to have a complete octet of electrons in the next shell, which is the noble gas configuration.

The number of valence electrons of aluminum in its outermost shell is three, and it is easier to remove three electrons from aluminum instead of trying to gain five electrons to become stable, making it more likely to form a cation. Therefore, the most stable ion of aluminum is +3.

learn more about aluminum here

https://brainly.com/question/246454

#SPJ11

the number of moles of ions in 45.0 ml of 4.00 m na2so4 is ________ moles.

Answers

The number of moles of ions reaction in 45.0 mL of 4.00 M Na2SO4 is 0.360 moles. .However, the question asks the number of moles of ions in 45.0 mL, so the answer must be converted to the amount of solution.

The volume of Na2SO4 solution, V = 45.0 mL = 0.0450 LThe molarity of Na2SO4 solution, M = 4.00 MNumber of moles of Na2SO4 in 0.0450 L = M × V= 4.00 M × 0.0450 L= 0.180 molNa2SO4 dissociates into three ions, two Na+ ions and one SO42- ion.So, the number of moles of ions in 0.180 mol Na2SO4 = 3 × 0.180 mol= 0.540 molThe number of moles of ions in 45.0 mL of 4.00 M Na2SO4 is 0.540 moles.

Using the molarity equation M = mol/L, the number of moles can be calculated by rearranging the equation to mol = M x L. The number of moles of Na2SO4 is then multiplied by 3, since each mole of Na2SO4 produces 3 moles of ions. Thus,mol = M x Lmol = 4.00 mol/L x 0.0450 Lmol = 0.180 moles of Na2SO43 x 0.180 moles of ions = 0.540 moles of ions in 45.0 mL of 4.00 M Na2SO4.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

IUPAC name i) (CH3)2 сно сH3
ii) CH2=CH-CH (CH3)2 ​

Answers

Answer:

i. [tex](CH_3)_2CHCH_3[/tex]

The IUPAC name  [tex](CH_3)_2CHCH_3[/tex] is  2-methylpropane.

ii) [tex]CH_2=CH-CH(CH_3)_2[/tex]

The IUPAC name of [tex]CH_2=CH-CH(CH_3)_2[/tex] is 3-methyl-1-butene.

Here are the steps on how to find the IUPAC names of these compounds:

Identify the longest carbon chain.Number the carbon atoms in the longest chain, starting from the end that is closest to a double bond or triple bond.Give the carbon atoms in the longest chain a number, starting from 1 and continuing to the end of the chain.If there are any substituents (groups of atoms that are attached to the main chain), identify them and give them a name.Write the name of the compound, starting with the name of the longest chain and then adding the names of the substituents.

In the first compound, the longest carbon chain is 3 carbons long. The double bond is on the 2nd carbon atom, so we number the carbon atoms starting from the end that is closest to the double bond. The substituents are two methyl groups, which are attached to the 1st and 3rd carbon atoms. The IUPAC name of the compound is 2-methyl propanal.

In the second compound, the longest carbon chain is 4 carbons long. The double bond is on the 2nd carbon atom, so we number the carbon atoms starting from the end that is closest to the double bond. The only substituent is a methyl group, which is attached to the 3rd carbon atom. The IUPAC name of the compound is 3-methylbut-1-ene.

Solute s has a partition coefficient of 4.0 between water (phase 1) and chloroform (phase 2). calculate the concentration (m) of s in chloroform if [s(aq)] is 0.016 m.

Answers

The concentration of s in chloroform is 0.004 M.

Partition coefficient is the ratio of concentrations of a solute in two non-miscible solvents at equilibrium at a given temperature.

The equation that relates the concentrations in two solvents is given as: [S]1/K = [S]2 where,

[S]1 = Concentration of solute in solvent 1

[S]2 = Concentration of solute in solvent 2

K = Partition coefficient

Given : [S]1 = 0.016 M (concentration of solute in water)

[S]2 = ? (concentration of solute in chloroform)

K = 4.0 (partition coefficient between water and chloroform)

Therefore, [S]1/K = [S]2 Or [0.016 M]/4.0 = [S]2

[S]2 = 0.004 M

Therefore, the concentration of s in chloroform is 0.004 M.

Learn more about concentration :

https://brainly.com/question/17206790

#SPJ11

a+sample+from+a+refuse+deposit+near+the+strait+of+magellan+had+60\%%+of+the+carbon-1414+found+in+a+contemporary+living+sample.+how+old+was+the+sample?

Answers

A sample from a refuse deposit near the Strait of Magellan had 60% of the carbon-14 found in a contemporary living sample. How old was the sample?The half-life of Carbon-14 is 5730 years.

A sample from a refuse deposit near the Strait of Magellan had 60% of the carbon-14 found in a contemporary living sample. We need to determine the age of the sample.Let's assume that the contemporary living sample contains 100 grams of carbon-14. After one half-life, 50 grams of carbon-14 will remain in the sample. After two half-lives, 25 grams of carbon-14 will remain in the sample. This is because carbon-14 undergoes exponential decay.After 3 half-lives, 12.5 grams of carbon-14 will remain in the sample. We can calculate the percentage of carbon-14 remaining by dividing the mass of carbon-14 remaining by the initial mass of carbon-14 in the sample.

after 3 half-lives, the percentage of carbon-14 remaining is:$$\frac{12.5}{100} \times 100 \% = 12.5 \%$$After 4 half-lives, 6.25 grams of carbon-14 will remain in the sample. The percentage of carbon-14 remaining after 4 half-lives is:$$\frac{6.25}{100} \times 100 \% = 6.25 \%$$Therefore, we can use the following equation to determine the age of the sample:$$\% \text{ of carbon-14 remaining} = \left(\frac{1}{2}\right)^n \times 100 \%$$where n is the number of half-lives that have passed. We know that the sample from the refuse deposit had 60% of the carbon-14 found in a contemporary living sample. This means that the sample had 60 grams of carbon-14.Remember that we can use the equation above to calculate the percentage of carbon-14 remaining after n half-lives have passed. So, we can write:$$60 \% = \left(\frac{1}{2}\right)^n \times 100 \%$$Solve for n:$$\begin{aligned} 0.6 &= \left(\frac{1}{2}\right)^n \\ \log_2 0.6 &= \log_2 \left(\frac{1}{2}\right)^n \\ n &= \frac{\log_2 0.6}{\log_2 \frac{1}{2}} \\ n &= 0.73696 \end{aligned}$$The number of half-lives that have passed is approximately 0.73696. We know that each half-life is 5730 years, so we can calculate the age of the sample by multiplying the number of half-lives by the length of one half-life:$$\begin{aligned} \text{age of sample} &= 0.73696 \times 5730 \text{ years} \\ &= 4224.5 \text{ years} \end{aligned}$$Therefore, the sample from the refuse deposit near the Strait of Magellan was approximately 4224.5 years old.

To know more about Carbon visit:

https://brainly.com/question/13046593

#SPJ11

Calculate Reaction Rates From Experimental Data Question Given the data below of the concentration of compound A for the reaction A B, what is the average rate of disappearance (in units of molarity per second) of A from 90.0 seconds to 360.0 seconds? Time (s) 0.090.0180.0 270.0 360.0 450.0540.0 [A1 (M) 0.378 0.242 055 0099 0.064 0.04 0.026 Report your answer in scientific notation. .Your answer should have two significant figures. Provide your answer below: M/s

Answers

The initial reaction concentration of A is 0.378M and its concentration decreases to 0.026M in 540s.

The rate of disappearance of A is directly proportional to the concentration of A i.e.  -d[A]/dt = k[A]^n Where d[A]/dt is the rate of disappearance of A,k is the rate constant and n is the order of the reaction. Integrating the above equation, we get  ln[A] = -kt + c Taking exponentials on both sides of the equation, we get  [A] = e^(-kt + c) = e^c * e^(-kt) = k' e^(-kt)where k' = e^c is the integration constant.

Let us take two concentration values, [A1] and [A2] at two time instants t1 and t2 respectively. The average rate of disappearance of A from t1 to t2 is given by -∆[A]/∆t = ([A2] - [A1]) / (t2 - t1)We need to find the average rate of disappearance of A from 90.0 seconds to 360.0 seconds. In this case, [A1] = 0.242 M, [A2] = 0.026 M, t1 = 90.0s and t2 = 360.0s. Substituting these values in the formula,-∆[A]/∆t = ([A2] - [A1]) / (t2 - t1)= (0.026 M - 0.242 M) / (360.0s - 90.0s)= (-0.216 M) / (270.0s)= -8.0 * 10^-4 M/sSo, the average rate of disappearance of A from 90.0 seconds to 360.0 seconds is -8.0 * 10^-4 M/s.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

Classify the given terms or examples with the appropriate category. Increase or decrease in metabolic rate Skeletal muscle contraction Release of TRH Heat brought to skin surface Sweat glands stimulated or inhibited Vasodilation or constriction of peripheral blood vessels Increased number of sodium potassium pumps Neurological Responses to Change in Body Temperature Hormonal Responses to Change in Body Temperature

Answers

The given terms or examples can be classified into different categories as follows Increase or decrease in metabolic rate - Hormonal Responses to Change in Body Temperature Skeletal muscle contraction - Neurological Responses to Change in Body Temperature Release of TRH.

Hormonal Responses to Change in Body Temperature Heat brought to skin surface Sweat glands stimulated or inhibited - Neurological Responses to Change in Body Temperature Vasodilation or constriction of peripheral blood vessels  number of sodium potassium pumps Neurological Responses to Change in Body Temperature - Hormonal Responses to Change in Body Temperature Heat brought to skin surface :It is a long answer as it requires a detailed explanation about

the mechanisms involved in bringing heat to the skin surface .Vasodilation or constriction of peripheral blood vessels it requires a detailed explanation about the mechanisms involved in the vasodilation or constriction of blood vessels .Increased number of sodium potassium pumps: It is as it only requires a brief explanation of the term .Neurological Responses to Change in Body Temperature  to changes in body temperature are mostly regulated by the nervous system. Hormonal Responses to Change in Body Temperature

To know more about Temperature visit;

https://brainly.com/question/32232112

#SPJ11

When you move from left to right across a row and up a column on the periodic table, which of the following statements is true?
a.) It becomes impossible to add an electron to the atom.
b.) It becomes more difficult to add an electron to the atom.
c.) It has no effect on how difficult it is to add an electron to the atom.
d.) It becomes easier to add an electron to the atom.

Answers

When you move from left to right across a row and up a column on the periodic table, the statement which is true is "It becomes more difficult to add an electron to the atom. This is due to the fact that the electrons are added to the same energy level as the valence electrons.

When you move from left to right across a row and up a column on the periodic table, the statement which is true is "It becomes more difficult to add an electron to the atom. "This is due to the fact that the electrons are added to the same energy level as the valence electrons. As a result, there are more protons in the nucleus, resulting in a stronger electrostatic pull on the valence electrons, making it more difficult to add electrons. M The periodic table is a graphical representation of the elements arranged in rows and columns based on their atomic structure. It is designed in a way to reflect the chemical and physical properties of the elements. The periodic table has eight groups and seven rows. The groups contain elements with similar properties, while the rows contain elements with the same number of electron shells.

The electron configuration of the elements determines their position in the periodic table. The valence electrons, which are found in the outermost shell, determine the element's chemical properties. Electrons are negatively charged particles that revolve around the nucleus in shells. The energy of the electrons increases with the distance from the nucleus, and it takes more energy to add an electron to a higher energy shell.When moving from left to right across a row, the number of protons in the nucleus increases, making the electrostatic attraction between the nucleus and the valence electrons stronger. This results in the electrons being held more tightly, making it more challenging to add an electron. As a result, the atom becomes smaller and more electronegative as you move across a row. When moving up a column, the number of electrons in the outermost shell increases, making the size of the atom larger. In addition, the strength of the nucleus' attraction decreases, making it easier to add an electron to the outermost shell. As a result, the atoms become more reactive as you move down the column.

To know more about periodic table visit: https://brainly.com/question/28747247

#SPJ11

draw the electron configuration for a neutral atom of carbon.

Answers

The electron configuration for a neutral atom of carbon (C) is 1s² 2s² 2p².

In this configuration, the numbers represent the principal energy levels (shells), and the letters represent the sublevels. The superscript numbers represent the number of electrons occupying each sublevel.

The 1s sublevel can hold a maximum of 2 electrons, the 2s sublevel can also hold a maximum of 2 electrons, and the 2p sublevel can hold a maximum of 6 electrons (but in the case of carbon, only 2 electrons are present).

Therefore, a neutral carbon atom has a total of 6 electrons, with 2 electrons in the 1s sublevel, 2 electrons in the 2s sublevel, and 2 electrons in the 2p sublevel.

Learn more about electronic configuration, here:

https://brainly.com/question/29184975

#SPJ4

What is the color of uninoculated fermentation tube?

Answers

The color of an uninoculated fermentation tube is red. The uninoculated fermentation tube is a control tube that helps to detect changes in the medium or the environment. This uninoculated tube should remain red throughout the experiment.

The fermentation tube is a straight glass tube with a graduated scale of mL or cm³ on one side. It is used to measure the amount of gas produced by a particular microorganism during anaerobic respiration. The fermentation tubes are usually filled with a carbohydrate medium, such as glucose, and then sterilized. After sterilization, the fermentation tubes are inoculated with a specific bacterium.

The fermentation tube is then incubated at a specific temperature for a set period, depending on the bacterium's type. The bacteria in the fermentation tube will consume the carbohydrate in the medium and produce gas. The gas produced in the fermentation tube will rise up and displace the water in the open arm of the fermentation tube, pushing the water into the graduated arm and causing the water to rise.

The gas collected in the graduated arm of the fermentation tube is measured. This measurement is used to determine the amount of gas produced by the bacterium during the fermentation process.

You can learn more about fermentation tubes at: brainly.com/question/6617351

#SPJ11

In the context of microbiology, an uninoculated fermentation tube is sterile, containing a colorless medium. The fermentation tube is used to determine the fermentation capabilities of different microorganisms.

An inoculated fermentation tube, on the other hand, is filled with a culture medium and a specific microorganism. When the organism ferments the medium, it produces gas that fills the Durham tube at the top of the fermentation tube. The Durham tube, which is an inverted vial, is present in the fermentation tube to trap and measure gas production. It is common to use phenol red broth, a pH indicator, to identify the fermentation of specific sugars such as lactose, glucose, or sucrose.The color of the phenol red broth changes with the pH, which is a measure of the acid produced by the organism during fermentation. A yellow color indicates acidic conditions, and a red color indicates an alkaline environment. A pink color can be indicative of a pH between neutral and acidic. Furthermore, if the organism is unable to ferment the sugar present in the medium, the uninoculated fermentation tube will have a colorless medium.

To know more about fermentation visit:

https://brainly.com/question/31279960

#SPJ11

the combustion of propane (c3h8) produces co2 and h2o:c3h8 (g) 5o2 (g) → 3co2 (g) 4h2o (g)the reaction of 4.0 mol of o2 will produce ________ mol of h2o.

Answers

When 4.0 moles of O2 are reacted, it will produce 3.2 moles of H2O.

According to the balanced chemical equation for the combustion of propane:

C3H8 (g) + 5O2 (g) → 3CO2 (g) + 4H2O (g)

We can see that for every 5 moles of O2, we produce 4 moles of H2O. Therefore, we can set up a proportion to determine the number of moles of H2O produced when 4.0 moles of O2 are reacted:

(4 moles of H2O) / (5 moles of O2) = (x moles of H2O) / (4.0 moles of O2)

By cross-multiplying and solving for x, we can find the number of moles of H2O:

(4 moles of H2O) * (4.0 moles of O2) = (5 moles of O2) * (x moles of H2O)

16 moles of H2O = 5x

Dividing both sides of the equation by 5, we find:

x = 16 moles of H2O / 5 = 3.2 moles of H2O

for such more questions on moles

https://brainly.com/question/15356425

#SPJ8

choose the names of the structural isomers of octane. check all that apply. choose the names of the structural isomers of all that apply. 2,2,3,3-tetramethylbutane 3-ethylhexane 2-methylheptane 3-ethyl-3-methylpentane 3-ethyl-2-methylbutane 4-ethylheptane 2,2-dimethylhexane 2,2,3-trimethylpentane

Answers

Octane is an organic hydrocarbon molecule. It has a molecular formula of C8H18. Octane has 18 structural isomers.

The following is a list of the structural isomers of octane:

2-Methylheptane

3-Ethylhexane

3-Ethyl-

2-methylbutane2,

2-Dimethylhexane

4-Ethylheptane

3-Ethyl-

3-methylpentane

2,2,3-Trimethylpentane2,2,3,3-

Tetramethyl butane:

All the names that apply to the structural isomers of octane are

2-methylheptane,

3-ethylhexane,

3-ethyl-

2-methylbutane, 2,

2-dimethylhexane,

4-ethylheptane,

3-ethyl-

3-methylpentane, 2,2,

3-trimethylpentane,

and 2,2,3,3-tetramethylbutane.

Any organic chemical that only contains the elements carbon (C) and hydrogen (H) is a hydrocarbon. The framework of the compound is formed by the carbon atoms joining together, and the hydrogen atoms attach to them in many different ways.

To know more about  hydrocarbon molecule refer to:

https://brainly.com/question/7509853

#SPJ11

how to determine which element has the highest second ionization energy

Answers

The ionization energy is the energy required to remove an electron from an atom. There are two types of ionization energies: the first ionization energy and the second ionization energy. The first ionization energy refers to the energy required to remove the first electron from an atom.

The second ionization energy refers to the energy required to remove a second electron from an atom that has already lost one electron. The second ionization energy is always higher than the first ionization energy. This is because once an electron has been removed from an atom, the atom becomes positively charged. As a result, the remaining electrons are more tightly bound to the nucleus and require more energy to remove.

To determine which element has the highest second ionization energy, one needs to consider the location of the element in the periodic table. Elements in the same group of the periodic table have similar chemical properties and, as a result, have similar ionization energies. This means that the second ionization energy of an element increases as you move from left to right across a period of the periodic table, and from bottom to top of a group.

For example, the element with the highest second ionization energy is helium. Helium is located in the top right corner of the periodic table and has a full valence shell of electrons. This makes it more difficult to remove an electron from the atom, as the remaining electrons are held more tightly by the nucleus.

To know more about ionization energy visit:

https://brainly.com/question/28385102

#SPJ11

the balanced chemical equation for this lab is: 3cucl2(aq) 2al(s) 3cu(s) 2alcl3(aq) if 10.5 g copper chloride react with 12.4 g aluminum, what is the limiting reactant?

Answers

To find out the limiting reactant when 10.5 g copper chloride reacts with 12.4 g aluminum.

We first need to balance the chemical equation: 3CuCl2(aq) + 2Al(s) → 3Cu(s) + 2AlCl3(aq). The balanced chemical equation indicates that three moles of copper chloride react with two moles of aluminum, which means the mole ratio of CuCl2 to Al is 3:2. Using the atomic masses of CuCl2 and Al, we can determine the number of moles of each:10.5 g CuCl2 / (134.45 g/mol) = 0.0781 mol CuCl2 12.4 g Al / (26.98 g/mol) = 0.459 mol Al. We see that there are fewer moles of copper chloride than aluminum, but we need to calculate the moles of aluminum needed to react with the available amount of copper chloride.

Using the mole ratio of CuCl2 to Al from the balanced equation:0.0781 mol CuCl2 × (2 mol Al / 3 mol CuCl2) = 0.0521 mol Al. We can see that 0.0521 moles of aluminum are needed to react with 0.0781 moles of copper chloride. Since we have 0.459 moles of aluminum, it is in excess and therefore copper chloride is the limiting reactant.

To know more about reactant visit:-

https://brainly.com/question/30129541

#SPJ11

The enthalpy of vaporization of SubstanceThe enthalpy of vaporization of Substance &nbisand its normal boiling point is. Calculate the vapor pressure ofThe enthalpy of vaporization of Substance &nbat.
Round your answer tosignificant digits.

Answers

The vapor pressure of Substance X can be calculated using its enthalpy of vaporization and boiling point.

How can the vapor pressure of Substance X be calculated using its enthalpy of vaporization and boiling point?

The vapor pressure of a substance is a measure of the pressure exerted by its vapor in equilibrium with its liquid phase at a specific temperature. It can be calculated using the Clausius-Clapeyron equation, which relates the vapor pressure to the enthalpy of vaporization and the temperature.

The equation is given as:

ln(P2/P1) = (-ΔHvap/R) * (1/T2 - 1/T1)

where P1 and P2 are the vapor pressures at temperatures T1 and T2 respectively, ΔHvap is the enthalpy of vaporization, and R is the ideal gas constant.

To calculate the vapor pressure of Substance X, we need to know its enthalpy of vaporization and boiling point. With this information, we can substitute the values into the Clausius-Clapeyron equation and solve for the vapor pressure at the given temperature.

Remember to round the answer to the appropriate number of significant digits based on the given question.

Learn more about vapor pressure

brainly.com/question/29640321

#SPJ11

the ionization energies for a third period element are given below. identify the element. ie1 = 786 kj/mol ie2 = 1580 kj/mol ie3 = 3230 kj/mol ie4 = 4360 kj/mol ie5 = 16,1000 kj/mol

Answers

This large increase indicates that the element is a metalloid. Further, the element must have 5 valence electrons in order for the fifth ionization energy to be so large. Finally, the element must be in the third period, since the ionization energies are given for a third-period element. Thus, the element with the given ionization energies is phosphorus (P).

In order to identify the third-period element whose ionization energies are given, we can make use of the periodic table. The ionization energy refers to the amount of energy required to remove an electron from an atom in the gaseous state. It is defined as the minimum amount of energy required to remove the outermost electron from a neutral atom in the gaseous state. As we move across a period, the ionization energy increases because the atomic radius decreases. In other words, it becomes harder to remove an electron as we approach the noble gas configuration.The ionization energies for a third period element are given below:

ie1 = 786 kj/molie2 = 1580 kj/molie3 = 3230 kj/molie4 = 4360 kj/molie5 = 16100 kj/mol

From the given ionization energies, we can see that a large increase in ionization energy occurs between the third and fourth ionization energies. This large increase indicates that the element is a metalloid. Further, the element must have 5 valence electrons in order for the fifth ionization energy to be so large. Finally, the element must be in the third period, since the ionization energies are given for a third-period element. Thus, the element with the given ionization energies is phosphorus (P).

To know more about metalloid visit;
https://brainly.com/question/20114909

#SPJ11

what is the relationship between the solubility in water, s, and the solubility product, ksp for mercury(i) chloride? hint: mercury(i) exists as the dimer hg22

Answers

The relationship between the solubility in water, S, and the solubility product, Ksp, for mercury(I) chloride, which exists as the dimer [tex]Hg_2_2[/tex], is defined by the equilibrium expression [tex]Ksp = 4S^3. T[/tex]

When mercury(I) chloride, [tex]Hg_2Cl_2[/tex], is dissolved in water, it dissociates into two Hg+ ions and two [tex]Cl^-[/tex] ions, resulting in the formation of the dimer. The solubility product expression, Ksp, represents the equilibrium between the dissociated ions and the undissociated dimer. Since the stoichiometry of the balanced equation is 2:2 (2[tex]Hg^+[/tex] ions and 2[tex]Cl^-[/tex]ions), the solubility product expression can be written as [tex]Ksp = [Hg^+]^2[Cl^-]^2[/tex].

However, considering that the dimer [tex]Hg_2_2[/tex] is present in the equilibrium, the concentration of [tex]Hg^+[/tex] ions can be expressed as 2S (twice the solubility), and the concentration of [tex]Cl^-[/tex] ions can be expressed as S (the solubility). Substituting these values into the solubility product expression, we get [tex]Ksp = (2S)^2(S)^2 = 4S^3[/tex].

Therefore, the relationship between the solubility in water, S, and the solubility product, Ksp, for mercury(I) chloride is given by the equation [tex]Ksp = 4S^3[/tex]. This equation indicates that as the solubility increases, the solubility product also increases, following a cubic relationship.

Learn more about solubility here:

https://brainly.com/question/31493083

#SPJ11

The rate constant for a certain reaction is 5.10 x 103 s. If the initial reactant concentration was 0.550 M, what will the concentration be after 12.0 minutes? 0.550 M 0.250 M 0.150 M 0.014 M

Answers

The concentration after 12.0 minutes will be 0.150 M.

To determine the concentration after a certain time, we can use the first-order rate equation:
ln([A]/[A]₀) = -kt
where [A] is the concentration at a given time, [A]₀ is the initial concentration, k is the rate constant, and t is the time.
Rearranging the equation, we have:
[A] = [A]₀ * e^(-kt)
Substituting the given values,
[A]₀ = 0.550 M, k = 5.10 x 10³ s⁻¹, and t = 12.0 minutes = 720 seconds, we can calculate the concentration [A] after 12.0 minutes.
[A] = 0.550 M * e^(-5.10 x 10³ s⁻¹ * 720 s)
Using the exponential function, we find that [A] ≈ 0.150 M.
Therefore, the concentration of the reactant after 12.0 minutes is approximately 0.150 M.

To know more about concentration, click here https://brainly.com/question/3045247

#SPJ11

Balance the following equation in acidic solution using the lowest possible integers and give the coefficient of water. C2H6O(l)+Cr2O72−(aq)→C2H4O(l)+Cr3+(aq)
a. 1
b. 7
c. 5
d. 6.

Answers

The balanced equation in acidic solution with the lowest possible integers for the given reaction is:

C2H6O(l) + 2Cr2O72-(aq) → C2H4O(l) + 2Cr3+(aq) + 4H2O(l)

The coefficient of water in the balanced equation is 6. The correct option is d.

To balance the equation, we ensure that the number of atoms of each element is the same on both sides of the equation. Here's how we balance it step by step:

By balancing the elements other than hydrogen and oxygen. In this case, we have one carbon (C) atom and two chromium (Cr) atoms on both sides, so they are already balanced.

Next, balancing the oxygen atoms by adding water (H2O) molecules to the side that needs more oxygen. The reactant side has 7 oxygen atoms from the dichromate ion (Cr2O72-), while the product side has 1 oxygen atom in acetaldehyde (C2H4O). To balance the oxygen, we add 6 water molecules to the product side.

C2H6O(l) + 2Cr2O72-(aq) → C2H4O(l) + 2Cr3+(aq) + 6H2O(l)

Balancing the hydrogen atoms by adding hydrogen ions (H+) to the side that needs more hydrogen. The reactant side has 6 hydrogen atoms from ethanol (C2H6O), while the product side has 4 hydrogen atoms from water. To balance the hydrogen, we add 4 hydrogen ions to the reactant side.

C2H6O(l) + 2Cr2O72-(aq) + 4H+(aq) → C2H4O(l) + 2Cr3+(aq) + 6H2O(l)

Now, the equation is balanced in terms of atoms. The coefficient of water in the balanced equation is 6, so the correct option is d.

To know more about balancing equations, refer to the link:

https://brainly.com/question/7181548#

#SPJ11

Other Questions
the half-life of palladium-100 is 4 days. after 12 days a sample of palladium-100 has been reduced to a mass of 1 mg. As the head of Eastman Kodak Company, George M.C. Fisher devised a plan to save Kodak from being trapped in the slow- growth photography industry, hobbled by huge debts, a dysfunctional management culture, and a dispirited workforce. At the time of his takeover of Kodak, the product development and sales functions for the company were scattered among divisions, and the business mission was ill focused. Fisher envisioned a long-term strategy in which Kodak focused on its core competencies. By evaluating the pros and cons associated with its various businesses, Fisher decided imaging was the key to the future. He then sold Kodak's health- and household-products arms. He also assembled most of the corporate talent into one division and hired an experienced computer-marketing executive to head it. Further, by stressing accountability, quality, and cycle time, Fisher began to transform Kodak's slow-moving culture. Fisher believed Kodak could double its growth rate in photography, a tough challenge in a slow-growing market, by becoming more global and by challenging Fuji film in China. Refer to the scenario. As Kodak actively redefined its business mission, organization culture, global strategy, and so on, what was it engaged in? Select one: O a. financial analysis O b. the strategic planning processes O c. market planning O d. writing the mission statement Question 11 < > For a confidence level of 98% with a sample size of 18, find the critical t value. Add Work > Next Question Show how MIss Ferenzi of Charles Baxter's "Gryphon challengesthe inevitable regimentation and uniformity of school experinceenvisioned by the mothers in "School Children." Begin by using thepoem it what best describe the reconstruction era Tools ips ps Suppose Venezuela is open to free trade in the world market for soybeare. Because of Venezuela's small size, the demand for and supply of soybeans in Venezuela do not affect the world price. The following graph shows the domestic soybeans market in Venezuela. The world price of soybeans is P = $400 per ton on the following graph, use the green triangle (triangle symbols) to shade the area representing consumer surplus (CS) when the economy is at the free-trade equilibrtom. Then, use the purple triangle (diamond symbols) to shade the area representing producer surplus (PS). Domestic Demand Domantic Supply 888888888 PRICE (Dollars par to 640 520 480 440 400 200 PS 30 25 0 60 120 150 90106 75 QUANTITY (Tons of soyban) If Venezuela allows International trade in the market for soybeans, it will import tons of soybeans Now suppose the Venezuelan government decides to impose a tariff of $40 on each imported ton of soybeans. After the tant, the price venezuelan and venezuela will import consumers pay for a ton of soybeans is tons of soybeard. Show the effects of the $40 tariff on the following graph. Show the effects of the $40 tariff on the following graph. ols Use the black Ime (plus symbol) to indicate the world price plus the tariff. Then, use the green points (triangle symbols) to show the consumer surplus with the tariff and the purple triangle (diamond symbols) to show the producer surplus with the tariff. Lastly, use the orange quadrilateral (square symbols) to shade the area representing government revenue received from the tariff and the tan points (rectangle symbols) to shade the areas representing deadweight loss (DWL) caused by the tariff. 1680 Domestic Domand Domentic Supply 640 600 Wald Price PT 540 100 AND 440 400 340 Govermare Rover 200 200 60 75 90 105 120 125 150 DWL PRICE (Dollars par or 0 15 30 45 QUANTITY (Tons of soybeans) Complete the following table to summarize your results from the previous two graphs. Under Free Trade (Dollars) Under a Tariff (Dollars) Consumer Surplus Producer Surplus Government Revenue 0 Based on your analysis, as a result of the tant, Venezuela's consumer surplus by 5 and the goverment collects by producer surplus in revenue. Therefore, the net welfare effect is a what physical state does white color represent on the periodic table Which mechanisms are important for the digestion of fat in foods?35. Why can't you get fatter on fat calories with the same number of carbs calories?36.Which is the main storage form of fats in our body?37.When cooking what should you do to lower LDL?38.Why vegetable oils comply most of adding fat to the diet?39.What is the appropriate margering to protect against heart disease40.EPA and DHA?41. What is higher LDL or DHL the desirable blood lipid level?42.What are characteristics of spreadable salad margarine made of polyunsaturated oils?43.How are trans fatty acids created?44.What is the most heart health margerized? 5.50% For 92 Days From A Multinational Company. With 61 Remaining Days To Maturity, Bank AB Sells The Deposit To Bank AA At 8.75%. Calculate The Secondary Price Of The Certificate Of Deposit. Use 360 Days Per Year.Bank AB accepts a spot deposit for Php 1,000,000.00 at 5.50% for 92 days from a multinational company. With 61 remaining days to maturity, Bank AB sells the deposit to Bank AA at 8.75%. Calculate the secondary price of the certificate of deposit. Use 360 days per year. the conjunctiva of the eye is divided into the palpebral portion and the A disc rotates about an axis through its center according to the function: 0(t) = + 3t?. What is the angular velocity of the disc at 3 s You are considering an investment with the following probability distribution: 12% 30 8% .50 -6% .20 What is this investment's coefficient of variation? a.1.09 b. 0.97 c. 1.12 d. 1.01 Exercise 5.1: When a survey calls residential telephone numbers at random, 80% of calls fail to reach a live person. A random dialling machine makes 15 calls. a) Determine the mean and the standard de 1. Cost efficiency of taxation. Suppose an individual has to allocate his fixed income Y between the consumption of two goods, X and Z. The price of each of the goods is equal to 1.a) Suppose the government imposes a per-unit tax on good X equal to t. Show graphically how the tax affects the budget constraint and consumption choice.b) Show graphically that the government couldincrease the utility level of the individual, while generating the same amount of tax revenue, by replacing the tax on good X with a tax on income. in a hypothetical economy the money supply M equals to 5000 monetary units. in the Banking system of this economy the percentage of reserved available rr is 10%.assuming that the commercial banks don't keep any free available and the citizens put all their money into bank accounts. in case that the central bank decides to increase the money supply M to 6000 monetary units which will be the level of the Monetary Base (H)? solve and choose one of the following: a. 600 b. 1000 c. 60000 d. 6000 use the rydberg equation to calculate the wavelength (in ) of the photon absorbed when a hydrogen atom undergoes a transition from n = 7 to n = 9. With the help of examples, describe the operations strategy thatyou would implement for an organization that has employed you asthe operations manager. Unit 9: Requirements Analysis and Design Definition KnowledgeArea Subject- BUAN 0100Q- Why might it be important to create elements of arequirements architecture before starting other RADD tasks? Find the production level at which the marginal cost function starts to increase. C(q)=0.001q^(3)-0.66q^(2)+426q+25,000 The term _____ refers to the reasons, or justifications, for a proposal. a. problem charter b. business case c. work statement d. use case.