Answer:
21
Step-by-step explanation:
7+7+7=21
Work out the area of the shape,show working out
help me and I think I did the sides wrong
Dada la función f(x)=1+6Sen(2x+π/3) . Halle: Período, amplitud y desfase (1.5 puntos) Dominio y rango de la función (1.5 puntos) Grafique la función trigonométrica (2 puntos)
Dada una ecuación de la forma
y = A sin(B(x + C)) + DTenemos que:
la amplitud es Ael periodo es 2π/Bel desfase es C (a la izquierda es positivo)el desplazamiento vertical es DSabemos que:
f(x)=1+6Sen(2x+π/3)
Y podemos reescribirla como:
f(x)=6Sen(2(x+π/6))+1
Siendo:
A = 6 → AmplitudT = 2π/B = 2π/2 = π → PeríodoC = π/6 → DesfaseEl dominio de un a función trigonométrica es todo el conjunto de los números reales (x ∈ R ).La imagen de una función trigonométrica de esta forma es:
y ∈ [-A+D,A+D]
y ∈ [-6+1, 6+1]
y ∈ [-5,7]
La gráfica se adjunta.
A factory produces 80 % round and 20 % square buttons. Suppose that 10 % of theround buttons and 50 % of the square buttons are red. What is the probability that arandomly selected red button is square?
Answer:
5/9
Step-by-step explanation:
Let the total number of buttons is x.
Round buttons = 80% of x = 0.8xSquare buttons = 0.2xNumber of red buttons:
0.1*0.8x + 0.5*0.2x = 0.08x + 0.1x = 0.18xNumber of red square buttons is 0.1x
Required probability:
P = 0.1x/0.18x = 10/18 = 5/9What is the area of triangle ABC? - OP 03 square units 0 7 square units o 11 square units 0 15 square units see pic
Answer:
7 sq unit
Step-by-step explanation:
Area of triagle ABC = Area of rectangle mnBp - Area of trangle AmC - Are of triangle CnB - Area of triangle ABp
Area of rectangle mnBp = 5x3 = 15 sq unit
Area of trangle AmC = 4x2 /2 = 4 sq unit
Are of triangle CnB = 5x1 /2 = 2.5 sq unit
Area of triangle ABp = 3x1 /2 = 1.5 sq unit
I believe you can work out thd answer from the above
SOLVE PLS!! ILL MARK BRAINILEST!!
Answer:
73.3333....
Step-by-step explanation:
please mark me brainliest
Answer:
a: t=13.6 cm
b: h=12.9 mm
Step-by-step explanation:
Hi there!
Let's start with a
in a, we are given a right triangle (notice the right angle), the length of the hypotenuse (the side OPPOSITE from the right angle) as 18 cm, one acute angle given as 41° and the length of one of the legs (the legs are the sides that make up the right angle) as t
We're asked to use the primary trigonometric ratios
Those ratios are:
Sine, which is opposite/hypotenuse
Cosine, which is adjacent/hypotenuse
Tangent, which is opposite/adjacent
We will be basing the ratio off of the 41° angle, so let's find out which sides will be which in reference to that angle
The opposite side will be the other leg, the unmarked side
The adjacent side will be t
The hypotenuse will be the side marked as 18 cm
So let's use cos(41) in this case
cos(41)=t/18
Plug cos(41) into your calculator, and remember to have the calculator in degree mode
cos(41)≈0.8 (rounded to the nearest tenth)
0.8=t/18
multiply both sides by 18
13.6 cm=t
It's already rounded to the nearest tenth :)
b.
We are given a right triangle, and the lengths of the legs as h and 9 mm, as well as one acute angle as 35°
We'll be basing our ratio off of the 35 degree angle, so let's find which sides will be which in reference to that angle
The opposite side will be the leg marked as 9 mm
The adjacent side will be the leg marked as h
The hypotenuse will be the unmarked side
Since we are given the lengths of the opposite and the adjacent, let's use tan(35)
tan(35)=9/h
Plug tan(35) into your calculator, and remember to have it in degree mode
tan(35)≈0.7
0.7=9/h
multiply both sides by h
0.7h=9
divide both sides by 0.7
h=12.9 mm (rounded to the nearest tenth)
Hope this helps!
Suppose that the walking step lengths of adult males are normally distributed with a mean of 2.5 feet and a standard deviation of 0.4 feet. A sample of 45 men’s step lengths is taken. Step 1 of 2 : Find the probability that an individual man’s step length is less than 1.9 feet. Round your answer to 4 decimal places, if necessary.
Answer:
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Normally distributed with a mean of 2.5 feet and a standard deviation of 0.4 feet.
This means that [tex]\mu = 2.5, \sigma = 0.4[/tex]
Find the probability that an individual man’s step length is less than 1.9 feet.
This is the p-value of Z when X = 1.9. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{1.9 - 2.5}{0.4}[/tex]
[tex]Z = -1.5[/tex]
[tex]Z = -1.5[/tex] has a p-value of 0.0668
0.0668 = 6.68% probability that an individual man’s step length is less than 1.9 feet.
What is the equation of the line that is perpendicular to
and has the same y-intercept as the given line?
(0,0)
(5,0)
O y = x+1
O y = x+5
o y = 5x + 1
O y = 5x + 5
-6 -5 -4 -3 -2 -1
23
4 5 6
Mark this and return
Save and Exit
Nyt
Submit
Answer:
y = 5x + 1
Step-by-step explanation:
Given the coordinate points (0,1) and (5,0)
First, get the slope
Slope m =(0-1)/5-0
m = -1/5
Since the required line is perpendicular, then the required slope is;
M = -1/(-1/5)
M = 5
Since 1the y intecept id (0,1) i.e. 1
Required equation is y = mx+b
y = 5x + 1
This gives the required equation
Note that the coordinate (0,1) was used instead os (0,0)
.4.1 Here are the data from Exercise 2.3.10 on the num-ber of virus-resistant bacteria in each of 10 aliquots: 14 14 15 26 13 16 21 20 15 13 (a) Determine the median and the quartiles. (b) Determine the interquartile range. (c) How large would an observati
Answer:
(a)
[tex]Q_1 = 14[/tex]
[tex]Median = 15[/tex]
[tex]Q_3 = 20[/tex]
(b) [tex]IQR = 6[/tex]
Step-by-step explanation:
Given
[tex]14\ 14\ 15\ 26\ 13\ 16\ 21\ 20\ 15\ 13[/tex]
[tex]n = 10[/tex]
Solving (a): Median and the quartiles
Start by sorting the data
[tex]Sorted: 13\ 13\ 14\ 14\ 15\ 15\ 16\ 20\ 21\ 26[/tex]
The median position is:
[tex]Median = \frac{n + 1}{2}[/tex]
[tex]Median = \frac{10 + 1}{2} = \frac{11}{2} = 5.5th[/tex]
This implies that the median is the average of the 5th and the 6th data;
So;
[tex]Median = \frac{15+15}{2} = \frac{30}{2} = 15[/tex]
Split the dataset into two halves to get the quartiles
[tex]Lower: 13\ 13\ 14\ 14\ 15\[/tex]
[tex]Upper: 15\ 16\ 20\ 21\ 26[/tex]
The quartiles are the middle items of each half.
So:
[tex]Lower: 13\ 13\ 14\ 14\ 15\[/tex]
[tex]Q_1 = 14[/tex] ---- 14 is the middle item
[tex]Upper: 15\ 16\ 20\ 21\ 26[/tex]
[tex]Q_3 = 20[/tex] ---- 20 is the middle item
Solving (b): The interquartile range (IQR)
This is calculated as:
[tex]IQR = Q_3 - Q_1[/tex]
[tex]IQR = 20 - 14[/tex]
[tex]IQR = 6[/tex]
Solving (c): Incomplete details
Use completing the square to solve x^2+6x=13
Answer:
x = -3 +/- square root(22)
Step-by-step explanation:
x = -b +/- square root(b^2 - 4ac) / 2a
ax^2 + bx + c = 0
these are both the quadratic formula but one is solved for the x and another for 0
a= 1
b= 6
c = -13
x= -6 +/- square root( 6^2 - 4(1)(13)) / 2(1)
x = -6 +/- sqrt( 36 + 52) / 2
x= -6 +/- sqrt (88) / 2
sqrt of 88 = 2 x sqrt (22)
divide 2 on each
x= -3 +/- sqrt (22)
what is the measure of angle X in degrees
Answer:
If you are working with equilateral triangles, divide 180 by three to find the value of X. All of the angles of an equilateral triangle are equal. Solve for X in interesting lines by finding the value of one adjacent angle and subtracting it from 180 degrees.
Step-by-step explanation:
Exponential and Alogarithmic Functions - Alegebra question
Answer:
Step-by-step explanation:
Help pls with answer!!!Rewrite the function in the given form.
Answer:
[tex]g(x) = \frac{-2}{x-1}+5\\\\[/tex]
The graph is shown below.
=========================================================
Explanation:
Notice that if we multiplied the denominator (x-1) by 5, then we get 5(x-1) = 5x-5.
This is close to 5x-7, except we're off by 2 units.
In other words,
5x-7 = (5x-5)-2
since -7 = -5-2
Based on that, we can then say,
[tex]g(x) = \frac{5x-7}{x-1}\\\\g(x) = \frac{5x-5-2}{x-1}\\\\g(x) = \frac{(5x-5)-2}{x-1}\\\\g(x) = \frac{5(x-1)-2}{x-1}\\\\g(x) = \frac{5(x-1)}{x-1}+\frac{-2}{x-1}\\\\g(x) = 5+\frac{-2}{x-1}\\\\g(x) = \frac{-2}{x-1}+5[/tex]
This answer can be reached through alternative methods of polynomial long division or synthetic division (two related yet slightly different methods).
-------------------------
Compare the equation [tex]g(x) = \frac{-2}{x-1}+5\\\\[/tex] to the form [tex]g(x) = \frac{a}{x-h}+k\\\\[/tex]
We can see that
a = -2h = 1k = 5The vertical asymptote is x = 1, which is directly from the h = 1 value. If we tried plugging x = 1 into g(x), then we'll get a division by zero error. So this is why the vertical asymptote is located here.
The horizontal asymptote is y = 5, which is directly tied to the k = 5 value. As x gets infinitely large, then y = g(x) slowly approaches y = 5. We never actually arrive to this exact y value. Try plugging in g(x) = 5 and solving for x. You'll find that no solution for x exists.
The point (h,k) is the intersection of the horizontal and vertical asymptote. It's effectively the "center" of the hyperbola, so to speak.
The graph is shown below. Some points of interest on the hyperbola are
(-1,6)(0,7) .... y intercept(1.4, 0) .... x intercept(2, 3)(3, 4)Another thing to notice is that this function is always increasing. This means as we move from left to right, the function curve goes uphill.
You plan to conduct a survey to find what proportion of the workforce has two or more jobs. You decide on the 95% confidence level and a margin of error of 2%. A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.
How many in the workforce should be interviewed to meet your requirements? (Round up your answer to the next whole number.)
Answer:
865 in the workforce should be interviewed to meet your requirements
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is given by:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
A pilot survey reveals that 5 of the 50 sampled hold two or more jobs.
This means that [tex]\pi = \frac{5}{50} = 0.1[/tex]
95% confidence level
So [tex]\alpha = 0.05[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.05}{2} = 0.975[/tex], so [tex]Z = 1.96[/tex].
How many in the workforce should be interviewed to meet your requirements?
Margin of error of 2%, so n for which M = 0.02.
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.02 = 1.96\sqrt{\frac{0.1*0.9}{n}}[/tex]
[tex]0.02\sqrt{n} = 1.96\sqrt{0.1*0.9}[/tex]
[tex]\sqrt{n} = \frac{1.96\sqrt{0.1*0.9}}{0.02}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.96\sqrt{0.1*0.9}}{0.02})^2[/tex]
[tex]n = 864.4[/tex]
Rounding up:
865 in the workforce should be interviewed to meet your requirements
Find the indicated side of the
right triangle.
45
у
9
45
х
x = [?]
Enter
Answer:
9
Step-by-step explanation:
"1. A z-score of zero always means
a.
the raw score does not exist.
b.
the raw score exists, but is negligible.
c.
the raw score almost never occurs.
d.
the raw score is equal to the mean."
Answer:
d.
Step-by-step explanation:
Here is an answer I found on the internet (kudos to investopedia.com)
If a Z-score is 0, it indicates that the data point's score is identical to the mean score.
In other words, it's saying that a z-score of zero has a standard deviation of zero.
Graph the line that represents this equation:
y = -5.1 +2
There are 1,200 people at the beach. If 88% of them went in the water, how many people DID NOT go in the water?
Answer:
144 people
Step-by-step explanation:
88% = 0.88
We multiply the total number with 0.88 to see how many people went in the water:
1200(0.88) = 1056
To find the number of those who did NOT go in the water, we subtract the product from the total number:
1200 - 1056 = 144
Answer:
144 people DID NOT go in the water
Step-by-step explanation:
We know that there at 1,200 ppl at the beach and 88% of them DID go into the water.
So the percent of people that DID NOT go into the water is 12%, because
100% - 88% = 12%
12% is the same as 0.12
Multiply 0.12 and 1,200 and you get: 144
Hope it helps (●'◡'●)
If P(E)=0.55, P(E or F)=0.65, and P(E and F)=0.20, find P(F).
P(F)=
(Simplify your answe
Answer:
.3
Step-by-step explanation:
let x= P(f)
.65= .55+x-.2
P(F)=.3
Which expression gives the best estimate of 30 percent of 61?
The answers are below:
Hurry, please!
Answer:
it would be 1/4(60)
Step-by-step explanation:
30 percent of 61 is 18.3 and 1/4 of 60 is 15 which is closest to 18.3
Express each ratio as a fraction in its lowest terms.
18 hours to 2 days
Answer:
3/8.
Step-by-step explanation:
First convert days to hours:
2 days = 2 * 24 = 48 hours.
The greatest common factor of 18 and 48 = 6 so the required fraction is
18/48
= (18/6) / (48/6)
= 3/8.
Find the values of x for which the denominator is equal to zero for y=x^2/x^2+1 .
Answer:
Step-by-step explanation:
I assume that you mean y = x²/(x²+1), not y = x²/x²+1.
x²+1 = 0
x² = -1
x = ±√(-1) = ±i
deleted: deleted by user
GM projected that 3% of their cars produced this year will be defective. If GM produced 1,698 cars that were defective, how many cars did GM produce this year
Answer:
56600 cars
Step-by-step explanation:
Below is the calculation of number of cars produced.
The percentage of cars that is defected = 3%
Number of cars that are defective = 1698 cars
The number of cars produced in a year = 1698 / 3%
The number of cars produced in a year = 56600 cars
I WILL GIVE BRAINLIEST FAST
TRUE OR FALSE?
The triangles shown below must be congruent
B is the answer.
The triangles doesnt creates a SSS,SAS,SAA, scenario.
This triangle isn't ASA because the triangles share the same side but it have different angles that include the side.
The point-slope form of a line that has a slope of -2 and passes through point (5,-2) is shown below.
y+2=-2(x-5)
What is the equation in slope-intercept form?
O y=-2x+12
O y=-2x+8
O y=-22-7
O y=-2x-3
Savait
Answer:
y = -2x + 8Step-by-step explanation:
The equation in slope-intercept form: y = mx + b
y + 2 = -2(x - 5)
y + 2 = -2x + 10 {subtract 2 from both sides
y = -2x + 8
Determine how much interest you would earn on the following investment:
$190,000 invested at a 6.9% interest rate for 9 months.
An urn has 21 balls that are identical except that 8 are white, 7 are red, and 6 are blue. What is the probability that all are white if 3 are selected randomly without replacement?
Answer:
.0421
about 4.21%
Step-by-step explanation:
[tex]\frac{{8\choose3}}{{21\choose3}}=\frac{56}{1330}=.042105263[/tex]
it is estimated that 50% of emails are spam emails. Some software has been applied to filter these spam emails before they reach your inbox. A certain brand of software claims that it can detect 99% of spam emails and the probability for a flase positive is 5%. What is the probability that an email is detected as spam
Answer:
0.52 = 52% probability that an email is detected as spam.
Step-by-step explanation:
Probability that an email is detected as spam:
99% of 50%(are spam).
5% of 100 - 50 = 50%(false positives, that is, e-mails that are not spam but are detected as spams).
What is the probability that an email is detected as spam?
[tex]p = 0.99*0.5 + 0.05*0.5 = 0.52[/tex]
0.52 = 52% probability that an email is detected as spam.
Use the discriminant to determine how many and what kind of solutions the quadratic equation 2x^2 - 4x = -2 has.
Answer:
We can use three solution and they are
(1)completing the square
(2)quadratic formula
(3) factorisation method
The quadratic equation 2x^2 - 4x = -2 has two values .
What is quadratic equation ?According to our definition, a quadratic equation is one with degree 2, implying that its maximum exponent is 2. A quadratic has the standard form y = ax2 + bx + c, where a, b, and c are all numbers and a cannot be zero. All of these are examples of quadratic equations: y = x^2 + 3x + 1.Kind of solutions -(1)completing the square
(2)quadratic formula
(3) factorization method
Given,
quadratic equation 2x^2 - 4x = -2
2x² - 4x + 2 =0
Now solve this equation by factor,
2x² - 4x + 2 = 0
2x² - ( 2+2)x +2 = 0
2x² - 2x -2x + 2 = 0
2x(x- 1 ) -2 ( x -1) = 0
(2x - 2) ( x- 1) =0
2x - 2 = 0 or x - 1 = 0
x = 1 or x = 1
So, this equation has 2 value of x.
Learn more about quadratic equation brainly.com/question/2263981 here
#SPJ2
A teacher is paid an annual salary of $37.165. What is her gross monthly salary.
Answer:
3.01
Step-by-step explanation:
To Find :-
Monthly salary .SOLUTION :-
=> Monthly salary = $ 37.165/12= $ 3.01
Screenshot of the question
9514 1404 393
Answer:
x = 1, x = 7
Step-by-step explanation:
You can see from the graph that the x-intercepts of f(x) are ...
0 = f(-3)
0 = f(3)
To find the corresponding values of x for f(x-4), we can solve ...
0 = f(x -4)
x -4 = -3 ⇒ x = 1
x -4 = 3 ⇒ x = 7
The x-intercepts of the function after translation 4 units right are ...
x = 1, x = 7
__
Your sketch will be the same curve moved 4 units to the right. (Add 4 to every x-value shown.)