4. In cellular wireless communications, if a transmitter of base station produces 1W of power. Assume that 1W is applied to a unity gain antenna with a 600 MHz carrier frequency, (1) find the received power in dBm at a free space distance of 10 m from the antenna. (pass loss exponent n =2, Assume unity gain for the receiver antenna.). (2) The radius of cell is set to 20 m, and we set standard deviation o=3.65dB, Pin=-30.5dBm, calculate the outage probability in the cell edge. (20marks) Answer:

Answers

Answer 1

The received power in dBm at a free space distance of 10 m from the antenna is -41.03 dBm.

To calculate the received power at a free space distance of 10 m, we need to consider the free space path loss and the transmit power. The free space path loss is determined by the distance between the transmitter and receiver, the carrier frequency, and the path loss exponent.

Calculate the free space path loss (L):

L = (4πd/λ)^2

  = (4π * 10 / (3 * 10^8 / 600 * 10^6))^2

  = (4π * 10 / (3 * 10^2))^2

  = (4π * 10 / 300)^2

  = (0.41887902)^2

  = 0.1755

Calculate the received power in dBm:

Received Power (dBm) = Transmit Power (dBm) - Path Loss (dB)

Assuming unity gain for the receiver antenna, the received power is equal to the transmit power minus the path loss:

Received Power (dBm) = 10 * log10(1) - 10 * log10(L)

                    = 10 * log10(1) - 10 * log10(0.1755)

                    = 10 * 0 - 10 * (-0.756)

                    = 0 + 7.56

                    = 7.56 dBm

Convert the received power to dBm:

The received power in dBm is 7.56 dBm. However, the question asks for the received power in dBm at a free space distance of 10 m. Thus, we need to subtract the additional path loss due to the free space distance of 10 m from the reference distance of 1 m.

Additional Path Loss = 20 * log10(d2/d1)

                   = 20 * log10(10/1)

                   = 20 * log10(10)

                   = 20 * 1

                   = 20 dB

Therefore, the received power in dBm at a free space distance of 10 m from the antenna is 7.56 dBm - 20 dB = -12.44 dBm.

Learn more about free space distance:

brainly.com/question/17239713

#SPJ11


Related Questions

Write a C++ program that allows the Teacher (User) to enter the grades scored (0-100) of a student. The Teacher (User) will input the grades of 5 subjects (Math, English, Computer Science, History and Physics). After all grades have been inputted, the program should find and display the sum and average of the grades. If the student scored: 95 to 100 then notify the Teacher (User) that the letter grade is A, If the score is 90 to 94.99 then notify the Teacher (User) that the letter grade is A-, If the score is 87 to 89.99 then notify the user that the letter grade is B+, If the score is 83 to 86.99 then notify the user that the letter grade is B, If the score is 80 to 82.99 then notify the user that the letter grade is B-, If the score is 77 to 79.99 then notify the user that the letter grade is C+, If the score is 73 to 76.99 then notify the user that the letter grade is C, If the score is 70 to 72.99 then notify the user that the letter grade is Cs, If the score is 60 to 69.99 then notify the user that the letter grade is D and If the score is below 60 then notify the user that the letter grade is F. When you are coding your program should read from a list of double-precision grades(decimal) from the keyboard into an array named grade. The Output should be tested will all the letter grades. Use only Selection statement, Comparison/Relational Operators, Logical Operators and goto statement or if else statement. Explain the what the line of code means./

Answers

The letter grade is displayed based on the average grade. The use of the `goto` statement is not recommended and not used in this program. Instead, we use `if-else` statements to assign the letter grade based on the average grade.

Here's a C++ program that allows the teacher (user) to enter grades for a student, calculates the sum and average of the grades, and assigns letter grades based on the score ranges provided:

```cpp

#include <iostream>

int main() {

   double grades[5];

   double sum = 0.0;

   double average;

   // Input grades for 5 subjects

   std::cout << "Enter the grades for 5 subjects:\n";

   for (int i = 0; i < 5; i++) {

       std::cout << "Subject " << (i + 1) << ": ";

       std::cin >> grades[i];

       sum += grades[i];

   }

   // Calculate average

   average = sum / 5;

   // Display sum and average

   std::cout << "Sum of grades: " << sum << std::endl;

   std::cout << "Average grade: " << average << std::endl;

   // Assign letter grade based on average

   if (average >= 95 && average <= 100) {

       std::cout << "Letter grade: A" << std::endl;

   } else if (average >= 90 && average <= 94.99) {

       std::cout << "Letter grade: A-" << std::endl;

   } else if (average >= 87 && average <= 89.99) {

       std::cout << "Letter grade: B+" << std::endl;

   } else if (average >= 83 && average <= 86.99) {

       std::cout << "Letter grade: B" << std::endl;

   } else if (average >= 80 && average <= 82.99) {

       std::cout << "Letter grade: B-" << std::endl;

   } else if (average >= 77 && average <= 79.99) {

       std::cout << "Letter grade: C+" << std::endl;

   } else if (average >= 73 && average <= 76.99) {

       std::cout << "Letter grade: C" << std::endl;

   } else if (average >= 70 && average <= 72.99) {

       std::cout << "Letter grade: C-" << std::endl;

   } else if (average >= 60 && average <= 69.99) {

       std::cout << "Letter grade: D" << std::endl;

   } else {

       std::cout << "Letter grade: F" << std::endl;

   }

   return 0;

}

```

Explanation of the code:

- We define an array `grades` of size 5 to store the grades for each subject.

- The `sum` variable is initialized to 0 to store the sum of the grades.

- We use a `for` loop to iterate through each subject and input the grade from the user. The sum of the grades is updated in each iteration.

- After inputting the grades, we calculate the average by dividing the sum by 5.

- The sum and average are then displayed.

- Using a series of `if-else` statements, we check the average grade and assign the corresponding letter grade based on the score ranges provided.

- Finally, the letter grade is displayed based on the average grade.

Note: The use of the `goto` statement is not recommended and not used in this program. Instead, we use `if-else` statements to assign the letter grade based on the average grade.

Learn more about if-else here

https://brainly.com/question/30615951

#SPJ11

Four electricians are discussing Edison-Base fuses. Electrician A says that he plans to install them in a
new building where no circuit is more than 125 volts or 30 amperes. Electrician B says that when replacing
an existing installation, you must check for tampering. Electrician C says that when replacing an existing
installation, checking for tampering is suggested but not required. Electrician D says that he plans to install
them in a new building where circuits can be more than 125 volts or 30 amperes. Which of the following
statements is correct?
A. Electrician A is correct.
B. Electrician C is correct.
C. Electrician D is correct.
D. Electrician B is correct.

Answers

Four electricians are discussing Edison-Base fuses. Electrician A says that he plans to install them in a new building where no circuit is more than 125 volts or 30 amperes. Option A) Electrician A is correct.

What is an Edison-base fuse?

Edison-base fuses are a common type of electrical fuse. They are used in households, as well as in commercial and industrial settings. These fuses are designed to work in an Edison-base socket.

Electrician A's statement on the installation of Edison-Base fuses is correct.

When installing them in a new building, where no circuit is more than 125 volts or 30 amperes, Edison-Base fuses are suitable.

Electrician B is incorrect because tampering checks are required when replacing an existing installation.

Electrician C's statement is also incorrect because tampering checks are required when replacing an existing installation.

Electrician D's statement is incorrect because Edison-Base fuses are unsuitable for new buildings where circuits can be more than 125 volts or 30 amperes.

Learn more about Edison-Base fuses here:

https://brainly.com/question/19728960

#SPJ11

Please indicate the steps!
- Find the load impedance \( Z_{L} \) for maximum power to the load, and find the maximum power to the load.

Answers

The following steps are used to determine the load impedance[tex]\(Z_{L}\)[/tex]and the maximum power to the load:Step 1: Analyze the circuit to find the Thevenin equivalent resistance.

You need to calculate the Thevenin equivalent resistance of the circuit. To achieve this, you should temporarily remove the load resistance from the circuit and then calculate the circuit's equivalent resistance viewed from the load resistance terminals.

This is your [tex]\(R_{th}\)[/tex]value. In this case, it is presumed to be an AC circuit, so you must conduct the process using impedances. Step 2: Determine the Thevenin equivalent voltage. You must first remove the load from the circuit. After that, you must locate the voltage terminals that connect to the load resistance terminals.

To know more about resistance visit:

https://brainly.com/question/14547003
#SPJ11

answer question 1
a,b,c,d,e
What are the main design stages used in Engineering Design? [1 mark] Select one: a. Identifying the problem; creating a PDS; developing designs; final design selection. b. Identifying the problem; cre

Answers

The main design stages used in Engineering Design is option a. Identifying the problem; creating a PDS; developing designs; final design selection.

What is the parts of the Engineering Design?

In finding the issue: This step means figuring out and explaining what the problem is that needs to be fixed. This means finding out things, studying and figuring out what you need and what you can't do in a project.

When we figure out what's wrong, we make a plan called a PDS. It tells us how to design the thing we need to fix the problem. The PDS tells us what the design needs to achieve and what standards it must meet.

Learn more about   Engineering Design from

https://brainly.com/question/411733

#SPJ1

To gain more experience with if statements & do-while loops. Assignment For this assignment, you will write a program that plays the other side of the game "I'm thinking of a number" from Classwork 6. This time, the user is thinking of a number and your program will "guess". The loop is the part of your program which "knows" that the user's number is between lowEnd and highEnd inclusively. Initially, lowEnd is 1 and highEnd is 100. Each time your program "guesses" the number half-way between lowEnd and highEnd. If the new guess is low, then the new guess becomes the new lowEnd. If the new guess is high, then the new guess becomes the new highEnd. Example Compilation and Execution 1$ gcc -Wall guess.c $ ./a.out 11 Think of a number between 1 and 100. I will guess the number, then tell me if my guess is too high (enter 'h'), too low (enter '1') or correct (enter 'y' for 'yes'). Is it 50? [(h)igh, (1)ow, (y)es] h Is it 25? [(h)igh, Is it 37? [(h)igh, Is it 437 [(h)igh, (1)ow, Is it 407 [(h)igh, (1)ow, Is it 387 [(h)igh, (1)ow, Yay! I got it! [rzak101inux1 hw6] $ (1)ow, (y)es] 1 (1) ow, (y)es] 1 (y)es] h (y) es] h (y)es] y Starter Code **File: guess.c ** Author: ** Date: ** Section: 02-LEC (1068). ** E-mail: .. This file contains the main program for . . You must use a do-while loop in your program which terminates when the program guesses the user's number or when it detects cheating. You can detect cheating when the player doesn't say Y even though your program is sure that it has the correct number (since lowEnd equals highEnd). • To read in a single character typed in by the user (e.g., the letter y), use the same command you did for Homework 5: scanf("%c%c", &reply, &cr); • Notice that in the starting point file there are two #defines, LOW and HIGH. These are constant values for the min and max of the range that the user's secret number is supposed to be. To help with debugging, and to help you see what is happening with your do-while loop, print out the values of lowEnd and highEnd inside the do-while loop. Then comment out the print statement in your final version.

Answers

To gain experience with if statements and do-while loops, write a program that plays the other side of the "I'm thinking of a number" game from Classwork 6. In this case, the user is thinking of a number, and the program "guesses" it.

The loop is the section of the program that "knows" the user's number is between lowEnd and highEnd inclusively. lowEnd is initially 1, and highEnd is initially 100. Every time the program "guesses" the number halfway between lowEnd and highEnd, the loop will be executed. If the new guess is low, then the new guess becomes the new low End. If the new guess is high, then the new guess becomes the new high End. You must use a do-while loop in your program, which terminates when the program guesses the user's number or when it detects cheating.

You can detect cheating when the player doesn't say Y even though your program is sure that it has the correct number (since low End equals high End).

To read in a single character typed in by the user (e.g., the letter y), use the same command you did for Homework 5:

scanf("%c%c", &reply, &cr);

Notice that in the starting point file there are two #defines, LOW and HIGH. These are constant values for the min and max of the range that the user's secret number is supposed to be. To help with debugging, and to help you see what is happening with your do-while loop, print out the values of lowEnd and highEnd inside the do-while loop.

Then comment out the print statement in your final version.Example Compilation and Execution:```
gcc -Wall guess.c
./a.out
Think of a number between 1 and 100. I will guess the number, then tell me if my guess is too high (enter 'h'), too low (enter '1') or correct (enter 'y' for 'yes').
Is it 50? [(h)igh, (1)ow, (y)es] h
Is it 25? [(h)igh, (1)ow, (y)es] 1
Is it 37? [(h)igh, (1)ow, (y)es] 1
Is it 43? [(h)igh, (1)ow, (y)es] h
Is it 40? [(h)igh, (1)ow, (y)es] h
Is it 38? [(h)igh, (1)ow, (y)es] y
Yay! I got it!
```Here's the starter code:```#include
#include
#define LOW 1
#define HIGH 100int main() {
   // The minimum number of guesses you need to guarantee that you can guess the number is 7.
   int numGuesses = 7;
   int lowEnd = LOW;
   int highEnd = HIGH;
   int guess = (highEnd + lowEnd) / 2;
   char reply, cr;
   printf("Think of a number between %d and %d. I will guess the number, then tell me if my guess is too high (enter 'h'), too low (enter '1') or correct (enter 'y' for 'yes').\n", LOW, HIGH);

To know more about program visit :

https://brainly.com/question/30613605

#SPJ11

18 11 points Save Arawer A synchronous generator is delivering 0.95 pu of active power and 0.3 pu reactive power to an infinite bus, with a voltage of V=1.0 pu, through transmission line. The generator has a direct-axis transient reactance X-0.2 pu and the line reactance is XL -0.4 pu. A temporary three-phase fault occurred on the sending end of the line. When the fault was cleared, the line remained connected. Calculate the followings:
a.Current flowing into the infinite bus 6. [2 Mark]
b.Transient internal voltage of the generator [2 Mark)
c.Maximum power transfer [2 Mark)
d.. Initial operating power angle
e.Critical clearing angle & of the system [3 Marks)

Answers

a. To calculate the current flowing into the infinite bus, we can use the power equation: \[ P = |V| \cdot |I| \cdot \cos(\theta) \]

Given:

Active power, P = 0.95 pu

Voltage magnitude at the bus, |V| = 1.0 pu

Since the power factor (cosine of power angle, θ) is not given, we'll assume a power factor of unity (θ = 0). Rearranging the equation, we can solve for the current magnitude, |I|:

\[ |I| = \frac{P}{|V| \cdot \cos(\theta)} \]

Substituting the given values, |I| = \(\frac{0.95}{1.0 \cdot 1.0}\) pu.

b. To calculate the transient internal voltage of the generator, we can use the equation:

\[ E_{\text{transient}} = |V| - jX \cdot |I| \]

Given:

X (direct-axis transient reactance) = -0.2 pu

|I| (current magnitude) = calculated in part (a)

Substituting the values, we can find the transient internal voltage, E_{\text{transient}}.

c. The maximum power transfer occurs when the load impedance matches the complex conjugate of the generator's internal impedance. In this case, the load impedance would be the transmission line's impedance. Since the line reactance is given as XL = -0.4 pu, we can assume the line's impedance as ZL = XL.

d. The initial operating power angle is not explicitly provided in the question. However, we can assume it to be zero (θ = 0) for simplicity.

e. The critical clearing angle (θcc) is the angle at which the fault must be cleared to prevent instability in the system. It can be calculated using the equation:

\[ \theta_{cc} = \arccos\left(\frac{|V|}{|E_{\text{transient}}|}\right) \]

Given:

|V| (bus voltage magnitude)

|E_{\text{transient}}| (transient internal voltage magnitude)

Substituting the values, we can calculate the critical clearing angle (θcc).

Please note that without specific numerical values for |V|, X, XL, and |E_{\text{transient}}|, it's not possible to provide precise numerical answers.

Learn more about current flowing  here:

https://brainly.com/question/14593582

#SPJ11

Why is the loating effect. effect not much of a problem between the two stages of an instrumentation amplifier? What are the Common-mode and differential-mode voorge of the input stage of an instrumentation amp- lifier? Why is the stated set of results. important? Explain.

Answers

The effect of the floating effect is not much of a problem between the two stages of an instrumentation amplifier because the voltage gain of the differential amplifier of the first stage is higher than that of the buffer amplifier in the second stage.

This is because the floating effect is more pronounced in low voltage amplifiers with low voltage gain and high output impedance. In contrast, instrumentation amplifiers have high voltage gain, low output impedance, and high input impedance, which makes them less susceptible to the floating effect.Common-mode and differential-mode voltage of the input stage of an instrumentation amplifier:In an instrumentation amplifier, the differential amplifier provides the differential mode gain, while the input buffer provides the common-mode gain.

The stated set of results is important because it shows how well the instrumentation amplifier performs in terms of noise reduction, signal amplification, and input offset voltage. This is because the performance of the instrumentation amplifier depends on these factors. Noise reduction helps to eliminate unwanted signals from the input signal, while input offset voltage affects the accuracy of the output signal. Therefore, the set of results helps to determine the effectiveness of the instrumentation amplifier in reducing noise and offset voltage.

To know more about amplifier visit :

https://brainly.com/question/33224744

#SPJ11

What considerations should be made in when reverse engineering?
-visual Analysis
-Functional Analysis
-Structural Analysis.

Answers

Visual analysis, functional analysis, and structural analysis are important considerations in reverse engineering.

What considerations should be made in reverse engineering?

When engaging in reverse engineering, several considerations should be made to effectively understand and recreate a product or system.

Visual analysis involves studying the physical appearance and components of the object, examining its shape, dimensions, and materials used.

This helps in understanding the overall design and construction. Functional analysis focuses on understanding the purpose and behavior of the object or system, identifying its functions, inputs, and outputs.

This analysis helps in comprehending how the components work together to achieve the desired functionality.

Structural analysis involves delving deeper into the internal structure and connections of the object or system, such as disassembling it, examining circuit diagrams, or studying code.

This analysis helps in understanding the internal workings, relationships between components, and any underlying algorithms or software.

By considering these three aspects—visual, functional, and structural analysis—reverse engineering can provide valuable insights to recreate or improve upon existing products or systems.

Learn more about functional analysis

brainly.com/question/30811486

#SPJ11

A storage system presents the same losses during charging and discharging. The round trip efficiency is 74 %. From the analysis of the production and the consumption, 168 kWh are available for a storage utility. How much energy, in kWh, can be stored in the storage system ?

Answers

Given:Round trip efficiency = 74%Losses during charging = losses during dischargingEnergy available for storage = 168kWhTo find:Let the amount of energy that can be stored in the storage system be x.

The efficiency of the storage system is 74%, implying that losses during charging are the same as losses during discharging.Therefore, when energy is stored in the system, 74% of x amount of energy is available, which is equal to (74/100) x.When the stored energy is discharged, the same percentage of energy is lost. Therefore, the total amount of energy that can be extracted from x amount of energy stored is:0.74 x kWhThe available energy for storage is 168 kWh.

Therefore,168 = 0.74 xDividing both sides by 0.74,x = 168 / 0.74x = 227.027Approximately, the energy that can be stored in the storage system is 227 kWh (More than 100 kWh).

To know more about charging  visit:

https://brainly.com/question/27171238

#SPJ11

drive rolls are designed for soft welding wires. Knurled Teflon-coated O V-shaped OU-shaped

Answers

Drive rolls are designed for soft welding wires. These drive rolls are designed for welding soft wires. They are also available in different types of knurls, such as knurled, Teflon-coated, O-shaped, and U-shaped.

Drive rolls are devices that guide the wire onto the drive wheel, and they play an essential role in the welding process. The welding process may be hampered by wire slipping, birdnesting, and burnback, among other issues. These issues are caused by poor drive roll selection or adjustment of the wire feed speed.The most common drive roll types are V-shaped, U-shaped, and knurled. V-shaped drive rolls are designed for feeding wire of up to 0.045 inches. They provide a stable grip, and their sharp grooves dig into the wire to maintain steady feeding.

Knurled drive rolls are ideal for soft wires. They have serrated or grooved surfaces that hold the wire securely and are suitable for use with cables and cords. Knurled drive rolls are designed for heavy and harsh work.Teflon-coated drive rolls are ideal for aluminum wires and soft wires. They are more expensive than other drive roll types but provide a higher level of performance and efficiency. They can improve the smoothness of the wire, reduce the risk of tangling, and prevent damage to the wire's insulation.  

To know more about wires visit:

https://brainly.com/question/33465102

#SPJ11

a)List the basic principles with regards to circuits and devices that you need to bear in mind when selecting an appropriate electrical fault-finding technique. b)Explain two classifications of equipment in electrical circuits.

Answers

a) Basic principles to bear in mind when selecting an appropriate electrical fault-finding technique are :Electrical circuits are built to be powered by an external source of power, which must be available in order for the circuit to function.

Circuit Analysis: Circuit analysis techniques, including node voltage and mesh current analysis, are used to determine the circuit's operation. Passive and Active Components: To know how these components work and how they interact with other components in the circuit, one must be familiar with them. Both of these factors are crucial to consider when selecting the appropriate electrical fault-finding technique.

b) Classifications of equipment in electrical circuits are :Electrical equipment can be divided into two categories: passive and active equipment. Passive equipment: A passive component is an electrical component that does not generate electrical energy; instead, it stores it. Resistors, capacitors, and inductors are examples of passive components. Resistor is a passive component which restricts the flow of current .Circuit protection equipment like fuses and circuit breakers can also be classified as passive equipment .Active equipment: An active component is an electrical component that generates electrical energy.

To know more about  Electrical circuits visit:

brainly.com/question/12194667

#SPJ11

FILL THE BLANK.
All relational tables satisfy the _____ requirements.

Answers

All relational tables satisfy the Atomicity, Consistency, Isolation, and Durability (ACID) requirements. What is the ACID requirement? The ACID (Atomicity, Consistency, Isolation, and Durability) requirement is a database concept that ensures that data transactions are accurate, reliable, and fault-tolerant.

It has been a standard for database transactions for years and is intended to guarantee that a transaction's database state is stored in a manner that is reliable and accurate. Relational database tables have a set of properties that guarantee data integrity and consistency. These properties are the same in every database that uses relational tables. In general, they are said to be Atomicity, Consistency, Isolation, and Durability (ACID).Atomicity - It is a condition that ensures that each transaction is treated as a single, indivisible unit of operation. A transaction's success is determined by whether all of its tasks are successfully completed or if it is not completed. Consistency - When a transaction is finished, the database must be in a constant state. A consistent database follows rules and limitations to ensure data accuracy. Isolation - Multiple transactions should be executed concurrently without interfering with one other. In other words, transactions should execute independently and transparently from one other. Durability - Once a transaction is completed, it should be permanently saved in the database, even if the system fails or crashes.

To know more about relational tables visit:

https://brainly.com/question/30175413

#SPJ11

Determine the step response for the LTI systems represented by the following impulse responses: a) h[n]=δ[n]−δ[n−1] b) h[n]=(−1)n(u[n+2]−u[n−3]) c) h[n]=u[n]

Answers

The step response for the given system isy[n] = 0 for n < 0 and y[n] = n for n >= 0.

The step response for the LTI systems represented by the given impulse responses are given below:

a) h[n] = δ[n] - δ[n - 1]

The impulse response of the given system is h[n] = δ[n] - δ[n - 1].

The system is causal, so its step response can be obtained by convolving the unit step sequence u[n] with h[n]. Thus, the step response for the given system is given by:

y[n] = (h * u)[n] = (δ[n] - δ[n - 1]) * u[n] = u[n] - u[n - 1]b) h[n] = (-1)^n(u[n + 2] - u[n - 3])

The impulse response of the given system is h[n] = (-1)^n(u[n + 2] - u[n - 3]).

The system is not stable. To find the step response of the given system, we will find its z-transform and use the following property of z-transforms to obtain the step response.

Y(z) = H(z)X(z)where X(z) = 1 / (1 - z^-1), the z-transform of u[n].

H(z) = (1 - z^-6) / (1 + z^-1)Let's find the inverse z-transform of H(z) using partial fraction expansion:

H(z) = (1 - z^-6) / (1 + z^-1) = (1 - z^-1) / (1 + z^-1) + (z^-5 - z^-6) / (1 + z^-1) = (1 - z^-1) / (1 + z^-1) + z^-5(1 - z^-1) / (1 + z^-1) - z^-6 / (1 + z^-1)Therefore, the inverse z-transform of H(z) is:

h[n] = δ[n] - δ[n - 1] + δ[n - 5](u[n] - u[n - 1]) - δ[n - 6](u[n] - u[n - 1])

Thus, the step response for the given system is given by:

y[n] = (h * u)[n] = u[n] - u[n - 1] + u[n - 5] - u[n - 6]c) h[n] = u[n]

The impulse response of the given system is h[n] = u[n].

The system is causal, so its step response can be obtained by convolving the unit step sequence u[n] with h[n].

Thus, the step response for the given system is given by;

y[n] = (h * u)[n] = (u * u)[n] = Σu[k]u[n - k] = Σu[k]u[n - k] for n >= 0= 0 for n < 0

Therefore, the step response for the given system is: y[n] = 0 for n < 0 and y[n] = n for n >= 0.

Learn more about step response here:

https://brainly.com/question/30764346

#SPJ11


Create an open loop system of stepper motor and its transfer
function and draw its block diagram

Answers

The transfer function of the stepper motor system describes the relationship between the input signal and the output motion.  Block diagram: Input signal → Controller → Stepper Motor (Open-loop system)

What is the block diagram and explanation of an open-loop system for a stepper motor?

An open-loop system of a stepper motor can be represented by a block diagram that consists of an input signal, a controller, and the stepper motor itself.

The input signal represents the desired position or motion command. The controller processes the input signal and generates appropriate control signals based on the desired motion.

These control signals are then sent to the stepper motor, which converts the electrical signals into mechanical movement.

It takes into account the motor characteristics, such as step size and speed, and any external factors that may affect the motor's performance.

The block diagram provides a visual representation of how the input signal is processed by the controller and translated into motion by the stepper motor, showcasing the overall functioning of the open-loop system.

Learn more about Block diagram

brainly.com/question/13441314

#SPJ11

A shaft 500 mm diameter and 3 meters long is simply supported at the ends and carriers W three loads of 1000N and 750 N at 1 m, 2 m and 2.5 m from the left support. The young's Modulus for shaft material is 200 GN/m². Evaluate the frequency of transvers vibration.

Answers

:The frequency of transverse vibration is 22.42 HzThe shaft has a diameter of 500 mm and a length of 3 m. It is simply supported at both ends. The shaft has three loads of 1000 N and 750 N each at a distance of 1 m, 2 m, and 2.5 m, respectively, from the left support. The Young's modulus of the shaft material is 200 GN/m².The frequency of transverse vibration can be calculated using the formula:

f = (1/2π) * [(M / I) * (L / r^4 * E)]^0.5

Where f is the frequency of transverse vibration, M is the bending moment, I is the second moment of area, L is the length of the shaft, r is the radius of the shaft, and E is the Young's modulus of the material.For a circular shaft, the second moment of area is given by

:I = π/64 * d^4

Where d is the diameter of the shaft.Moment

= W * a,

where W is the load and a is the distance of the load from the support.Moment at 1 m from the

left support = 1000 * 1

= 1000 Nm

Moment at 2 m

from the left support = 1000 * 2 + 750 * (2 - 1)

= 2750 Nm

Moment at 2.5 m from the

left support = 1000 * 2.5 + 750 * (2.5 - 1)

= 4125 Nm

Total moment = 1000 + 2750 + 4125

= 7875 Nm

Radius of the shaft = 500 / 2 = 250 mm

= 0.25 mL = 3 m

Young's modulus

= 200 GN/m²Putting these values in the formula

,f = (1/2π) * [(M / I) * (L / r^4 * E)]^0.5f

= (1/2π) * [(7875 / (π/64 * (0.5)^4)) * (3 / (0.25)^4 * 200 * 10^9)]^0.5f

= 22.42 Hz

To know more about shaft visit:

https://brainly.com/question/33311438

#SPJ11

Problem 1. A brittle material has the properties Sut = 30 kpsi and Sue = 90 kpsi. Using modified-Mohr theories, determine the factor of safety for the following states of plane stress.. 0x = -20 kpsi ay = -20 kpsi, try = -15 kpst

Answers

The factor of safety is the ratio of the maximum allowable stress to the calculated stress. In the event of plane stress, the factor of safety is calculated by using the following Fo S = Allowable stress/Calculated stress

The equations for the maximum shear and principal stresses are as follows ,Since the material is brittle, the maximum allowable stress is the ultimate strength in tension, which is 30 kpsi.FoS = 30/50 = 0.6Therefore, the factor of safety is 0.6.Explanation:Given, 0x = -20 kpsi ay = -20 kpsi, try = -15 kpst. We need to calculate the factor of safety. To calculate the factor of safety, we need to use the formula, FoS = Allowable stress/Calculated stress The equations for the maximum shear and principal stresses are as follows.

Maximum shear stress theory :t = (σx − σy)/2 + (σx + σy)^2 + 4τxy^2/2Maximum principal stress theory:σ1,2 = (σx + σy)/2 ± sqrt[((σx − σy)/2)^2 + τxy^2]Maximum strain energy theory:σ1,2 = (1/2) [(σx + σy) ± sqrt[(σx − σy)^2 + 4τxy^2]]Here,Sut = 30 kpsiSue = 90 kpsi Now, Using Maximum shear stress theory,t = (σx − σy)/2 + (σx + σy)^2 + 4τxy^2/2whereσx = 0x = -20 kp sisigy = ay = -20 kpsitau = try = -15 kpsit = (-20 + 20)^2 + 4 * 20^2/2t = 50 kpsiFoS = Allowable stress/Calculated stress Since the material is brittle, the maximum allowable stress is the ultimate strength in tension, which is 30 kpsi. FoS = 30/50 = 0.6Therefore, the factor of safety is 0.6.

To know more about stress visit:

https://brainly.com/question/33465094

#SPJ11

A thin steel plate is under the action of in-plane loading. The normal and shear strains on the x and y planes due to the applied loading are as follows: εx​=−90×10−6,εy​=100×10−6 and γxy​=150×10−6 rads a) If the elastic modulus E=210GPa and the Poisson's ratio v=0.3, calculate the stress acting on the x - and y - planes, sketch the Mohr Stress Circle and solve for the principal stresses, principal strains and directions of the principal planes. [20 Marks] b) Discuss the different loading conditions that may have resulted in the stress state found in part (a) in the x and y planes. [6 Marks] c) Under different loading conditions, a state of stress exists such that σx​=125 MPa,σy​=100MPa, and τxy​=50MPa. Calculate the von Mises stress and therefore the factor of safety against failure. Assume the yield stress for the steel is 250MPa. [8 Marks]

Answers

Given information:[tex]εx​=-90 × 10^-6, εy​=100 × 10^-6, and γxy​=150 × 10^-6 and E=210 GPa, ν=0.3a)[/tex] Calculating the stress on the x and y planesFrom Hooke's law,[tex]σx​=Eεx​+νEεy​=210 × 10^9 × (-90 × 10^-6)+0.3 × 210 × 10^9 × 100 × 10^-6= -17.1 MPaσy​=Eεy​+νEεx​=210 × 10^9 × 100 × 10^-6+0.3 × 210 × 10^9 × (-90 × 10^-6)= 23.1[/tex].

MPaSketching Mohr's stress circlePrincipal stresses[tex]σ1=σx​+σy​/2+[(σx​-σy​)/2]^2+(τxy​)^2=23.1+(-17.1)/2+[(23.1-(-17.1))/2]^2+(150)^2σ1=51.31 MPaσ2=σx​+σy​/2-[(σx​-σy​)/2]^2+(τxy​)^2=-51.31[/tex]MPaPrincipal strains[tex]ε1=εx​+εy​/2+[(εx​-εy​)/2]^2+(γxy​)^2=-0.000033 ε2=εx​+εy​/2-[(εx​-εy​)/2]^2+(γxy​)^2=0.000143[/tex]Directions of the principal plane[tex]θp=1/2 tan-1(2γxy​/(σx​-σy​))θp1=1/2 tan-1(2 × 150/40.2) = 62.31°θp2=1/2 tan-1(2 × 150/(-88.2))= -27.69°b)[/tex]

The different loading conditions that may have resulted in the stress state found in part (a) in the x and y planes are given as below:Tensile stress on the y-plane and compressive stress on the x-plane with shear stress acting in the opposite direction can produce the stress state found in part (a) in the x and y planes.

C) von Mises stress and factor of safety against failureσ1​=125 MPaσ2​=100 MPaτxy​=50 MPaThe von Mises stress is given as,[tex]σv=√[(σ1​-σ2​)^2+σ2​^2+σ1​^2]=√[(125-100)^2+100^2+125^2]=150.08[/tex] MPaThe factor of safety against failure is given as,SF=yield stress / von Mises stress=250/150.08=1.6664Therefore, the factor of safety against failure is 1.6664.

To know more about information visit:

https://brainly.com/question/33427978

#SPJ11

4) Use the circuit to the right. a) (10pts) Find the circuit's resonant frequency. b) (10pts) Find the circuit's quality factor at resonance. c) (10pts) Find the circuit's bandwidth. 4d) (10pts) Find

Answers

a) To calculate the circuit's resonant frequency, we can use the formula, `[tex]f0= 1/2π√(LC)`[/tex].Where, [tex]`L = 0.5 mH`[/tex]and `C = 50 nF`.Substituting these values in the above formula, we get:

f0 = 1/2π √(0.5×10^-3 × 50×10^-9)f0 = 450 kHz.

Thus, the circuit's resonant frequency is `450 kHz`.

b) The quality factor (Q) of the circuit at resonance is given by:

[tex]`Q = 1/R√(L/C)`.[/tex]

Where `R = 500 Ω`, `L = 0.5 mH`, and `C = 50 nF`.Substituting these values in the above formula, we get:

[tex]Q = 1/500 √(0.5×10^-3 / 50×10^-9)Q = 10.[/tex]

Thus, the circuit's quality factor at resonance is `10`.

c) The bandwidth (BW) of the circuit is given by: [tex]`BW = f2 - f1`.[/tex].

Where[tex]`f1 = f0 - Δf/2`[/tex] and `[tex]f2 = f0 + Δf/2[/tex]`, and `[tex]Δf = f0/Q`[/tex].Substituting the respective values, we get:[tex]BW = f2 - f1 = (f0 + Δf/2) - (f0 - Δf/2)BW = Δf = f0/QBW = 450 × 10^3/10BW = 45 kHz.[/tex]

To know more about values visit:

https://brainly.com/question/30145972

#SPJ11

A silicon sample is fabricated such that the hole concentration is Po=1.5x1016cm-³

i. Should boron or arsenic atoms be added to the intrinsic Silicon?
ii. What concentration of impurity atoms must be added?
iii. What is the concentration of electrons?

Answers

NA = ND - Ni= 3 × 10¹⁸ - 1.5 × 10¹⁶= 2.85 × 10¹⁸ cm⁻³Since the material is n-type, the concentration of electrons is equivalent to the concentration of impurity atoms, which is 3 × 10¹⁸ cm⁻³.

When the hole concentration is Po=1.5x1016cm-³, arsenic atoms should be added to the intrinsic Silicon to decrease the hole concentration and increase the electron concentration. Additionally, the concentration of impurity atoms added should be 3 × 10¹⁸ cm⁻³ and the concentration of electrons is equal to the concentration of impurity atoms. Explanation: Boron is used to p-type semiconductors, whereas arsenic is used to n-type semiconductors. When we add arsenic to the intrinsic silicon, it makes it an n-type semiconductor.

This is because arsenic has five valence electrons. As a result, it adds an additional electron to the semiconductor's crystal lattice, causing the electron concentration to rise and the hole concentration to decrease. The formula for determining impurity concentration is as follows: ND - Ni = NAWhere, ND is the donor concentration Ni is the intrinsic carrier concentration NA is the acceptor concentration. Since we want to create an n-type semiconductor, we add arsenic, which is a donor. Thus, ND = 3 × 10¹⁸ cm⁻³ and Ni = 1.5 × 10¹⁶ cm⁻³.

To know more about semiconductors refer for :

https://brainly.com/question/27753295

#SPJ11

- If the gain \& phase responses are as follows: \[ G(\omega)=2 \cos (\omega / 2) \quad \phi(\omega)=-\omega / 2 \] find the output sequence \( y[n] \) when the input is \( x[n]=3 \cos (2 n) \) for al

Answers

Given that the gain and phase responses of the system are:

G(ω) = 2cos(ω/2)  

ϕ(ω) = −ω/2

The input sequence is:

x[n] = 3cos(2n)

The output sequence can be obtained by using the following formula:

Y(ejω) = X(ejω) × H(ejω)

where H(ejω) is the transfer function of the system that can be obtained by substituting G(ω) and ϕ(ω) in the following formula:

H(ejω) = G(ω) × ejϕ(ω)

Let us evaluate the transfer function of the system for any given input:

Y(ejω) = X(ejω) × H(ejω)

Y(ejω) = 3cos(2n) × (2cos(ω/2) × e-jω/2)

Y(ejω) = 6cos(n) cos(ω/2) - 6sin(n) sin(ω/2)

The output sequence can be obtained by taking the inverse Fourier transform of the above expression.

Hence, the output sequence is given by:

Y(n) = 6cos(πn/2)cos(πn/2) - 6sin(πn/2)sin(πn/2)

To know more about evaluate visit:

https://brainly.com/question/30316169

#SPJ11

A 50-Hz, 100-MVA, four-pole, synchronous generator has an inertia constant of 3.5 s and is supplying 0.16 pu power on a system base of 500 MVA. The input to the generator is increased to 0.18 pu. Determine (i) the kinetic energy stored in the moving parts of the generator and (ii) the acceleration of the generator. If the acceleration continues for 7.5 cycles, calculate (iii) the change in rotor angle and (iv) the speed in rpm at the end of the acceleration.

Answers

To solve this problem, we'll use the following formulas:

(i) Kinetic Energy (KE) = 0.5 * Inertia Constant * Synchronous Speed^2

(ii) Acceleration (A) = (Change in Power) / (Inertia Constant * Base MVA)

(iii) Change in Rotor Angle (Δθ) = Acceleration * (Number of Cycles)

(iv) Speed (N) = Synchronous Speed - (Δθ * (60 / Number of Cycles))

Given data:

Frequency (f) = 50 Hz

Apparent Power (S) = 100 MVA

Inertia Constant (H) = 3.5 s

Power Increase (ΔP) = 0.18 pu - 0.16 pu = 0.02 pu

System Base MVA = 500 MVA

Number of Cycles = 7.5

First, let's calculate the synchronous speed:

Synchronous Speed = (120 * f) / Number of Poles

                 = (120 * 50) / 4

                 = 1500 rpm

(i) Kinetic Energy (KE) = 0.5 * Inertia Constant * Synchronous Speed^2

                       = 0.5 * 3.5 * (1500)^2

                       = 3,937,500 J

(ii) Acceleration (A) = (Change in Power) / (Inertia Constant * Base MVA)

                    = (0.02 pu) / (3.5 s * 500 MVA)

                    ≈ 1.142 x 10^-5 pu/s

(iii) Change in Rotor Angle (Δθ) = Acceleration * (Number of Cycles)

                               = (1.142 x 10^-5 pu/s) * 7.5 cycles

                               ≈ 8.57 x 10^-5 pu

(iv) Speed (N) = Synchronous Speed - (Δθ * (60 / Number of Cycles))

             = 1500 rpm - (8.57 x 10^-5 pu * (60 / 7.5))

             ≈ 1499.852 rpm

Therefore, the results are:

(i) The kinetic energy stored in the moving parts of the generator is approximately 3,937,500 J.

(ii) The acceleration of the generator is approximately 1.142 x 10^-5 pu/s.

(iii) The change in rotor angle after 7.5 cycles is approximately 8.57 x 10^-5 pu.

(iv) The speed at the end of the acceleration is approximately 1499.852 rpm.

Learn more about Synchronous Speed here:

https://brainly.com/question/31966354


#SPJ11

The __________ method is ideal for a short amount of data and is the appropriate mode to use if you want to transmit a DES or AES key securely.

Select one:
a. electronic codebook mode
b. cipher feedback mode
c. counter mode
d. output feedback mode

Answers

The counter mode is ideal for a short amount of data and is the appropriate mode to use if you want to transmit a DES or AES key securely. What is the Counter mode? The Counter mode is a block cipher mode that was first described by Whitfield Diffie and Martin Hellman.

The Counter mode (CTR) is a stream cipher and block cipher hybrid. CTR mode encrypts and decrypts the plaintext and ciphertext block by block. It uses a random or nonce-based counter value that is appended to the Initial Vector to generate the keystream.

The keystream that is produced by the Counter mode is fed into the XOR operation with the plaintext block. It produces the ciphertext block by applying the block cipher function. The same keystream is used for both encryption and decryption in the Counter mode. The Counter mode can be used for both block cipher encryption and authentication purposes.

Learn more about counter mode at https://brainly.com/question/14144841

#SPJ11

Problem 5a DELVIERABLES: Use MATLAB to Create a Bode diagram of the uncontrolled (C(s) = 1) open loop system. Determine if it is appropriate to evaluate stability using Gain and Phase margins. Plot the response of the system using your proportional gain controller to both a unit step input and u(t)=sin(5t) (plot this for at least 10 seconds). (Use the step and Isim commands to do this) Is the system stable? HINTS: The command margin will give you both a bode diagram and the margins. U(s) Y(s) P(s) =- C(s) s+2000 +14s +165s +500 P(s) Problem 5 SETUP: Use what you know about the building blocks of bode diagrams to decide if a Lead, Lag, Lead-Lag, or Lag-Lead controller is best suited to improve system performance. Don't forget to consider the impact of placing poles/zeros on your root locus. DELIVERABLES: Implement one of the controllers listed above Recreate the bode diagram for open loop system to determine if you have improved stability Plot the response to both the step and sine input Discuss why you chose the controller you did and how it has improved performance HINTS: Increasing gain k of your controller will shift the gain plot upwards without affecting the phase. The root locus for the closed loop system can still be helpful here in determining a good gain for performance/stability in conjunction with the OL bode diagram.

Answers

The task requires creating a Bode diagram for the open-loop system, evaluating stability using Gain and Phase margins, implementing a controller, and analyzing the system's response.

To complete this task in MATLAB, you will need to follow these steps: Create the transfer function of the uncontrolled open-loop system using the given values of P(s). Use the "bode" command to plot the Bode diagram of the open-loop system. This will provide information about the system's gain and phase characteristics. Use the "margin" command to determine the Gain and Phase margins of the open-loop system. These margins will indicate the system's stability and robustness. Choose a suitable controller (Lead, Lag, Lead-Lag, or Lag-Lead) based on your analysis of the open-loop system's Bode diagram and stability margins. Consider the desired performance improvement and the impact of placing poles/zeros on the root locus. Implement the chosen controller by modifying the transfer function of the open-loop system. Plot the response of the closed-loop system to both a unit step input and a sinusoidal input (u(t) = sin(5t)) using the "step" and "lsim" commands, respectively. Observe the system's behavior and performance. Discuss why you chose the particular controller and how it has improved the system's performance based on the stability analysis, Bode diagram, and response plots. By following these steps and analyzing the system's behavior, you will be able to determine the stability and performance improvement achieved with the chosen controller.

learn more about Bode here :

https://brainly.com/question/30882765

#SPJ11

The transfer function of a control element is given by: \[ \frac{2 K}{2 s^{3}+8 s^{2}+22 s} \] 3(a) This element is connected in a unity feedback circuit. (i) Derive the closed loop transfer function

Answers

Given that the transfer function of the control element is.

[tex]:$$\frac{2K}{2s^{3}+8s^{2}+22s}$$[/tex]

The control element is connected in a unity feedback circuit.

The closed loop transfer function can be obtained by using the formula given below.

[tex]:$$\frac{C(s)}{R(s)}=\frac{G(s)}{1+G(s)H(s)}$$[/tex]

where C(s) is the output and R(s) is the input, G(s) is the forward path transfer function and H(s) is the feedback transfer function.

Here, the forward path transfer function is given as:$$G(s)=\frac{2K}{2s^{3}+8s^{2}+22s}$$And, since the system is connected in unity feedback, H(s) = 1

Therefore, the closed-loop transfer function is given by:

[tex]$$\frac{C(s)}{R(s)}=\frac{\frac{2K}{2s^{3}+8s^{2}+22s}}{1+\frac{2K}{2s^{3}+8s^{2}+22s}}$$[/tex]

To know more about element visit:

https://brainly.com/question/31950312

#SPJ11


An antique headight reflector is 10 inches widg and 3 Inches deep. Where should the light source bof placed? Assuming that the headight is opening upwarcy and veriex at the origin.

Answers

The light source should be placed at a specific distance from the antique headlight reflector to achieve the desired effect. To determine this distance, we can use the properties of the reflector and the principles of optics.

The reflector is 10 inches wide and 3 inches deep. The width corresponds to the horizontal dimension, while the depth corresponds to the vertical dimension. Since the reflector is opening upward and vertex at the origin, we can imagine a coordinate system where the x-axis represents the width and the y-axis represents the depth. The origin (0,0) corresponds to the vertex of the reflector. To find the appropriate placement of the light source, we need to consider the focal point of the reflector. The focal point is the point where parallel light rays, after being reflected, converge or appear to converge. In the case of a parabolic reflector like the antique headlight reflector, the focal point is located at a distance equal to one-fourth of the width of the reflector from the vertex.

So, in this case, the focal point would be located at a distance of 2.5 inches (10 inches divided by 4) from the vertex of the reflector. Therefore, to achieve the best lighting effect, the light source should be placed at the focal point of the reflector, which is 2.5 inches away from the vertex. By placing the light source at the focal point, the light rays emitted from the source will be reflected by the parabolic shape of the reflector and converge at a single point, creating a focused and concentrated beam of light. It's important to note that this explanation assumes ideal conditions and neglects factors like the size and shape of the light source, as well as any obstructions or imperfections in the reflector. These factors can affect the precise placement of the light source and the resulting beam of light. In conclusion, to achieve optimal lighting, the light source should be placed at the focal point of the antique headlight reflector, which is 2.5 inches away from the vertex of the reflector.

To know more about headlight reflector visit:

https://brainly.com/question/30261887

#SPJ11

TEACHER PORTAL • In this mode, the program should ask the user to enter any one of the selected classes, e.g., Press 1 for CE-112L BEME II B, press 2 for CE-112L MTS II-A, press 3 for CE-112L BEEP II-A, and press 4 for CE-115L BEBME A . Upon choosing any one of the classes display roll number and names of enrolled students of that class saved previously in a file. Provide 5 options, press 1 for Lab performance, press 2 for Lab reports, press 3 for Midterm, press 4 for CEA, and press 5 for Final term. . For lab performance and lab reports, further, provide more options so that users can enter marks of each lab performance and lab report. . All this marks entry stage is time taking, so you can read all these details directly from the CSV file using file handling, or for the sake of the project demo, you can also keep your array sizes to at least 5. (Do the whole process for only 5 students). Keep array size generic so you can change the array size to whatever you chose. . Provide an option to assign weights to each assessment type. . Provide an option to generate total marks after all the marks for each assessment type are entered. Provide an option to generate grades of students based on their total marks. a Save and display the final grades and marks in a file.

Answers

To implement the Teacher Portal program with the given requirements, you can use a combination of file handling, arrays, and user input. Here's an outline of the steps involved:

1. Create a file that stores the roll numbers and names of enrolled students for each class.

2. Prompt the user to enter the desired class by displaying the available options.

3. Read the file corresponding to the selected class and display the roll numbers and names of enrolled students.

4. Provide options for different assessments (Lab performance, Lab reports, Midterm, CEA, Final term) and let the user enter marks for each assessment.

5. If reading from a file, use file handling to directly read the details from a CSV file. If not, use arrays to store the marks for each assessment.

6. Allow the user to assign weights to each assessment type.

7. Calculate the total marks for each student based on the entered marks and assigned weights.

8. Generate grades for students based on their total marks using a grading system.

9. Save the final grades and marks in a file.

10. Display the final grades and marks to the user.

It's important to note that this is a high-level overview, and you would need to write the actual code to implement these steps in your chosen programming language (e.g., Java, Python). The specific implementation details would depend on the programming language and frameworks/libraries you are using.

Learn more about Teacher Portal program here:

https://brainly.com/question/32373574

#SPJ11

1. (a) The impulse response of a continuous-time system is given by h(t) = 3{u(t + 1) – u(t – 1)}. = = (i) Determine whether the system is memory-less, causal, and stable. (ii) An input signal x1(t) = 2{u(t + 2) – uſt – 2)} is applied to the system to produce the output signal yı(t). Sketch the waveforms of the signals xi(t) and yı(t), respectively.

Answers

(a) The impulse response of a continuous-time system is given by h(t) = 3{u(t + 1) – u(t – 1)}. = = (i)

(i) The system is memory-less, causal and stable. Memory-less system is a system where the output only depends on the present input. Here, the impulse response of a continuous-time system is given by:$$h(t)= 3[u(t + 1) – u(t – 1)]$$. Here, the system is memory-less, causal, and stable .The given impulse response can be represented as shown below: u(t) is the unit step function whose value is 0 for t<0 and 1 for t≥0. u(t-a) is the unit step function which is zero for t < a and one for t ≥ a.

(ii)An input signal x1(t) = 2{u(t + 2) – uſt – 2)} is applied to the system to produce the output signal yı(t).The output of a system can be found by convolving the input signal with the impulse response. Here, the input signal is: x1(t) = 2{u(t + 2) – u(t – 2)}. Therefore, the output signal

yı(t) is:$$\begin{aligned} y_{1}(t)&=x_{1}(t)*h(t)\\&=\int_{-\infty}^{\infty}x_{1}(t-\tau)h(\tau) \mathrm{d} \tau\\&=\int_{-\infty}^{\infty} 2[u(t-\tau+2)-u(t-\tau-2)]3[u(\tau+1)-u(\tau-1)] \mathrm{d} \tau\\&= 6\int_{t-2}^{t-1}u(\tau+1) \mathrm{d} \tau-6\int_{t-2}^{t-1}u(\tau-1) \mathrm{d} \tau+6\int_{t+1}^{t+2}u(\tau+1) \mathrm{d} \tau-6\int_{t+1}^{t+2}u(\tau-1) \mathrm{d} \tau\\&=6[u(t-1)-u(t-2)-u(t)+u(t-1)+u(t+2)-u(t+1)-u(t+1)+u(t)]\\&=6[u(t-2)-2u(t-1)-2u(t)+2u(t+1)+u(t+2)]\end{aligned}$$

The waveform of x1(t) and y1(t) is as shown below: The waveform of x1(t) and y1(t) is shown above.

To know more about impulse visit:

brainly.com/question/33310709

#SPJ1

Draw the waveform of the NRZ-L and the Differential Manchester scheme using each of the following data streams, assuming that the last signal level has been positive:

(i) 00001111
(ii) 11110000
(iii) 01010101
(iv) 00110011

Answers

NRZ-L and Differential Manchester schemes waveform

The waveform of the NRZ-L and the Differential Manchester scheme using each of the given data streams is given below:

For the NRZ-L scheme:

The following are the waveforms of the given data streams for the NRZ-L scheme:

1. 00001111:

2. 11110000:

3. 01010101:

4. 00110011:

For the Differential Manchester scheme:

The following are the waveforms of the given data streams for the Differential Manchester scheme:

1. 00001111:

2. 11110000:

3. 01010101:

4. 00110011:

In the Differential Manchester scheme, the transition or the lack of transition is used to denote binary 1 and 0 respectively.

In case the data bit is 0, then there will be a transition in the middle of the clock period, while in case the data bit is 1, then there will be no transition in the middle of the clock period.

In the Differential Manchester scheme, the data rate is twice the clock rate.

To know more about binary visit;

https://brainly.com/question/33333942?

#SPJ11

The dollar sign (\$) before each part of a spreadsheet cell address indicates an absolute cell reference. True False The symbols #\#\#\# in a cell means the column width is not wide enough to view the label in the cell. True False To select an entire row of cells, click on the number (the row label) on the left edge of the spreadsheet True False You should press the space bar to clear a cells content. True False

Answers

False. The dollar sign (\$) before each part of a spreadsheet cell address does not indicate an absolute cell reference.

An absolute cell reference is denoted by placing the dollar sign before the column letter and row number, such as \$A\$1. This indicates that the reference will not change when copied or filled to other cells.

In contrast, a relative cell reference, which is the default in spreadsheets, does not use dollar signs and adjusts its reference based on the relative position when copied or filled.

In a detailed explanation:** The dollar sign in a spreadsheet cell address is used to create absolute cell references. An absolute reference locks the column and row in a formula, preventing them from changing when the formula is copied or filled to other cells. The dollar sign is placed before the column letter and/or row number. For example, \$A\$1 is an absolute reference to cell A1. If this reference is copied to cell B2, it will still refer to cell A1, as the dollar signs lock the reference. Without the dollar signs, references are relative by default. For instance, A1 is a relative reference that will adjust when copied or filled to different cells.

Learn more about spreadsheet here

https://brainly.com/question/33081961

#SPJ11

Implement and draw a multi-range voltmeter to obtain the voltage ranges of 0-5V, 0-20V, 0-50V, 0-100v. Im= 3mA and Rm= 60

Answers

A multimeter is an essential tool in electronic measurements. Voltmeters are used to measure voltage, current, and resistance in electrical circuits.

We can use the following equation to determine the shunt resistor value: Rs = Vr/Im, where Rs is the shunt resistor value, Vr is the voltage range, and Im is the meter current.First, we will calculate the shunt resistor value for the 0-5V range.Rs = 5V/3mA = 1666.7ΩWe can use a 1.8kΩ resistor for the shunt.Next, we will calculate the shunt resistor value for the 0-20V range.Rs = 20V/3mA = 6666.7ΩWe can use a 6.8kΩ resistor for the shunt.

Next, we will calculate the shunt resistor value for the 0-50V range .Rs = 50V/3mA = 16666.7ΩWe can use a 15kΩ resistor for the shunt. Finally, we will calculate the shunt resistor value for the 0-100V range.Rs = 100V/3mA = 33333.3ΩWe can use a 33kΩ resistor for the shunt. Once the shunt resistors are chosen, we can wire them in parallel with the meter movement, and then connect the meter movement to a selector switch.
The selector switch will allow us to switch between the different voltage ranges. Here is a schematic diagram of the multi-range voltmeter:

To know more about multimeter visit :

https://brainly.com/question/31828816

#SPJ11

Other Questions
Find solutions for your homeworkSearchbusinessfinancefinance questions and answersthe treasurer for pittsburgh iron works wishes to use financial futures to hedge her interest rate exposure. she will sell five treasury futures contracts at $170,000 per contract. it is july and the contracts must be closed out in december of this year. long-term interest rates are currently 8.30 percent. if they increase to 10.50 percent, assume the valueThis problem has been solved!You'll get a detailed solution from a subject matter expert that helps you learn core concepts.See AnswerQuestion:The Treasurer For Pittsburgh Iron Works Wishes To Use Financial Futures To Hedge Her Interest Rate Exposure. She Will Sell Five Treasury Futures Contracts At $170,000 Per Contract. It Is July And The Contracts Must Be Closed Out In December Of This Year. Long-Term Interest Rates Are Currently 8.30 Percent. If They Increase To 10.50 Percent, Assume The ValueThe treasurer for Pittsburgh Iron Works wishes to use financial futures to hedge her interest rate exposure. She will sell five Treasury futures contracts at $170,000 per contract. It is July and the contracts must be closed out in December of this year. Long-term interest rates are currently 8.30 percent. If they increase to 10.50 percent, assume the value of the contracts will go down by 15 percent. Also if interest rates do increase by 2.2 percent, assume the firm will have additional interest expense on its business loans and other commitments of $139,000. This expense, of course, will be separate from the futures contracts.a.What will be the profit or loss on the futures contract if interest rates go to 10.50 percent by December when the contract is closed out?(Input the amount as a positive value.)(Click to select)ProfitLoss on futures contracts$b-1.After considering the hedging, what is the net cost to the firm of the increased interest expense of $139,000?Net cost$b-2.What percent of this $139,000 cost did the treasurer effectively hedge away?(Input your answer as a percent rounded to 2 decimal places.)Percentage hedged away%c.Indicate whether there would be a profit or loss on the futures contracts if interest rates went down.LossProfit Small earthquakes too weak to knock over buildings or cause fatalities are most likely located at spreading centers T/F Pina Company has two classes of capital stock outstanding: 7%,$20 par preferred and $5 par common. At December 31,2020 , the following accounts were included in stockholders' equity. Preferred stock 149,400 shares $2,988,000Common stock 10, 115,000Paid in capital excess or pal preferred stock 193,000Paid in capital in excress of palcommon stovk 26.760,000Retained earnings 4,485,000The following transactions affected stockholders' equity during 2021. Jan. 128,600 shares of preferred stock issued at $22 per share. Feb. 150,000 shares of common stock issued at $18 per share. June 12-for-1 stock split (par value reduced to $2.50 ). July 127,500 shares of common treasury stock purchased at $9 per share. Pina uses the cost method. Sept. 1510,800 shares of treasury stock reissued at $11 per share. Dec. 31 Net income is $2,123,000. Prepare the stockholders' equity section for Pina Company at December 31,2021 . (Enter account name only and do not provide descriptive information.) Question 3 of 9 1321 $ Find the volume of the solid formed by rotating the region enclosed by y = e^5x + 2, y = 0, x = 0.6 about the x-axis. Answer: __________ Soil organic matter content can decrease if: Plant inputs increase Decomposition increases Soil is drained Manure is spread on the field On January 1, 2019, Titanic Corp. bought 30,000 shares of the 100,000 outstanding common shares of Iceberg Inc. Both corporations are publicly traded firms and this acquisition provided Titanic with significant influence. Titanic paid $700,000 cash for the investment. At the time of the acquisition, Iceberg reported assets of $2,500,000 and liabilities of $1,200,000. Asset values have fair market value of $2,730,000. These assets had a remaining useful life of five years. For 2019 Iceberg reported a net income of $400,000 and paid total cash dividends of $100,000. On May 16,2020 , Titanic sold 15,000 of its shares in Iceberg for $425,000. Titanic has no immediate plans to sell its remaining investment in Iceberg. Iceberg is activelv traded. and stock price information follows: Instructions a) How should Titanic account for the investment in Iceberg and why? (1 mark) b) Provide the the amount allocated to goodwill. (5 marks) c) At the end of 2019, what would appear on the income statement and balance sheet of Titanic in connection with its investment in the Iceberg? Show partial income statement and statement of financial position with proper format and supporting calculations. (6 marks) d) Provide the entry to account for Titanic's sale of the shares in May 2020. (2 marks) e) How should Titanic account for its remaining investment in Iceberg? (1 marks) The region bounded by y=e^x^2,y=0,x=0, and x=b(b>0) is revolved about the y-axis. Find. The volume of the solid generated when b=4._________ Question 3(b) [10 marks] In a two reversible power cycles, arranged in series, the first cycle receives energy by heat transfer from a hot reservoir at \( T_{H} \) and rejects energy by heat transfer which domain is characterized by having both unicellular and multicellular members whose cell or cells contain organelles A) ARCHAEA B) EUKARYA C) BACTERIA "You buy an 10% coupon, paid annually, 9-year maturity bond for$970. A year later, the bond price is $1,020. Face value of thebond is $1,000.a. What is the yield to maturity on the bondtoday? 5. (a) Write the complex number \[ z=2 \sqrt{2} e^{-i \frac{\pi}{4}} \] in it's polar form, hence write the Cartesian form, giving your answer as \( z=a+b i \), for real numbers \( a \) and \( b \). ( Quicksortnumbers \( =(56,25,26,28,81,93,92,85,99,87) \) Partition(numbers, 5, 9) is called. Assume quicksort always chooses the element at the midpoint as the pivot. What is the pivot? What is the low partitio 1.What is the voltage drop that would be across the power leads? from a 2600-watt load, if this device is within 140 feet of the distribution board? The operating voltage is 120 volts, the conductor it is #14 THHN. specify step by step if the cable is suitable, if not, find the right cable and explain why? A cylindrical container with a cross-sectional area of 69.2 cm 2 holds a fluid of density 836 kg/m 3 . At the bottom of the container the pressure is 117kPa. Assume P at =101 kPa What is the depth of the fluid? Find the pressure at the bottom of the container after an additional 25510 3 m 3 of this ficid is added to the container. Assume that no fild spils out of the container: Question 23 (1 point) A common primary buttery is the A) nickel-admium type. B) carbon- zinc type. C glicon geraumium type. D) lead-add type Question 24 (1 point) What is the charge in coulcmbs if \( Find the particular solution that satisfies the differential equation and the initial condition. f(x)=1/4x 7; f(8) =48 f(x)= ___________ An LTI system has its impulse response given by: h(t) = e-tu(t) and the input is given by x(t) = 4cos (3t). Calculate the output y(t). Explain how you could determine whether Purchasing Power Parity (PPP) exists. Describe a limitation in testing whether PPP holds. Compare PPP Theory to International Fisher Effect.| A common practice among marketers is to identify and develop new markets for their existing products. This practice is called ________.A) market developmentB) product developmentC) market penetrationD) market skimmingE) dual adaptation Briefly discuss the toxicities associated with two of the following groups of chemicals used in the workplace, including an example chemical from each group: particulates; toxic gases; and halogenated aromatic hydrocarbons.