4. Suppose that 35% of the products in an industry are faulty. If a random sample of 9 products is chosen for inspection, find the probability of getting two or more faulty products. C 0.70 B 0.30 D 0

Answers

Answer 1

The probability of getting two or more faulty products in a random sample of 9 products is approximately 0.763.

The probability of getting two or more faulty products in a random sample of 9 products can be calculated using the binomial distribution formula.

Let X be the number of faulty products in the sample. Then, X follows a binomial distribution with parameters n=9 and p=0.35.

P(X ≥ 2) = 1 - P(X < 2)

P(X < 2) = P(X = 0) + P(X = 1)

Using the binomial probability formula, we get:

P(X = k) = (n choose k) * p^k * (1-p)^(n-k)

where (n choose k) is the binomial coefficient, which represents the number of ways to choose k items out of n.

P(X = 0) = (9 choose 0) * 0.35^0 * (1-0.35)^9 ≈ 0.050

P(X = 1) = (9 choose 1) * 0.35^1 * (1-0.35)^8 ≈ 0.187

Therefore,

P(X < 2) ≈ 0.050 + 0.187 ≈ 0.237

And,

P(X ≥ 2) ≈ 1 - P(X < 2) ≈ 1 - 0.237 = 0.763

To know more about random sample refer here:

https://brainly.com/question/13219833#

#SPJ11


Related Questions

extensive the sales people with experience A Company Keeps premise rander Sample of eight the that Sales should increase en Sales people new A the data people produced provided in the table and Sales experience below is 1 4 12 5 9 7 8 Month on job "x" 2 Monthly sales "y" 2.4 7.0 11.3 15.0 3.7 12.0 5.2 REQUIRED a) Use the regression onship between the number line to estimate quantitatively the relati months on job and F the level of monthly sales: (6) Compute the and interpret both the Coefficient and determination. F Correlation and that °F (C) Estimate the level of F the Sales people is exactly 10 months. 162 At 5% level Sales in Tshillings, is the experience experience of Significance, Can you Suggest that job "does Significantly impact level of NOTE: You use : +0.025, 6 = 2.44 7 3 Sales? may records

Answers

At the 5% significance level, with 6 degrees of freedom, the critical value of t is ±2.447.


The regression relationship between the number line is used to estimate the relationship between the months on the job and the level of monthly sales. The coefficient of determination and correlation must be computed and interpreted. Then, using these coefficients, we can estimate the level of sales for salespeople who have been on the job for ten months. Finally, we can test whether job experience has a significant impact on sales using a 5% significance level.

The computations are as follows:

Using the regression relationship between the number line, we get:

y = 1.385x + 1.06

where y is the monthly sales, and x is the number of months on the job.

The coefficient of determination is:

R² = 0.769

The coefficient of correlation is:

r = 0.877

Therefore, there is a strong positive relationship between the months on the job and the level of monthly sales. This indicates that as the salespeople's experience on the job increases, the monthly sales also increase.

If the number of months on the job is 10, then the estimated level of sales is:

y = 1.385(10) + 1.06 = 15.4

Hence, the expected level of sales for salespeople with ten months of experience is 15.4.

The t-test of significance for the slope is computed as follows:

t = b/se(b)

where b is the slope and se(b) is its standard error.

The standard error is:

se(b) = 0.345

The t-value is:

t = 1.385/0.345 = 4.01

At the 5% significance level, with 6 degrees of freedom, the critical value of t is ±2.447.

Since the computed t-value (4.01) is greater than the critical value (±2.447), we can reject the null hypothesis and conclude that job experience significantly impacts the level of sales.

Thus, job experience has a significant impact on sales, and salespeople with experience are more likely to generate higher monthly sales. Additionally, the coefficient of determination indicates that the model explains 76.9% of the variability in monthly sales, while the coefficient of correlation indicates that there is a strong positive correlation between job experience and sales.

To know more about  significance level visit:

brainly.com/question/31070116

#SPJ11

Which one of the following statements is false? A. (5) = 1 (5) = 5 5! C. (5) × 2! ○D() (³3) E. = = () (¹0) = = (²) × (²)

Answers

The false statement among the options provided is D. () (³3).

The given statement lacks clarity and coherence, making it impossible to determine its accuracy or meaning. The format of the statement is incomplete and does not adhere to any recognizable mathematical expression or equation. Without a clear representation of the mathematical operation or variable involved, it is not possible to evaluate or validate this statement. The other options A, B, C, and E all present coherent mathematical equations or expressions that can be evaluated or verified using established mathematical rules.

For such more questions on True or False

https://brainly.com/question/24512527

#SPJ11

The marginal cost of a product is modeled by dC dx = 14 3 14x + 9 where x is the number of units. When x = 17, C = 100. (a) Find the cost function.

Answers

To find the cost function, we need to integrate the marginal cost function with respect to x.

Given that dC/dx = 14x + 9, we can integrate both sides with respect to x to find C(x):

∫dC = ∫(14x + 9) dx

Integrating 14x with respect to x gives (14/2)x^2 = 7x^2, and integrating 9 with respect to x gives 9x.

Therefore, the cost function C(x) is:

C(x) = 7x^2 + 9x + C

To determine the constant of integration C, we can use the given information that when x = 17, C = 100. Substituting these values into the cost function equation:

100 = 7(17)^2 + 9(17) + C

Simplifying the equation:

100 = 7(289) + 153 + C

100 = 2023 + 153 + C

100 = 2176 + C

Subtracting 2176 from both sides:

C = -2076

Therefore, the cost function is:

C(x) = 7x^2 + 9x - 2076

To know more about Equation visit-

brainly.com/question/14686792

#SPJ11

The data set below represents bugs found by a software tester in her product during different phases of testing: 88, 84, 81, 94, 91, 98, 98, 200. The measures of central tendency are given below: Mean

Answers

The mean of the given data set is 100.125.

To calculate the mean, we sum up all the values in the data set and divide it by the total number of values. Let's calculate the mean for the given data set:

88 + 84 + 81 + 94 + 91 + 98 + 98 + 200 = 834

To find the mean, we divide the sum by the number of values, which in this case is 8:

Mean = 834 / 8 = 104.25

Therefore, the mean of the given data set is 100.125.

The mean is a measure of central tendency that represents the average value of a data set. In this case, the mean of the given data set, which represents the bugs found by a software tester, is 100.125. The mean provides a single value that summarizes the central location of the data. It can be useful for understanding the overall trend or average value of the observed variable.

To know more about mean visit:

https://brainly.com/question/1136789

#SPJ11

ind the value of the standard normal random variable z, called
z0 such that: (a) P(z≤z0)=0.9371 z0= (b) P(−z0≤z≤z0)=0.806 z0= (c)
P(−z0≤z≤z0)=0.954 z0= (d) P(z≥z0)=0.3808 z0= (e) P(−

Answers

Values of Z for the given probabilities are:

a) [tex]z_{0}[/tex] = 1.81.

b) [tex]z_{0}[/tex] = 1.35.

c) [tex]z_{0}[/tex] = 1.96.

d) [tex]z_{0}[/tex] = -0.31.

e) [tex]z_{0}[/tex] = -0.87.

The standard normal distribution is a type of normal distribution in statistics that has a mean of zero and a standard deviation of one. The standard normal random variable is represented by the letter Z. We can use a standard normal table or a calculator to find the values of Z for a given probability.

Let's find the value of the standard normal random variable [tex]z_{0}[/tex] such that:

(a) P(z ≤ [tex]z_{0}[/tex]) = 0.9371

We can use the standard normal table to find the value of [tex]z_{0}[/tex] that corresponds to a cumulative probability of 0.9371. From the table, we find that [tex]z_{0}[/tex] = 1.81.

(b) P(-[tex]z_{0}[/tex] ≤ z ≤[tex]z_{0}[/tex]) = 0.806

This means we are looking for the area under the standard normal curve between -[tex]z_{0}[/tex] and [tex]z_{0}[/tex]. From the symmetry of the standard normal curve, we know that this is equivalent to finding the area to the right of [tex]z_{0}[/tex] and doubling it.

Using the standard normal table, we find that the area to the right of [tex]z_{0}[/tex] is 0.0974. So, the area between -[tex]z_{0}[/tex] and [tex]z_{0}[/tex] is 2(0.0974) = 0.1948.

To find [tex]z_{0}[/tex], we look for the value of z in the table that corresponds to an area of 0.1948. We find that [tex]z_{0}[/tex] = 1.35.

(c) P(-[tex]z_{0}[/tex] ≤ z ≤ [tex]z_{0}[/tex]) = 0.954

This means we are looking for the area under the standard normal curve between -[tex]z_{0}[/tex] and [tex]z_{0}[/tex]. From the symmetry of the standard normal curve, we know that this is equivalent to finding the area to the right of [tex]z_{0}[/tex] and doubling it.

Using the standard normal table, we find that the area to the right of [tex]z_{0}[/tex] is (1-0.954)/2 = 0.023. So, the area between -[tex]z_{0}[/tex] and [tex]z_{0}[/tex] is 2(0.023) = 0.046.

To find [tex]z_{0}[/tex], we look for the value of z in the table that corresponds to an area of 0.046. We find that [tex]z_{0}[/tex] = 1.96.

(d) P(z ≥ [tex]z_{0}[/tex]) = 0.3808

This means we are looking for the area to the right of [tex]z_{0}[/tex].

Using the standard normal table, we find that the area to the left of [tex]z_{0}[/tex] is 1-0.3808 = 0.6192. So, the area to the right of [tex]z_{0}[/tex] is 0.3808.

To find [tex]z_{0}[/tex], we look for the value of z in the table that corresponds to an area of 0.3808. We find that [tex]z_{0}[/tex] = -0.31.

(e) P(-[tex]z_{0}[/tex] ≤ z ≤ [tex]0[/tex]) = 0.1587

This means we are looking for the area under the standard normal curve between -[tex]z_{0}[/tex] and 0. From the symmetry of the standard normal curve, we know that this is equivalent to finding the area to the left of [tex]z_{0}[/tex] and subtracting it from 0.5.

Using the standard normal table, we find that the area to the left of [tex]z_{0}[/tex] is 0.5 - 0.1587 = 0.3413. So, the area between -[tex]z_{0}[/tex] and 0 is 0.3413.

To find [tex]z_{0}[/tex], we look for the value of z in the table that corresponds to an area of 0.3413. We find that [tex]z_{0}[/tex] = -0.87.

Thus the value of z for different conditions has been found.

learn more about standard normal distribution here:

https://brainly.com/question/15103234

#SPJ11

a. Show that if a random variable U has a gamma distribution with parameters a and ß, then E[]=(-1) b. Let X₁, ‚X₁ be a random sample of size n from a normal population N(μ₂o²), -[infinity] 3, the

Answers

The expected value of a random variable U, following a gamma distribution with parameters a and ß, is E[U] = a/ß. We start by acknowledging that the gamma distribution is defined as:

f(x) = (1/Γ(a)ß^a) * x^(a-1) * e^(-x/ß)

where x > 0, a > 0, and ß > 0. The expected value E[U] is given by:

E[U] = ∫[0,∞] x * f(x) dx

To calculate this integral, we can use the gamma function, Γ(a), which is defined as:

Γ(a) = ∫[0,∞] x^(a-1) * e^(-x) dx

Now, let's substitute the expression of f(x) into E[U] and evaluate the integral:

E[U] = ∫[0,∞] (x^a/ß) * x^(a-1) * e^(-x/ß) dx

     = (1/Γ(a)ß^a) * ∫[0,∞] x^(2a-1) * e^(-x/ß) dx

Using the property of the gamma function, we can rewrite the integral as:

E[U] = (1/Γ(a)ß^a) * Γ(2a)ß^(2a)

     = (Γ(2a)/Γ(a)) * ß^a * ß^a

     = (2a-1)! * ß^a * ß^a / (a-1)!

     = (2a-1)! / (a-1)! * ß^a * ß^a

     = (2a-1)! / (a-1)! * ß^(2a)

Note that (2a-1)! / (a-1)! is a constant term that does not depend on ß. Therefore, we can write:

E[U] = C * ß^(2a)

To make E[U] independent of ß, we must have ß^(2a) = 1, which implies that ß = 1. Thus, we obtain:

E[U] = C

Since the expected value is a constant, it is equal to a/ß when we choose ß = 1:

E[U] = a/ß = a/1 = a

Therefore, the expected value of a random variable U following a gamma distribution with parameters a and ß is E[U] = a.

To know more about the gamma distribution refer here:

https://brainly.com/question/23837265#

#SPJ11

a coin is tossed and a die is rolled. find the probability of getting a tail and a number greater than 2.

Answers

Answer

1/3

explaination is in the pic

Probability of getting a tail and a number greater than 2 = probability of getting a tail x probability of getting a number greater than 2= 1/2 × 2/3= 1/3Therefore, the probability of getting a tail and a number greater than 2 is 1/3.

To find the probability of getting a tail and a number greater than 2, we first need to find the probability of getting a tail and the probability of getting a number greater than 2, then multiply the probabilities since we need both events to happen simultaneously. The probability of getting a tail is 1/2 (assuming a fair coin). The probability of getting a number greater than 2 when rolling a die is 4/6 or 2/3 (since 4 out of the 6 possible outcomes are greater than 2). Now, to find the probability of both events happening, we multiply the probabilities: Probability of getting a tail and a number greater than 2 = probability of getting a tail x probability of getting a number greater than 2= 1/2 × 2/3= 1/3Therefore, the probability of getting a tail and a number greater than 2 is 1/3.

To know more about Probability Visit:

https://brainly.com/question/32117953

#SPJ11

Q2. (15 points) Find the following probabilities: a. p(X= 2) when X~ Bin(4, 0.6) b. p(X > 2) when X~Bin(8, 0.2) c. p(3 ≤X ≤5) when X ~ Bin(6, 0.7)

Answers

The following probabilities of the given question are ,

p(3 ≤X ≤5) = 0.18522 + 0.324135 + 0.302526

= 0.811881.

a) To find p(X = 2) when X~Bin(4,0.6)

When X~Bin(n,p),

the probability mass function of X is given by:

p(X) = [tex](nCx)p^x(1-p)^_(n-x)[/tex]

Here, n=4,

x=2 and

p=0.6

So, the required probability is given by

p(X = 2)

= [tex](4C2)(0.6)^2(0.4)^(4-2)[/tex]

= 0.3456b)

To find p(X > 2) when X~Bin(8,0.2)

Here, n=8 and p=0.2So, p(X > 2) = 1 - p(X ≤ 2)

Now, we need to find

p(X ≤ 2)p(X ≤ 2)

= p(X=0) + p(X=1) + p(X=2)

By using the formula of Binomial probability mass function, we get

p(X=0)

=[tex](8C0)(0.2)^0(0.8)^8[/tex]

= 0.16777216p(X=1)

=[tex](8C1)(0.2)^1(0.8)^7[/tex]

= 0.33554432p(X=2)

= [tex](8C2)(0.2)^2(0.8)^6[/tex]

= 0.301989888

Hence,

p(X ≤ 2) = 0.16777216 + 0.33554432 + 0.301989888

= 0.805306368So, p(X > 2)

= 1 - p(X ≤ 2)

= 1 - 0.805306368 = 0.194693632c)

To find p(3 ≤X ≤5) when X ~ Bin(6, 0.7)

Here, n=6 and

p=0.7

So, p(3 ≤X ≤5)

= p(X=3) + p(X=4) + p(X=5)

By using the formula of Binomial probability mass function, we get

[tex]p(X=3) = (6C3)(0.7)^3(0.3)^3[/tex]

= [tex]0.18522p(X=4)[/tex]

= [tex](6C4)(0.7)^4(0.3)^2[/tex]

= [tex]0.324135p(X=5)[/tex]

= [tex](6C5)(0.7)^5(0.3)^1[/tex]

= 0.302526.

To know more about  probability visit:

https://brainly.com/question/29381779

#SPJ11

The density of a thin metal rod one meter long at a distance of X meters from one end is given by p(X) = 1+ (1-X)^2 grams per meter. What is the mass, in grams, of this rod?

Answers

To find the mass of the rod, we need to integrate the density function over the length of the rod.

Given that the density of the rod at a distance of X meters from one end is given by p(X) = 1 + (1 - X)^2 grams per meter, we can find the mass M of the rod by integrating this density function over the length of the rod, which is one meter.

M = ∫[0, 1] p(X) dX

M = ∫[0, 1] (1 + (1 - X)^2) dX

To calculate this integral, we can expand the expression and integrate each term separately.

M = ∫[0, 1] (1 + (1 - 2X + X^2)) dX

M = ∫[0, 1] (2 - 2X + X^2) dX

Integrating each term:

M = [2X - X^2/2 + X^3/3] evaluated from 0 to 1

M = [2(1) - (1/2)(1)^2 + (1/3)(1)^3] - [2(0) - (1/2)(0)^2 + (1/3)(0)^3]

M = 2 - 1/2 + 1/3

M = 11/6

Therefore, the mass of the rod is 11/6 grams.

To know more about Integrating visit-

brainly.com/question/13101236

#SPJ11

suppose that a is a nonempty set and r is an equivalence relation on a. show that there is a function f with a as its domain such that (x,y) ∈ r if and only if f(x) = f(y)

Answers

To show that there is a function f with a as its domain such that (x, y) ∈ r if and only if f(x) = f(y), we can define the function f as follows:

For each element x in the set a, let f(x) be the equivalence class of x under the equivalence relation r. In other words, f(x) is the set of all elements that are equivalent to x according to the relation r.

To prove the claim, we need to show two things:

If (x, y) ∈ r, then f(x) = f(y).

If f(x) = f(y), then (x, y) ∈ r.

Proof:

Suppose (x, y) ∈ r. By definition of an equivalence relation, this means that x and y are equivalent under r. Since f(x) is the equivalence class of x and f(y) is the equivalence class of y, it follows that f(x) = f(y).

Suppose f(x) = f(y). This means that x and y belong to the same equivalence class under r. By the definition of an equivalence class, this implies that (x, y) ∈ r.

Therefore, we have shown that there exists a function f with a as its domain such that (x, y) ∈ r if and only if f(x) = f(y).

To know more about domain visit-

brainly.com/question/14300535

#SPJ11

Use the given data set to complete parts (a) through (c) below. (Use a= α = 0.05.) X 10 8 13 9 11 14 y 9.14 8.14 8.75 8.77 9.26 8.11 Click here to view a table of critical values for the correlation

Answers

The scatter plot for the above data is attached accordingly.

What is the relationship between x and y on the scatter plot?

The scatter plot for the given data table would show a generally positive linear relationship between the x-values and y-values.

The data points would cluster around a line that slopes upwards from left to right. There may be some variability in the data, but overall, there is a trend of increasing y-values as x-values increase.

Therefore, a line of best fit can be used to approximate the relationship between the variables.

Learn more about scatterplot at:

https://brainly.com/question/6592115

#SPJ4

Full Question:

Although part of your question is missing, you might be referring to this full question:

Use the given data set to complete parts? (a) through? (c) below.? (Use alphaequals?0.05.) x 10 8 13 9 11 14 6 4 12 7 5 y 9.14 8.13 8.75 8.77 9.26 8.11 6.13 3.11 9.13 7.27

a. Construct a scatterplot.

Test for exactness of the following differential equation (3t 2
y+2ty+y 3
)dt+(t 2
+y 2
)dy=0. If it is not exact find an integrating factor μ as a function either in t or y nereafter solve the related exact equation.

Answers

The given differential [tex]equation is;$(3t^2 y + 2ty + y^3)dt + (t^2 + y^2)dy = 0$[/tex]Checking for exactness :We have;[tex]$$\frac{\partial M}{\partial y} = 3t^2 + y^2$$$$\frac{\partial N}{\partial t} = 2yt$$[/tex]

Therefore, the given differential equation is not exac[tex]$$\frac{\partial u}{\partial y} = -\frac{kt}{y^2} + h'(y) = \frac{k(3t^2 + y^2)}{y^2} + \frac{2k}{y}$$[/tex]Comparing the coefficients of like terms on both sides, we get;[tex]$$h'(y) = \frac{k(3t^2 + y^2)}{y^2} + \frac{3k}{y^2}$$$$h'(y) = \frac{3kt^2}{y^2} + \frac{4k}{y^2}$$[/tex]Integrating both sides;[tex]$$h(y) = \frac{3kt^2}{y} + \frac{4k}{y} + C_1$$[/tex]Therefore, the general solution of the given differential equation and C2 are constants of integration.

To know more about  differential visit:

brainly.com/question/13958985

#SPJ11

Find the following measure for the set of data given below (Use
formula card or calculator if necessary). x Freq(x) 11 3 12 8 13 3
14 4 15 2
What is the variance of this distribution is?

Answers

18.715 is the variance of the given distribution.

The given frequency distribution table is as follows:

X Freq(X)

11 3

12 8

13 3

14 4

15 2

To calculate the mean of the distribution, the following steps are taken:

Mean, μ = Σ[X.Freq(X)] / ΣFreq(X)

= (11×3 + 12×8 + 13×3 + 14×4 + 15×2) / (3 + 8 + 3 + 4 + 2)

= (33 + 96 + 39 + 56 + 30) / 20

= 254 / 20

= 12.7

Now, let's calculate the variance:

Variance, σ² = Σ[X². Freq(X)] / ΣFreq(X) - μ²

First, we need to calculate X².Freq(X) for each value of X:

X Freq(X) X² Freq(X)

11 3 363

12 8 1536

13 3 507

14 4 784

15 2 450

Now, we can calculate the variance:

σ² = Σ[X². Freq(X)] / ΣFreq(X) - μ²

= (363 + 1536 + 507 + 784 + 450) / 20 - 12.7²

= 3640.1 / 20 - 161.29

= 180.005 - 161.29

= 18.715 (rounded to three decimal places)

Therefore, the variance of the given distribution is 18.715.

To learn more about distribution, refer below:

https://brainly.com/question/29664127

#SPJ11

There are two traffic lights on the route used by a certain individual to go from home to work. Let E denote the event that the individual must stop at the first light, and define the event F in a similar manner for the second light. Suppose that P(E) = .4, P(F) = .2 and P(E intersect F) = .15.

(a) What is the probability that the individual must stop at at least one light; that is, what is the probability of the event P(E union F)?
(b) What is the probability that the individual needn't stop at either light?
(c) What is the probability that the individual must stop at exactly one of the two lights?
(d) What is the probability that the individual must stop just at the first light? (Hint: How is the probability of this event related to P(E) and P(E intersect F)?

Answers

According to the question we have Therefore, the probability of the individual stopping at at least one traffic light is 0.45.

(a) The probability of the individual stopping at at least one traffic light is given by P(E union F). We know that P(E) = 0.4, P(F) = 0.2 and P(E intersect F) = 0.15. Using the formula:

P(E union F) = P(E) + P(F) - P(E intersect F)

= 0.4 + 0.2 - 0.15

= 0.45

Therefore, the probability of the individual stopping at at least one traffic light is 0.45.

(b) The probability of the individual not stopping at either traffic light is given by P(E' intersect F'), where E' and F' denote the complements of E and F, respectively. We know that:

P(E') = 1 - P(E) = 1 - 0.4 = 0.6

P(F') = 1 - P(F) = 1 - 0.2 = 0.8

Now, using the formula:

P(E' intersect F') = P((E union F)')

= 1 - P(E union F)

= 1 - 0.45

= 0.55

Therefore, the probability of the individual not stopping at either traffic light is 0.55.

(c) The probability that the individual must stop at exactly one of the two lights is given by P(E intersect F'), since this means the individual stops at the first light but not the second, or stops at the second light but not the first. Using the formula:

P(E intersect F') = P(E) - P(E intersect F)

= 0.4 - 0.15

= 0.25

Therefore, the probability that the individual must stop at exactly one of the two lights is 0.25.

(d) The probability that the individual must stop just at the first light is given by P(E intersect F'). This is because if the individual stops at both lights, or stops at just the second light, they will not have stopped just at the first light. Using the formula:

P(E intersect F') = P(E) - P(E intersect F)

= 0.4 - 0.15

= 0.25

Therefore, the probability that the individual must stop just at the first light is 0.25.

To know more about Probability  visit :

https://brainly.com/question/31828911

#SPJ11

Question 3 (1 point) Saved There are 4 girls and 4 boys in the room. How many ways can they line up in a line? Your Answer:

Answers

There are 40,320 ways they can line up in a line.

To determine the number of ways they can line up in a line, we need to calculate the permutation of the total number of people. In this case, there are 8 people (4 girls and 4 boys).

The permutation formula is given by n! where n represents the total number of objects to arrange.

Therefore, the calculation is 8! = 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1

= 40,320.

There are 40,320 ways the 4 girls and 4 boys can line up in a line.

To know more about ways, visit

https://brainly.com/question/47446

#SPJ11

I want to know the process. Please write well.
The following is called one way model. €¡j N(0,02) is independent of each other. X¡j = µ¡ + €¡j i=1,2,...,m j = 1,2,...,n Find the likelihood ratio test statistic for the following hypothesis

Answers

Given a hypothesis H0: µ = µ0, the alternative hypothesis H1: µ ≠ µ0, the likelihood ratio test statistic is given by the formula:

$$LR = \frac{sup_{µ \in \Theta_1} L(x, µ)}{sup_{µ \in \Theta_0} L(x, µ)}$$

where Θ0 is the null hypothesis and Θ1 is the alternative hypothesis, L(x, µ) is the likelihood function, and sup denotes the supremum or maximum value. The denominator is the maximum likelihood estimator of µ under H0, which can be calculated as follows:

$$L_0 = L(x, \mu_0) = \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_{ij}-\mu_0)^2}{2\sigma^2}} = \frac{1}{(\sqrt{2\pi}\sigma)^{mn}} e^{-\frac{mn(\bar{x}-\mu_0)^2}{2\sigma^2}}$$

where $\bar{x}$ is the sample mean. The numerator is the maximum likelihood estimator of µ under H1, which can be calculated as follows:

$$L_1 = L(x, \mu_1) = \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_{ij}-\mu_1)^2}{2\sigma^2}} = \frac{1}{(\sqrt{2\pi}\sigma)^{mn}} e^{-\frac{mn(\bar{x}-\mu_1)^2}{2\sigma^2}}$$

where $\bar{x}$ is the sample mean under H0. Therefore, the likelihood ratio test statistic is given by:

$$LR = \frac{L_1}{L_0} = e^{-\frac{mn(\bar{x}-\mu_1)^2-mn(\bar{x}-\mu_0)^2}{2\sigma^2}} = e^{-\frac{mn(\bar{x}-\mu_1+\mu_0)^2}{2\sigma^2}}$$If $H_0$ is true, $\bar{x}$ follows a normal distribution with mean $\mu_0$ and variance $\frac{\sigma^2}{n}$, so the test statistic can be written as:

$$LR = e^{-\frac{m(\bar{x}-\mu_1+\mu_0)^2}{2\sigma^2/n}}$$

This follows a chi-squared distribution with 1 degree of freedom under $H_0$, so the critical region is given by:

$LR > \chi^2_{1, \alpha}$where $\chi^2_{1, \alpha}$ is the critical value from the chi-squared distribution table with 1 degree of freedom and level of significance α.

To know more about ratio refer to:

https://brainly.com/question/1375044

#SPJ11

If, based on a sample size of 850, a political candidate finds that 571 people would vote for him in a two-person race, what is the 90% confidence interval for his expected proportion of the vote? Wou

Answers

the 90% confidence interval estimate for the expected proportion of the vote is approximately 0.611 to 0.7327.

To calculate the 90% confidence interval for the expected proportion of the vote, we can use the sample proportion and construct the interval using the formula:

Confidence interval = p-hat ± z * √((p-hat * (1 - p-hat)) / n)

Given:

Sample size (n) = 850

Number of people who would vote for the candidate (x) = 571

First, we calculate the sample proportion (p-hat):

p-hat = x/n = 571/850 ≈ 0.6718

Next, we need to determine the z-value corresponding to the desired confidence level. For a 90% confidence level, the corresponding z-value is approximately 1.645 (obtained from the standard normal distribution table).

Substituting the values into the confidence interval formula:

Confidence interval = 0.6718 ± 1.645 * √((0.6718 * (1 - 0.6718)) / 850)

√((0.6718 * (1 - 0.6718)) / 850) ≈ √(0.2248 * 0.3282) ≈ 0.0363

Substituting this value back into the confidence interval formula:

Confidence interval = 0.6718 ± 1.645 * 0.0363

Calculating the upper and lower bounds of the confidence interval:

Upper bound = 0.6718 + 1.645 * 0.0363 ≈ 0.7327

Lower bound = 0.6718 - 1.645 * 0.0363 ≈ 0.611

Therefore, the 90% confidence interval estimate for the expected proportion of the vote is approximately 0.611 to 0.7327.

Learn more about confidence interval here

https://brainly.com/question/18763414

#SPJ4

15.)
16.)
Multiple-choice questions each have five possible answers (a, b, c, d, e), one of which is correct. Assume that you guess the answers to three such questions. a. Use the multiplication rule to find P(

Answers

The probability of guessing the correct answers to three multiple-choice questions is 1/125.

To find the probability of guessing the correct answers to three multiple-choice questions, we can use the multiplication rule.

Given:

There are five possible answers for each question (a, b, c, d, e).

Only one answer is correct for each question.

a. P(Correct answer for a single question) = 1/5

(Since there is only one correct answer out of five possible choices)

Using the multiplication rule, the probability of guessing the correct answers to three questions is:

P(Correct answer for Question 1) * P(Correct answer for Question 2) * P(Correct answer for Question 3)

P(Correct answers to three questions) = (1/5) * (1/5) * (1/5) = 1/125

Learn more about multiple-choice questions  here:

https://brainly.com/question/29251413

#SPJ11

Suppose the graph of the parent function is vertically compressed to produce the graph of the function, but there are no reflections. Which describes the value of a?
a. 0 < a < 1
b. a > 1
c. a = 0
d. a = 1

Answers

The value of "a" in the equation of the transformed function, y = f(x), is such that 0 < a < 1.

If the graph of the parent function is vertically compressed to produce the graph of the function without any reflections, it means that the value of a in the equation of the transformed function, y = f(x), is between 0 and 1.

This is because a value between 0 and 1 will compress or shrink the vertical axis, resulting in a vertically compressed graph. A value greater than 1 would stretch the graph vertically, and a negative value would reflect the graph.

To know more about equation,

https://brainly.com/question/31258631

#SPJ11

The value of a if the graph of the parent function is vertically compressed to produce the graph of the function, but there are no reflections is 0 < a < 1, indicating that the value of 'a' lies between 0 and 1.  The correct answer is option A

If the graph of the parent function is vertically compressed to produce the graph of the function without any reflections, the value of the compression factor, denoted by 'a', would be between 0 and 1.

This is because a compression factor less than 1 represents a vertical compression, which squeezes the graph vertically. The closer the value of 'a' is to 0, the greater the compression.

Therefore, the correct answer is option A

a. 0 < a < 1, indicating that the value of 'a' lies between 0 and 1.

To learn more about functions: brainly.com/question/1719822

#SPJ11

Life Expectancies In a study of the life expectancy of 500 people in a certain geographic region, the mean age at death was 72.0 - years and the standard deviation was 5.3 years. If a sample of 50 people from this region is selected, find the probability that the mean life expectancy will be less than 71.5 years. Round intermediate z-value calculations to 2 decimal places and round the final answer to at least 4 decimal places. Sh P(X < 71.5) = 0.25

Answers

Answer:

...

Step-by-step explanation:

We get the null hypotheses mean value is equal to or greater than 71.5

We take alpha as 0.25 which gives,

the intermediate value of z is -1.96 (critical value)

now

[tex]z = (71.5 - 72)/(5.3)/\sqrt{50} = -0.6671[/tex]

since z is greater than the critical value, we keep the null hypothesis that the mean age is greater than 71.5

Hence, the probability that the mean life expectancy will be less than 71.5 years is 0.0294 (rounded to 4 decimal places).

Given:Sample Size (n) = 50Mean (µ) = 72 yearsStandard Deviation (σ) = 5.3 yearsThe formula to find z-score = (x - µ) / (σ / √n).Here, x = 71.5We need to find P(X < 71.5), which can be rewritten as P(Z < z-score)To find P(Z < z-score), we need to find the z-score using the formula mentioned above.z-score = (x - µ) / (σ / √n)z-score = (71.5 - 72) / (5.3 / √50)z-score = -1.89P(Z < -1.89) = 0.0294 (using the standard normal distribution table)Hence, the probability that the mean life expectancy will be less than 71.5 years is 0.0294 (rounded to 4 decimal places).

To know more about expectancy  visit:

https://brainly.com/question/32412254

#SPJ11

3. Find the exact value of a. cos (tan-¹5) b. cot(sin-¹-) 4. Solve for x: a. π+3cos¹¹(x + 1) = 0 b. 2tan ¹(2) = cos ¹x c. sin¹ x = cos ¹(2x) 5. Proof a. tan x + cos x = sin x (sec x + cot x)

Answers

The given expression is cos(tan⁻¹ 5). Let y = tan⁻¹ 5. Then, tan y = 5. Therefore, we have a right triangle where opposite side = 5 and adjacent side = 1. Then, hypotenuse = √(5² + 1²) = √26

3. a. cos (tan-¹5)

The given expression is cos(tan⁻¹ 5). Let y = tan⁻¹ 5. Then, tan y = 5

Therefore, we have a right triangle where opposite side = 5 and adjacent side = 1.

Then, hypotenuse = √(5² + 1²) = √26

Then, cos y = adjacent/hypotenuse= 1/√26

Therefore, cos (tan⁻¹ 5) = cos y = 1/√26b. cot(sin-¹-)

The given expression is cot(sin⁻¹ x).

Let y = sin⁻¹ x

Then, sin y = x

Therefore, we have a right triangle where opposite side = x and hypotenuse = 1. Then, adjacent side = √(1 - x²)

Then, cot y = adjacent/opposite = √(1 - x²)/x

Therefore, cot(sin⁻¹ x) = cot y = √(1 - x²)/x4.

a. π+3cos¹¹(x + 1) = 0

Let cos⁻¹(x + 1) = y

Then, cos y = x + 1

Therefore, we have cos⁻¹(x + 1) = y = π - 3y/3So, y = π/4

Then, cos y = x + 1 = √2/2 + 1 = (2 + √2)/2π + 3(π/4) = (7π/4) ≠ 0

There is no solution to the given equation.

b. 2tan⁻¹(2) = cos⁻¹x

Let y = tan⁻¹(2)

Then, tan y = 2

Therefore, we have a right triangle where opposite side = 2 and adjacent side = 1. Then, hypotenuse = √(1² + 2²) = √5

Therefore, sin y = 2/√5 and cos y = 1/√5

Hence, cos⁻¹x = 2tan⁻¹(2) = 2y

So, x = cos(2y) = cos[2tan⁻¹(2)] = 3/5

c. sin⁻¹ x = cos⁻¹(2x)

Let sin⁻¹ x = y

Then, sin y = x

Therefore, we have a right triangle where opposite side = x and hypotenuse = 1.

Then, adjacent side = √(1 - x²)

Then, cos⁻¹(2x) = z

So, cos z = 2x

Therefore, we have a right triangle where adjacent side = 2x and hypotenuse = 1.

Then, opposite side = √(1 - 4x²)

Then, tan y = x/√(1 - x²) and tan z = √(1 - 4x²)/2x

Hence, x/√(1 - x²) = √(1 - 4x²)/2x

Solving this, we get x = ±√2/2

Therefore, sin⁻¹ x = π/4 and cos⁻¹(2x) = π/4

Therefore, the given equation is true for x = √2/2.5.

Proof Given: tan x + cos x = sin x (sec x + cot x)

We know that sec x = 1/cos x and cot x = cos x/sin x

Therefore, the given equation can be written as tan x + cos x = sin x (1/cos x + cos x/sin x)

Multiplying both sides by sin x cos x, we get sin x cos x tan x + cos² x = sin² x + cos² x

Multiplying both sides by 1/sin x cos x, we get tan x + sec² x = 1

This is true. Hence, proved.

To know more about right triangle visit: https://brainly.com/question/22215992

#SPJ11

Calculate all the probabilities for the Binomial(5, 0.4)
distribution and the Binomial(5, 0.6) distribution. What
relationship do you observe? Can you explain this and state a
general rule?

Answers

For the Binomial(5, 0.4) distribution and the Binomial(5, 0.6) distribution, we can observe that as the probability of success increases, the probability of getting a higher number of successes in a certain number of trials increases and the probability of getting a lower number of successes decreases.

To find the relationship between the Binomial(5, 0.4) distribution and the Binomial(5, 0.6) distribution, follow these steps:

The binomial distribution is given as B (n, p), where n is the number of trials and p is the probability of success. The probability of x successes in n trials is given by the following formula: [tex]P(x) = nC_{x}  p^x (1 - p)^{n - x}[/tex], where p is the probability of success, n is the number of trials and x is the number of successes. For Binomial(5, 0.4), the following probabilities are: P(x = 0) = 0.32768, P(x = 1) = 0.40960, P(x = 2) = 0.20480, P(x = 3) = 0.05120, P(x = 4) = 0.00640, P(x = 5) = 0.00032. Similarly, for Binomial(5, 0.6), the following probabilities are: P(x= 0) = 0.01024, P(x = 1) = 0.07680, P(x = 2) = 0.23040, P(x = 3) = 0.34560, P(x = 4) = 0.25920, P(x = 5) =0.07776.We can observe that the probabilities change drastically when the probability of success changes. With an increase in the probability of success, the probabilities for higher number of successes increases while the probabilities for lower number of successes decreases.The general rule is that as the probability of success increases, the probability of getting a higher number of successes in a certain number of trials increases and the probability of getting a lower number of successes decreases. Conversely, if the probability of success decreases, the opposite is true.

Learn more about binomial distribution:

brainly.com/question/9325204

#SPJ11

(3 points) 18 people apply for a job as assistant manager of a restaurant. 7 have completed college and the rest have not. If the manager selects 9 applicants at random, find the probability that 7 ar

Answers

The probability that 7 applicants are college graduates out of the 9 selected is 0.2079 (rounded to four decimal places).

Given,18 people apply for a job as assistant manager of a restaurant.7 of the 18 people completed college and the rest have not.

The total number of people who applied for the job is 18.

Where n is the total number of applicants, and r is the number of applicants selected.

The probability of selecting 7 college graduates among the 9 selected applicants is:P = (7C7 x 11C2) / 18C9P = (1 x 55) / 48620P = 0.00112922

The probability that 7 applicants are college graduates out of the 9 selected is 0.00112922 (rounded to eight decimal places).

Summary: 18 people applied for a job as assistant manager of a restaurant, and 7 had completed college, and the rest have not. The probability that 7 applicants are college graduates out of the 9 selected is 0.2079 (rounded to four decimal places).

Learn more about probability click here:

https://brainly.com/question/13604758

#SPJ11

Use the Law of Sines to solve triangle ABC if LA = 43.1°, a = 183.1, and b = 242.8. sin B = (round answer to 5 decimal places) There are two possible angles B between 0° and 180° with this value fo

Answers

The value of sin(B) is approximately 0.82279. To find the angles, we can use the inverse sine function (also known as arcsine). The arcsine function allows us to find the angle whose sine is equal to a given value.

To solve triangle ABC using the Law of Sines, we can use the following formula:

sin(A) / a = sin(B) / b

Given that angle A is 43.1°, side a is 183.1, and side b is 242.8, we can substitute these values into the formula and solve for sin(B).

sin(43.1°) / 183.1 = sin(B) / 242.8

To isolate sin(B), we can cross-multiply and solve for it:

sin(B) = (sin(43.1°) * 242.8) / 183.1

Using a calculator, we can evaluate this expression:

sin(B) ≈ 0.82279

Rounding this value to five decimal places, we get:

sin(B) ≈ 0.82279

Learn more about The value here:

https://brainly.com/question/32354073

#SPJ11

Marcus uses a hose to fill a swimming pool with water.
He knows it takes about 1 minute to fill a 10-litre bucket.
The pool has a capacity of 60 000 litres.
The pool is already three-quarters full.
What is the best estimate of the time it will take to fill this pool?

Answers

Given that Marcus uses a hose to fill a swimming pool with water. He knows that it takes about 1 minute to fill a 10-liter bucket. The pool has a capacity of 60,000 liters, and the pool is already three-quarters full.

In order to find the best estimate of the time it will take to fill this pool, we can use the given information which is; a bucket of 10 litres takes 1 minute to fill, the capacity of the pool is 60,000 litres and the pool is already 3/4 full.Therefore, to find the best estimate of the time it will take to fill the pool, Since the pool is 3/4 full, we can multiply the total capacity of the pool by 3/4 as shown below:60,000 litres × 3/4 = 45,000 litresThe pool is 45,000 litres full.Secondly, we need to find out how much more water is needed to fill the pool.

We can subtract the amount of water in the pool from the total capacity of the pool as shown below:60,000 - 45,000 = 15,000 litres more is neededLastly, we can now use the given information that a 10-litre bucket takes 1 minute to fill. To find out how long it will take to fill 15,000 litres of water, we can use the proportion:10 litres : 1 minute = 15,000 litres : x minutesWe can cross multiply to find the value of x:10x = 15,000x = 1,500 minutesTherefore, the best estimate of the time it will take to fill the pool is 1,500 minutes.

To know more aboutr swimming visit :

https://brainly.com/question/29211856

#SPJ11

Let S be a relation on the set R of all real numbers defined by S={(a,b)∈R×R:a 2 +b 2 =1}. Prove that S is not an equivalence relation on R.

Answers

The relation S={(a,b)∈R×R:a²+b²=1} is not an equivalence relation on the set of real numbers R.

To show that S is not an equivalence relation, we need to demonstrate that it fails to satisfy one or more of the properties of an equivalence relation: reflexivity, symmetry, and transitivity.

Reflexivity: For a relation to be reflexive, every element of the set should be related to itself. However, in the case of S, there are no real numbers (a, b) that satisfy the equation a² + b² = 1 for both a and b being the same number. Therefore, S is not reflexive.

Symmetry: For a relation to be symmetric, if (a, b) is related to (c, d), then (c, d) must also be related to (a, b). However, in S, if (a, b) satisfies a² + b² = 1, it does not necessarily mean that (b, a) also satisfies the equation. Thus, S is not symmetric.

Transitivity: For a relation to be transitive, if (a, b) is related to (c, d), and (c, d) is related to (e, f), then (a, b) must also be related to (e, f). However, in S, it is not true that if (a, b) and (c, d) satisfy a² + b² = 1 and c² + d² = 1 respectively, then (a, b) and (e, f) satisfy a² + b² = 1. Hence, S is not transitive.

Since S fails to satisfy the properties of reflexivity, symmetry, and transitivity, it is not an equivalence relation on the set of real numbers R.

Learn more about equivalence relation here:

https://brainly.com/question/14307463

#SPJ11

Required information In a sample of 100 steel canisters, the mean wall thickness was 8.1 mm with a standard deviation of 0.6 mm. Find a 99% confidence interval for the mean wall thickness of this type of canister. (Round the final answers to three decimal places.) The 99% confidence interval is Required information In a sample of 100 steel canisters, the mean wall thickness was 8.1 mm with a standard deviation of 0.6 mm. Find a 95% confidence interval for the mean wall thickness of this type of canister. (Round the final answers to three decimal places.) The 95% confidence interval is?

Answers

To find the 95% confidence interval for the mean wall thickness of the steel canisters, we can use the formula:

Confidence Interval = mean ± (critical value) * (standard deviation / √n)

Given:

Sample mean (x) = 8.1 mm

Standard deviation (σ) = 0.6 mm

Sample size (n) = 100

Confidence level = 95%

First, we need to find the critical value corresponding to a 95% confidence level. The critical value can be obtained from a standard normal distribution table or calculated using statistical software. For a 95% confidence level, the critical value is approximately 1.96.

Now we can calculate the confidence interval:

Confidence Interval = 8.1 ± (1.96) * (0.6 / √100)

= 8.1 ± 1.96 * 0.06

= 8.1 ± 0.1176

Rounding the final answers to three decimal places, the 95% confidence interval for the mean wall thickness is approximately:

Confidence Interval = (7.983, 8.217) mm

Therefore, the 95% confidence interval for the mean wall thickness of this type of canister is (7.983, 8.217) mm.

To know more about canister visit-

brainly.com/question/31323833

#SPJ11

please
help with part b
QUESTION 2 [5 marks] A stock price is currently $30. During each two-month period for the next four months it is expected to increase by 8% or reduce by 10%. The risk-free interest rate is 5%. a) Use

Answers

In this case,since the value of the derivative is higher than the immediate payoff of exercising the option (which is zero),it would NOT be beneficial  to exercise the derivative early.

How is this so ?

To calculate the value of the derivative using a  two-step tree, we need to construct the tree and determine the stock prices   at each node.

Let's assume the stock price   can either increase by  8% or decrease by 10% every two months.

We start with a stock price of  $30.

Step 1  -  Calculate the stock   prices after two months.

- If the stock price increases by 8%,it becomes   $30 * (1 + 0.08) = $32.40.

- If the stock price reduces by 10%, it becomes $30 * (1 - 0.10)

= $27.00.

Step 2  -  Calculate the stock prices after four months.

- If the stock   price increases by 8% in the second period, it becomes $32.40 * (1 + 0.08)= $34.99.

- If   the stock price increases by 8% in the first period and then decreases   by 10% in the second period, it becomes $32.40 * (1 + 0.08) * (1 - 0.10)

= $31.49.

- If the stock   price decreases by 10% in the first period and then increases by 8% in the second period,it becomes $27.00 * (1 - 0.10) * (1 + 0.08) = $27.72.

- If the stock price reduces by 10% in both periods,it becomes $27.00 * (1 - 0.10) *   (1 - 0.10)

= $23.22.

Now,we can calculate the payoffs of the derivative at each node -

- At $34.99, the payoff is max[(30 - 34.99), 0]² = 0.

- At $31.49, the payoff is max[(30 - 31.49), 0]² = 0.2501.

- At $27.72, the payoff is max[( 30 - 27.72), 0]² = 2.7056.

- At $23.22,the payoff is max[(30 - 23.22), 0]² = 42.3084.

Next, we calculate the   expected payoff ateach node by discounting the payoffs with the risk-free interest rate of 5% per period -

- At $32.40,the expected payoff is   (0.5 * 0 + 0.5 * 0.2501) / (1 + 0.05)

= 0.1187.

- At $27.00,the expected payoff   is (0.5 * 2.7056 + 0.5 * 42.3084) / (1 + 0.05)

= 22.1348.

Finally,   we calculate the value of the derivative at the initial node by discounting the expected payoff in two   periods-

Value of derivative = 0.1187 /   (1 + 0.05) + 22.1348 / (1 + 0.05)

≈ 20.7633.

Therefore, the value of the derivative that pays off max[(30 - S), 0]² where S is the stock price in four months is approximately $20.7633.

Since the   derivative is American-style, we need to consider if it should be exercised early.

In this case,since the value of the   derivative is higher than the immediate payoff of exercising the option (which is zero), it would not be beneficial to exercise the derivative early.

Therefore,it would be optimal to hold   the derivative until the expiration date.

Learn more about derivatives at:

https://brainly.com/question/28376218

#SPJ1

Full Question:

A stock price is currently $30. During each two-month period for the next four months it is expected to increase by 8% or reduce by 10%. The risk-free interest rate is 5%. Use a two-step tree to calculate the value of a derivative that pays off max[(30-S),0]^2 where S is the stock price in four months? If the derivative is American-style, should it be exercised early?

Alana is on holiday in london and pairs she is going to book a hotel in paris

she knows that 1 gbp is 1. 2 euros

Answers

Alana, who is on holiday in London, plans to book a hotel in Paris while being aware of the exchange rate of 1 GBP to 1.2 euros.

While Alana is on holiday in London, she plans to book a hotel in Paris. As she begins her search for accommodations, she is aware of the current exchange rate between British pounds (GBP) and euros.

Knowing that 1 GBP is equivalent to 1.2 euros, Alana considers the currency conversion implications in her decision-making process.

The exchange rate plays a crucial role in determining the cost of her stay in Paris.

Alana must carefully assess the rates offered by hotels in euros and convert them into GBP to accurately compare prices with her home currency.

This way, she can effectively manage her budget and make an informed choice.

Additionally, Alana should consider any potential fees associated with the currency conversion process.

Some banks or payment platforms may charge a conversion fee when converting GBP to euros, which could affect her overall expenses.

It is advisable for Alana to inquire about these fees beforehand to avoid any surprises.

Furthermore, Alana should assess the overall economic conditions that may influence the exchange rate during her stay.

Currency values can fluctuate based on various factors such as political stability, economic indicators, or global events.

Staying updated with the latest news and market trends can provide her with valuable insights to make the best decisions regarding currency exchange.

Lastly, Alana might also want to consider the convenience of exchanging currency.

She can either convert her GBP to euros in London before her trip or upon arrival in Paris.

Comparing exchange rates and fees at different locations can help her choose the most favorable option.

In summary, Alana's decision to book a hotel in Paris while on holiday in London involves considering the exchange rate between GBP and euros. By being mindful of currency conversion fees, monitoring economic conditions, and comparing exchange rates, Alana can effectively manage her budget and make an informed decision regarding her hotel booking in Paris.

For similar question on exchange rate.

https://brainly.com/question/2202418  

#SPJ8

find the change-of-coordinates matrix from b to the standard basis in ℝ2.

Answers

Let B be a nonstandard basis for a vector space V over a field F. If u = (u1, ..., un) is a vector in V with respect to the standard basis,

Then the vector x = (x1, ..., xn) in V with respect to the basis B can be found by solving the system of equations [tex]Bx = u[/tex].Then the change of coordinates matrix from B to the standard basis is obtained by stacking the coordinate vectors for the basis B into a matrix,

i.e.[tex], B = [b1 | b2 | ... | bn],[/tex]

where bj is the jth basis vector in B. The inverse of B is then used to go from the B-coordinates of a vector to the standard coordinates of the same vector, i.e.,

[tex]u = Bx[/tex]

implies that

[tex]x = B−1u.[/tex]

Therefore, the change-of-coordinates matrix from B to the standard basis is B−1.Hence, the main answer to the given question can be found by simply finding the inverse of the matrix B, which will give us the change-of-coordinates matrix from B to the standard basis.

To know more about vector visit:

https://brainly.com/question/30907119

#SPJ11

Other Questions
QUESTION 9 Given the demand and forecast values shown in the table below, Period Demand Forecast June 520 468 495 510 August 510 September 489 500 July 521 What is the forecasting value for October using 3-Month Weighted Moving Average, with a weight allocation of 0.50, 0.3 and 0.2, respectively? A 498.3 B.511.3 C.508.3 D.496.5 QUESTION 10 Using the data above, the forecast error for July is A 15 B.-15 C.2 D.-2 QUESTION 11 Using the data above, the mean absolute deviation (MAD) at the end of September is A. 27.19 B.22.25 C. 15.28 D.O What has occurred when one company arranges to buy a foreign currency sometime in the future, at an exchange rate quoted today? O a The company has entered a forward contract. None of the above O c. The currency has been devalued. O d. The company has purchased a foreign currency option. O b. Quiz 1 Fi stion 3 at red out of estion e What is the intrinsic value of a foreign currency option? a. The chance that a currency will rise over time to make the option in the money O b. The gain that could be realized if the option was exercised immediately Oc. The difference between the spot rate and the strike price O d. The difference between a call option and a put option Next page Jestion 4 "yot vered ed out of question Time left 1:25:59 Under U.S. GAAP, which of the following conditions must be met to qualify for hedge accounting? a. There must be formal documentation of the hedging relationship. The hedge must be effective. O c. All of the above must be met in order to qualify for hedge accounting. Od. A derivative must be used specifically to hedge fair value exposure or cash flow exposure. O b. Quiz navigat 1 3 Finish atterns 1 ved of on The number of Japanese yen () required today to buy one U.S. dollar ($) today is called: Oa the spot rate. O b. the retail rate. C. the exact rate. d. the forward rate. explain why dna replication is sometimes called semiconservative. Suppose the galvanic cell sketched below is powered by the following reaction: Fe(s)+NiCl(aq) FeCl(aq)+Ni(s) E1 E2 Si S1 S2 Write a balanced equation for the half-reaction that happens at the cathode of this cell Write a balanced equation for the half-reaction that happens at the anode of this cell. of what substance is El made? OD 6 $ $ ? of what substance is Ez made? What are the chemical species in solution SI? E What are the chemical species in solution 52? Court Casuals has 100,000 shares of common stock outstanding as of the beginning of the year and has the following transactions affecting stockholders' equity during the year. May 18 Mar 31 July 1 Issues 25,000 additional shares of Si par value common stock for $40 per share. Repurchases 5.000 shares of treasury stook for $45 per share. Declares a cash dividend of $1 pur share to all stockholders of record on July 15. Hint: Dividends are not paid on treasury stock. Pavs the cash dividend deolared on July 1. Reissues 2,500 shares of treasury stock purchased on May 31 for $46 per share. July 31 August 10 Record each of these transactions, Edit View Insert Format Tools Table 12pt v v Paragraph B I A what is undergoing reduction in the redox reaction represented by the following cell notation? mn(s) | mn 2 (aq) || h (aq) | h2(g) | pt Loans typically come with restrictions on the borrower called ____________ which are intended to protect the lender2. According to SIFMA's Capital Markets Factbook, what percentage of the money raised by US corporations in 2020 in capital markets came from bond issuance? [Hint: No need to go to the factbook. Check the readings at the very top of the Bonds subsection]Select an answer and submit. For keyboard navigation, use the up/down arrow keys to select an answer.a. 5%b. 9%c. 50%d. 77%e. 85%3. According to the podcast episode linked in the readings, the first government bonds ever issued were by the Venetian government and were called the____________ Covid-19 has created a volatile operating environment for all companies and one major concern is the impact on asset values. Companies will need to carefully consider the impairment of their assets and will need to make key judgements and sensitivity of assumptions regarding their recoverable amount calculations. Required: Briefly discuss the impact of Covid-19 on any two aspects of the impairment testing on intangibles. Please ensure that your discussion is relevant to the assets specified. Definition of photosynthesis In an EOQ model, the EOQ is originally determined at 100 units. When the demand rate is doubled, the new EOQ should be adjusted to O 1002=50 10 2 = 200 100 x 2 = 141 100 x 4 = 400 make a list of items that illustrate the scope of american government Using the below MACRO ECONOMIC indicators , compare between United Arab Emirates and United States of America for the past 10 years (with clarifications)- Economic development stage (undeveloped, developing, developed)- Real GDP- Real Per Capita GDP- Change rate % in real GDP- Commercial balance : surplus or deficit and its change rate %- The dominating sectors over GDP for 10 years (Agriculture, Manufacturing, Services,)- Employment rate %, reasons, actions taken, and recommendations.- Composition of CPI & inflation rate % .` Generating positive cash flows from operations is one of the most important cash flow activities of a company. Select one: True False Homework: Chapter 14 Assignment Question 9, 14.4.30-T HW Score: 8.80 %, 1.33 of 15 points O Points: 0 of 1 Save Suppose a government department would like to investigate the relationship between the cost of heating a home during the month of February in the Northeast and the home's squars footage. The accompanying data set shows a random sample of 10 homes. Construct a 90% confidence interval to estimate the average cost in February to heat a Northeast home that is 3,100 square feet Click the icon to view the data table X Data table Determine the upper and lower limits of the confidence interval. UCL S Heating LCL S Heating Cost (5) Square Footage Cost (5) (Round to two decimal places as needed.). 350 450 2,620 300 320 2,210 290 400 3,120 260 320 2,510 320 360 2,920 Help me solve this View an example Get more help. Square Footage 2,420 2,430 2,010 2,210 2,330 9 eck answer TRUE/FALSE nominalizations add credibility and efficiency to your writing. The random process x(t) is defined as A with prob. 1/2 - A with prob. 1/2 x(t) = { nT < t < (n + 1)T, \n 2 where the value of the function in an (nT, (n+1)T) interval is independent of the values in o What is the simplified form of the following expression?22712 - 33 - 212a) 24 - 33b) 43 - 6c) 92 - 33d) 43 - 32 Question: Many accounting professionals work in one of the following three areas.A. Financial accounting B. Managerial accounting C. Tax accountingIdentify the area of accounting that is most involved in each of the following responsibilities.1.Internal auditing 2. External auditing 3. Cost accounting 4. Budgeting 5. Investigating violations of tax laws 6. Planning transactions to minimize taxes 7. Preparing external financial statements 8. Reviewing reports for SEC compliance 1)Find the domain of the logarithmic function. (Enter your answer using interval notation.)f(x) = log8(x + 5)?Find the x-intercept.(x, y) = ?Find the vertical asymptote.x = ?Sketch the graph of the logarithmic function.?2) Find the domain of the logarithmic function. (Enter your answer using interval notation.)y = log4 x + 5?Find the x-intercept.(x, y) = ?Find the vertical asymptote.x = ?Sketch the graph of the logarithmic function.?3) Find the domain of the logarithmic function. (Enter your answer using interval notation.)f(x) = log3 x?Find the x-intercept.(x, y) = ?Find the vertical asymptote.x = ?Sketch the graph of the logarithmic function.? Provide an explanation of the validity of the evidences used in the text. (4-5 sentences)