Answer:
just did it the answers b
Explanation:
What is the hydrogen ion concentration [H+] of a HCl solution if the pH is measured to be 2.0?
Answer:
.01
Explanation:
H+=10^-pH
- Hope that helps! Please let me know if you need further explanation.
When a chemical reaction releases energy it is called what
When a chemical reaction releases energy it is called Exothermic Reaction.
hope it helps!
When a chemical reaction energy releases then this type of reaction is called exothermic reaction. In this reaction energy is release to the atmosphere.
What is exothermic reaction?In chemistry there are various type of reaction out of which the two main types are the exothermic reaction and endothermic reaction.
Exothermic reaction is the one in which energy releases in form of heat respiration reaction is an example of exothermic reaction. In respiration food that we eat are broken down in glucose with release of energy.
Endothermic reaction is the one in which energy is taken out during the reaction. Photosynthesis is an example of endothermic reaction where sunlight energy is taken by the plants to make food.
Thus when a chemical reaction releases energy these reactions are called exothermic reaction.
To learn more about exothermic reaction, here:
https://brainly.com/question/13014923
#SPJ2
Help Ill give you the brainiest answer thing please just give me the right answer
Answer:
the 3rd one
Explanation:
The largest contributed to water pollution is
Answer:
this si from google hope it helps
Explanation:
The Main Causes of Water Pollution in the U.S.
Runoff from Agricultural Operations. Agriculture represents one of the biggest sources of water pollution in the country. ...
Runoff and Nonpoint Source Pollution. ...
Industrial Activities. ...
Leakage from Underground Storage and Piping. ...
Leaking Sewers. ...
Vehicle Emissions. ...
Landfill Leakage. ...
Hazardous Waste.
Answer:
Runoff and Non-point Source Pollution.
Explanation:
it's caused by rainfall or snow-melt moving over and through the ground. As the runoff moves, it picks up and carries away natural and human-made pollutants, finally depositing them into lakes, rivers, wetlands, coastal waters and ground and NPS is it's abbreviation.
If you have 67.31g of CH4, how many moles do you have?
Answer:
If you have 67.31 g of CH₄, you have 4.21 moles
Explanation:
To know the amount of moles if you have 67.31 g of CH₄, you must know the molar mass, that is, the mass of one mole of a substance, which can be an element or a compound.
On the periodic table, the molar mass of the elements, also called the atomic mass or atomic weight, can be found at the bottom of the element. In this case:
C: 12 g/moleH: 1 g/moleTo calculate the molar mass of a compound, the molar mass of the elements of the compound must be added multiplied by the times they appear. So in this case the molar mass of CH₄ is:
CH₄= 12 g/mole + 4* 1 g/mole= 16 g/mole
Now you can apply the following rule of three: if 16 g are contained in 1 mole of CH4, 67.31 g in how many moles are present?
[tex]moles=\frac{67.31 g*1 mole}{16 g}[/tex]
moles= 4.21
If you have 67.31 g of CH₄, you have 4.21 moles
Changes in pressure can have a large effect on equilibrium systems containing gaseous components.
1. changing the concentration of gaseous components
2. adding an inert gas has no effect since the gas does not take part in the reaction, all partial pressures stay the same
3.changing the volume of the reaction vessel. This will cause a shift in the equilibrium position if the number of moles of gas is different on the reactant and product side (so Δn = n products - n reactants)
How would you change the volume for each of the following reactions to increase the yield of the product(s)?1. CaCO3(s) ⇋ CaO(s) + CO2(g) (increase, decrease, no change)2. S(s) + 3F2(g) ⇋ SF6(g) (increase, decrease, no change)3. Cl2(g) + I2(g) ⇋ 2ICl(g) (increase, decrease, no change)
Answer:
The correct option is 1, since by changing the partial pressures the gas pressures change, the gases go from the zones of higher partial pressure to the zones of lower partial pressure, an example of this is the homeostasis of the human pulmonary alveolus in gas exchange with CO2 and O2.
Explanation:
In the first it increases, in the second the volume is maintained, and in the third reaction it decreases.
Answer:
1. Increase volume.
2. No change.
3. No change.
Explanation:
Hello,
In this case, if we want to shift the reaction rightwards, based on the Le Chatelier's principle we would have to:
1. For this reaction:
[tex]CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)[/tex]
- Increase the volume or decrease the pressure, since there are more gaseous moles at the products.
2. For this reaction:
[tex]S(s) + 3F_2(g) \rightleftharpoons SF_6(g)[/tex]
- Do nothing since it is not possible to achieve it as we have the same number of gaseous moles at both reactants and products.
3. For this reaction:
[tex]Cl_2(g) + I_2(g)\rightleftharpoons 2ICl(g)[/tex]
- Do nothing since it is not possible to achieve it as we have the same number of gaseous moles at both reactants and products.
Regards.
Question 1 of 10
2 Points
An engineering team is conducting a wind tunnel test to examine the
aerodynamics of a car it has designed. Which part of the engineering process
is the team in?
O A. Do the work.
O B. Evaluate the results.
O C. Improve and redesign.
D. Identify a need.
SUBMIT
Explanation:
Evaluate the results, letter B
Please help! BRAINLIEST to correct answer!!!!
Answer:
Exothermic ProcessExplanation:
Which of the following will increase the boiling point of water?
Adding more water
Adding sugar
Removing some of the water
None of the above
Answer:
Explanation:
Adding sugar
Consider the half reaction below.
2 upper C l superscript minu (a q) right arrow upper C l subscript 2 (g) plus 2 e superscript minus.
Which statement best describes what is taking place?
Chlorine is losing electrons and being oxidized.
Chlorine is losing electrons and being reduced.
Chlorine is gaining electrons and being oxidized.
Chlorine is gaining electrons and being reduced.
In this reaction, chlorine is losing electrons and being oxidized. Therefore, option A is correct.
What is an electron ?The elementary electric charge of the electron is a negative one, making it a subatomic particle. Due to their lack of components or substructure, electrons, which are part of the lepton particle family's first generation, are typically regarded to be elementary particles.
Quarks make up protons and neutrons, but not electrons. We believe that quarks and electrons are fundamental particles that are not composed of lesser subatomic particles. Saying that everything is formed of particles is one thing.
An electron's energy is determined by where it is in relation to the atom's nucleus. The distance an electron in an atom has to travel from the nucleus depends on its energy level.
Thus, option A is correct.
To learn more about an electron, follow the link;
https://brainly.com/question/1255220
#SPJ6
Answer:
Explanation:
Option A - chlorine is losing electrons and being oxidized.
Why did the Mt. Pinatubo eruption result in global temperatures dropping almost two degrees?
Answer:
In the case of Mount Pinatubo, the result was a measurable cooling of the Earth's surface for a period of almost two years. Because they scatter and absorb incoming sunlight, aerosol particles exert a cooling effect on the Earth's surface.
Explanation:
Temperature measures the average kinetic energy of particles of the substances. Therefore, the Mt. Pinatubo eruption result in global temperatures dropping almost two degrees.
What is temperature?Temperature is used to measure degree or intensity of heat of a particular substance. Temperature is measured by an instrument called thermometer.
Temperature can be measured in degree Celsius °c, Kelvin k or in Fahrenheit. Temperature is a physical quantity. Heat always flow from higher temperature source to lower temperature source.
We can convert these units of temperature into one another. The relationship between degree Celsius and Fahrenheit can be expressed as:
°C={5(°F-32)}÷9
The Mt. Pinatubo eruption result in global temperatures dropping almost two degrees because they scatter and absorb incoming sunlight, aerosol particles exert a cooling effect on the Earth's temperature.
Therefore, the Mt. Pinatubo eruption result in global temperatures dropping almost two degrees.
To know more about temperature, here:
https://brainly.com/question/13694966
#SPJ6
A. An element with the valence electron configuration 5s1 would form a monatomic ion with a charge of ________. In order to form this ion, the element will _______ electron(s) from/into the _______ subshell(s).
B. An element with the valence electron configuration 2s22p4 would form a monatomic ion with a charge of ______. In order to form this ion, the element will ______ electron(s) from/into the _______ subshell(s)
Answer:
A) An element with the valence electron configuration 5s¹ would form a monatomic ion with a charge of +1. In order to form this ion, the element will lose electron(s) from/into the 5s subshell(s).
B) An element with the valence electron configuration 2s²2p⁴ would form a monatomic ion with a charge of +1. In order to form this ion, the element will lose electron(s) from/into the 2p (2pₓ specifically) subshell(s).
Explanation:
The secret to this task is to follow those rules for the stability of electronic structures of elements. The rules include
- Electrons are filled firstly into shells or subshells of lower energies first.
- While filling electronic structure or writing electronic structures for elements/ions, electrons are fed singly to the suborbital before pairing occurs, this is because the totally paired up electrons of a suborbital are more stable than the totally unpaired electrons of the same suborbital which is now in turn more stable than the combination of paired and unpaired electrons in the suborbitals.
A) For an element with its valence electron on 5s¹, this means that there is one valence electron on this atom's outermost shell and outermost suborbitals. So, to form a monoatomic ion, it would take between losing and gaining an electron. Gaining an electron leads to a 5s², which indicates empty 5p orbitals too and is therefore less stable than losing an electron which would lead to the loss of the shell 5 and focus on a completely filled 4-shell.
So, losing the electron from the 5s suborbital to become a monotonic ion makes it acquire a charge of +1.
B) Just like the explanation in (A), to form a monoatomic ion would require a loss or gain of an electron. With valence electrons 2s²2p⁴, gaining an electron would have led to a 2s²2p⁵ and a further breakdown as 2s²2pₓ²2pᵧ²2pz¹ which has unpaired and paired electrons in the 2p suborbital. This is evidently less stable than if an electron was lost, the valence electrons are 2s²2p³ and they are positioned in a totally unpaired fashion in the 2p suborbital as 2s²2pₓ¹2pᵧ¹2pz¹.
Hence, the more stable alternative is more likely to occur and the electron is lost from the 2pₓ suborbital to make the monoatomic ion of the element acquire a +1 charge status too because of lost electron too.
Hope this Helps!!!
The octet rule states that the atoms of the elements bond to each other in an attempt to complete their valence shell with eight electrons. In other words, the atoms will tend to give up or share electrons to complete eight electrons in the valence shell through an ionic, covalent or metallic bond.
In other words, the goal is to have the closest noble gas electron configuration, thus having the last complete electron shell and acquiring stability.
So, in this case, to comply with the octet rule:
A. An element with the valence electron configuration 5s¹ would form a monatomic ion with a charge of +1. In order to form this ion, the element will lose one electron from the 5s subshell.
For an element with its valence electron at 5s¹, this means that there is one valence electron in the outermost shell of this atom and in the outermost suborbitals. To form a monatomic ion, it would be necessary between losing or gaining an electron and that ion is stable. It takes less energy to lose the electron of the suborbital 5s and acquire a charge of of +1, than to acquire an electron, because it forms the 5s² suborbital, which indicates empty 5p orbitals too and is therefore less stable.
Also, in this way, the octet rule is fulfilled.
B. An element with the valence electron configuration 2s²2p⁴ would form a monatomic ion with a charge of -2. In order to form this ion, the element will gain two electron into the 2p subshell(s).
After gain two electron the atom has eight electrons in its valence shell, giving it the same electronic configuration as a noble gas (2s²2p⁶). In this way, the octet rule is fulfilled and the ion is stable.
Learn more:
https://brainly.com/question/14077115?referrer=searchResultshttps://brainly.com/question/13980678?referrer=searchResults
Based on the diagram below, how much of the excess reactant is left over? *
2 slices of bread and 3 pieces of lunchmeat
2 slices of bread and 2 slices of cheese
2 of lunchmeat and 3 slices of cheese
3 of lunchmeat and 2 slices of cheese
Answer:
3 pieces of lunch-meat and 2 slices of cheese
Explanation:
You have enough bread to make 3 sandwiches
You have enough lunch-meat to make 4 sandwiches
You have enough cheese to make 5 sandwiches
In all you have enough material to make 3 sandwiches
so if you subtract three from each number above you will have no bread, enough lunch-meat to make one sandwich and enough cheese to make two sandwiches
luch-meat for one sandwich is: 3 pieces
Cheese for two sandwiches is: 2 pieces
A characteristic that describe a plant that can make its own food is
Answer:
Photosynthesis
this is correct
If I add 50 mls of water to 300 mls of 0.6M KNO3 solution, what will be the molarity of the diluted solution?
Answer:
[tex]M_2=0.51M[/tex]
Explanation:
Hello,
In this case, for this dilution process, we understand that the moles of the solute (potassium nitrate) remain unchanged upon the addition of diluting water. However, the resulting or final volume includes the added water as shown below:
[tex]V_2=300mL+50mL=350mL[/tex]
In such a way, we are able to relate the solution before and after the dilution by:
[tex]V_1M_1=V_2M_2[/tex]
Hence, we solve for the final molarity as:
[tex]M_2=\frac{M_1V_1}{V_2}=\frac{0.6M*300mL}{350mL}[/tex]
Best regards.
[tex]M_2=0.51M[/tex]
Heat required to raise 1 g of a substance 1°C
Answer:
Specific heat
Explanation:
Answer:
Specific Heat
Explanation:
A P E X
SCIENCE QUESTION:
The picture below shows a satellite image of Earth from outer space.What is labeled “White” on the satellite image of Earth?
A. gas in Earth's atmosphere, which keeps Earth's temperature moderate, cycles fluids, and prevents most objects from impacting Earth's surface
B. gravity, which holds all living organisms to Earth, pulls water from clouds, and keeps Earth circulating around the Sun
C. a magnetic field, which controls the movement of water in Earth's water cycle
D. atmospheric ice crystals, which never melt and keep Earth's temperature coo
Answer:
C
Explanation:
The reflection if sunlight on the water makes the water look silver,gray,white
When you need to produce a variety of diluted solutions of a solute, you can dilute a series of stock solutions. A stock solution has a significantly higher concentration of the given solute (typically 101 to 104 times higher than those of the diluted solutions). The high concentration allows many diluted solutions to be prepared using minimal amounts of the stock solution. What volume of a 6.01 M stock solution do you need to prepare 100. mL of a 0.3624 M solution of HCl?
Answer:
Volume of stock solution needed = 6.0299 mL
Explanation:
Dilution consists of lowering the amount of solute per unit volume of solution. It is achieved by adding more diluent to the same amount of solute.
This is deduced when thinking that both the dissolution at the beginning and at the end will have the same amount of moles.
Data:
M1 = 6.01 M stock solution concentration
M2 = 0.3624 M diluted solution concentration
V2 =100 mL diluted solution volume
V1 = ? stock solution volume
M1 * V1 = M2 * V2
[tex]V1=\frac{M2*V2}{M1} =\frac{0.3624M*100mL}{6.01M} =6.0299 mL[/tex]
Is it true or false?
Answer:
True
Explanation:
Burning waste can lead to air pollution and release of greenhouse gases. Carbon dioxide is one of those gases.
Which metal is most easily oxidized?
A) Cu B) Ag C) Mg D) Co
Answer:
It is Magnesium because magnesium is the most active out of those three
Explanation:
The metal which is most easily oxidized is : ( C ) Magnesium ( Mg )
What is Oxidization ?
Oxidization involves the process of the addition of oxygen and the removal of electrons from a compound when Magnesium reacts with oxygen it easily gets oxidized when compared to other metals in the question since magnesium is the most active.
Hence we can conclude that The metal which is most easily oxidized is : ( C ) Magnesium ( Mg ).
Learn more about oxidization :https://brainly.com/question/8990767
#SPJ2
Complex ions with different ligands have different colors because the ligands: Group of answer choices are different colors affect the energy levels of the lone-pair electrons on the metal have different energies for their bonding electrons affect the energy levels of the metal d orbitals have different energies for their lone-pair electrons
Answer:
The correct answer is the second last statement, that is, it affects the energy levels of the metal d orbitals.
Explanation:
It is because of the d-d transition of electrons that the metal complexes exhibit color. When bonding of the ligands takes place with the transition metal ion, a repulsion results between the electrons in the d orbitals of the metal ion and the electrons found within the ligands. This increases the d orbitals' energy level.
However, based on the alignment of the d orbitals in the space, all of the energies do not get elevated by the same level, it gets dissociate into two groups. This dissociation of the d-orbitals relies upon the ligand's strength. More amount of energy would be required to encourage an electron from the lower orbitals groups to the move towards the higher ones in case if the splitting is more.
Greater energy is equivalent to shorter wavelengths in terms of the color of the light absorbed. The complex ions possessing different ligands show distinct kinds of colors as the energy levels of the d orbitals of the metal get affected by the ligands.
If you start with 6 mol of nitrogen gas (N2+) what mass (g) of ammonia (NH4) will be produced?
Answer:
204g of NH3
Explanation:
The balanced equation for the reaction is given below:
N2 + 3H2 —> 2NH3
Next, we shall determine the number of mole NH3 produced by reacting 6moles of N2. This is illustrated below:
From the balanced equation above,
1 mole of N2 reacted to produce 2 moles of NH3.
Therefore, 6 moles of N2 will react to produce = 6 x 2 = 12 moles of NH3.
Finally, we shall convert 12 moles of NH3 to grams. This is illustrated below:
Number of mole of NH3 = 12 moles.
Molar mass of NH3 = 14 + (3x1) = 17g/mol
Mass of NH3 =..?
Mass = mole x molar mass
Mass of NH3 = 12 x 17
Mass of NH3 = 204g.
Therefore, 204g of NH3 will be produced from the reaction.
If a 1.45 M solution has 2.43 g HCl dissolved, what is the volume of solution? (Change g HCl into mol using molar mass)
Answer: The volume of solution is 0.0459 L
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution
[tex]Molarity=\frac{n}{V_s}[/tex]
where,
n = moles of solute
[tex]V_s[/tex] = volume of solution in L
moles of HCl (solute) = [tex]\frac{\text {given mass}}{\text {Molar mass}}=\frac{2.43g}{36.5g/mol}=0.0666[/tex]
Now put all the given values in the formula of molality, we get
[tex]1.45M=\frac{0.0666}{V_s}[/tex]
[tex]V_s=\frac{0.0666}{1.45}=0.0459[/tex]
Therefore, the volume of solution is 0.0459 L
if a sample of gas at 25.2 c has a volume of 536mL at 637 torr, what will its volume be if the pressure is increased to 712 torr?
0.5 moles of CO2 have a volume of 50 L and a pressure of 0.8210 atm. What must be the temperature of the gas?
Answer:
1000 K
Explanation:
Given data
Moles of carbon dioxide (n): 0.5 molesVolume of carbon dioxide (V): 50 litersPressure of carbon dioxide (P): 0.8210 atmospheresTemperature of carbon dioxide (T): ?We can find the temperature of carbon dioxide using the ideal gas equation.
[tex]P \times V = n \times R \times T\\T = \frac{P \times V}{n \times R} = \frac{0.8210atm \times 50L}{0.5mol \times \frac{0.08206atm.L}{mol.K} }=1000 K[/tex]
The temperature of the gas is 1000 K.
Calculate the pH of a [0.000765) M solution of KOH
Answer:
pH=10.88
Explanation:
Hello,
In this case, since potassium hydroxide is completely dissociated as shown below:
[tex]KOH\rightarrow K^++OH^-[/tex]
For which we understand it is a base, more specifically, a strong base; it means that the concentration of the OH⁻ equals the concentration of the potassium hydroxide, that is 0.000765M, for that reason we can directly compute the pOH:
[tex]pOH=-log([OH^-])=-log(0.000765)=3.12[/tex]
Finally, since the pOH and the pH are related by:
[tex]pOH+pH=14[/tex]
The pH turns out:
[tex]pH=14-3.12\\pH=10.88[/tex]
Best regards.
Question 13: Consider the strength of the Hβ absorption line in the spectra of stars of various surface temperatures. This is the amount of light that is missing from the spectra because Hydrogen electrons have absorbed the photons and jumped from level 2 to level 4. How do you think the strength of Hβ absorption varies with stellar surface temperature?
Answer:
The absorption and strength of the H-beta lines change with the temperature of the stellar surface, and because of this, one can find the temperature of the star from their absorption lines and strength. To better comprehend, let us look into the concept of the atom's atomic structure.
Atoms possess distinct energy levels and these levels of energy are constant, that is, the temperature has no influence on it. However, temperature possesses an influence on the electron numbers found within these levels of energy. Therefore, to generate an absorption line of hydrogen in the electromagnetic spectrum's visible band, the electrons are required to be present in the second energy level, that is when it captivates a photon.
Therefore, after captivating the photons the electrons jump from level 2 to level 4, which shows that there is an increase in the stellar surface temperature and at the same time one can witness a decline in the strength of the H-beta lines. In case, if the temperature of the surface increases too much, then one will witness no attachment of electron with the hydrogen atom and thus no H lines, and if the temperature of the surface becomes too low, then the electrons will stay in the ground state and no formation of H lines will take place in that condition too.
Hence, to generate a very robust H line, after captivating photons the majority of the electrons are required to stay in the second energy level.
What is the concentration of a solution if 0.450 mol of NaCl dissolved in 750 mL of water?
Answer:
.6mol/L
Explanation:
molarity = number of moles / volume of solvent (in L)
750mL / 1000mL/L = .75L
M = .450mol / .75L
M = .6mol/L
a fertilizer manufacturer makes a batch of 20kg of ammonium nitrate. what mass of ammonia in kg, does the manufacturer need to start with?
Answer:
[tex]m_{NH_3}=4.25kgNH_3[/tex]
Explanation:
Hello,
In this case, for the production of ammonium nitrate we shall consider the following chemical reaction:
[tex]NH_3+HNO_3\rightarrow NH_4NO_3[/tex]
Hence, since the molar mass of ammonium nitrate is 80 g/mol and the molar mass of ammonia is 17 g/mol, we could compute the required mass of ammonia to produce 20 kg of ammonium nitrate by using kilo-based units:
[tex]m_{NH_3}=20kgNH_4NO_3*\frac{1kmol}{80kgNH_4NO_3}*\frac{1kmolNH_3}{1kmolNH_4NO_3}*\frac{17kgNH_3}{1kmolNH_3} \\\\m_{NH_3}=4.25kgNH_3[/tex]
Best regards.
Wine goes bad soon after opening because the ethanol CH3CH2OH dissolved in it reacts with oxygen O2 gas to form water and aqueous acetic acid CH3COOH, the main ingredient in vinegar. Calculate the moles of ethanol needed to produce 0.095mol of water. Be sure your answer has a unit symbol, if necessary, and round it to 2 significant digits.
Answer:
We need 0.095 moles of ethanol
Explanation:
Step 1: Data given
Number of moles water = 0.095 moles
Step 2: The balanced equation
CH3CH2OH + O2 ⇒ H2O + CH3COOH
Step 3: Calculate moles of ethanol
For 1 mol ethanol we need 1 mol oxygen to produce 1 mol water and 1 mol acetic acid
For 0.095 moles water, we need 0.095 moles ethanol and 0.095 moles oxygen
We need 0.095 moles of ethanol