5. A body moving with uniform acceleration has a velocity 12 m/s in the positive x direction when its x coordinate is 3cm. If its x coordinate 2 s later is -5 cm, what is the magnitude of its acceleration? ​

Answers

Answer 1
The magnitude of acceleration can be calculated using the following kinematic equation:

x = x0 + v0t + 1/2at^2

where
x = final position = -5 cm
x0 = initial position = 3 cm
v0 = initial velocity = 12 m/s
t = time = 2 s

Converting all units to SI units, we get:

x = -0.05 m
x0 = 0.03 m
v0 = 12 m/s
t = 2 s

Substituting these values into the equation and solving for a, we get:

a = 2(x - x0 - v0t) / t^2
a = 2(-0.05 - 0.03 - 12(2)) / (2)^2
a = -12.5 m/s^2

Therefore, the magnitude of acceleration is 12.5 m/s^2.
Answer 2
The magnitude of the acceleration of the body is 2.35 m/s^2.

We can use the following kinematic equation to solve for the acceleration:

x = x0 + v0t + 1/2 at^2

where x is the final position, x0 is the initial position, v0 is the initial velocity, t is the time, and a is the acceleration.

Plugging in the given values, we get:

-0.05 m = 0.03 m + 12 m/s * 2 s + 1/2 * a * (2 s)^2

Simplifying and solving for a, we get:

a = (0.05 m - 0.72 m)/2 s^2 = -0.335 m/s^2

Since the acceleration is in the opposite direction of the initial velocity, we take the absolute value to get the magnitude of the acceleration:

|a| = 0.335 m/s^2 ≈ 2.35 m/s^2.

Related Questions

In a futuristic scenario, you are assigned the mission of making an enemy satellite that is in a circular orbit around Earth inoperative. You know you cannot destroy the satellite, as it is well protected against attack, but you can try to knock it out of its orbit so it will fly away and never return. What is the minimum amount of work applied to the satellite that is required to accomplish that? The satellite's mass and altitude are 993 kg and 227 km. Earth's mass and radius are 5.98×10^24 kg and 6370 km.

Answers

The minimum amount of work required to make the enemy satellite inoperative and push it out of its circular orbit is 6.972 × 10^9 joules.

To calculate the minimum amount of work required to knock the satellite out of its circular orbit, we need to determine the change in kinetic energy required to change the satellite's velocity. This change in kinetic energy can be calculated using the conservation of energy, which states that the total energy in a closed system remains constant.

The kinetic energy of an object in motion can be expressed as:

K = (1/2)mv^2

Where:

K = Kinetic energy

m = Mass of the object

v = Velocity of the object

To determine the velocity of the satellite, we can use the following formula:

v = sqrt(GM/r)

Where:

G = Universal gravitational constant = 6.6743 × 10^-11 N m^2/kg^2

M = Mass of the Earth = 5.98×10^24 kg

r = Altitude of the satellite above the Earth's surface + radius of the Earth = 6,997 km

v = sqrt(6.6743 × 10^-11 × 5.98×10^24 / 6,997×10^3) = 7,650 m/s

To change the satellite's velocity, we need to calculate the new velocity required to push the satellite out of its circular orbit. We can use the following formula to calculate the escape velocity required to leave the Earth's gravitational field:

Ve = sqrt(2GM/r)

Ve = sqrt(2 × 6.6743 × 10^-11 × 5.98×10^24 / 6,997×10^3) = 11,186 m/s

To calculate the change in kinetic energy required to change the satellite's velocity from its initial velocity to the escape velocity, we can use the following formula:

ΔK = (1/2)m(Δv)^2

Where:

ΔK = Change in kinetic energy

m = Mass of the satellite

Δv = Change in velocity required to reach escape velocity = Ve - v

Δv = 11,186 m/s - 7,650 m/s = 3,536 m/s

ΔK = (1/2) × 993 kg × (3,536 m/s)^2 = 6.972 × 10^9 J

Therefore, The adversary spacecraft must be rendered inoperable and forced out of its elliptical orbit with a minimum of 6.972 × 10^9 joules of work.

To learn more about momentum and  impulse equations click:

brainly.com/question/30101966

#SPJ1

What is the force required to accelerate a 500 kg object at a rate of 10 m/s^2?

Answers

Answer:

Therefore, the force required to accelerate a 500 kg object at a rate of 10 m/s^2 is 5000 Newtons (N).

Explanation:

The force required to accelerate an object can be calculated using the formula:

force = mass x acceleration

where "mass" is the mass of the object being accelerated, and "acceleration" is the rate at which the object's velocity is changing.

In this case, the mass of the object is 500 kg, and the acceleration is 10 m/s^2. Plugging these values into the formula gives:

force = mass x acceleration

force = 500 kg x 10 m/s^2

force = 5000 N

Therefore, the force required to accelerate a 500 kg object at a rate of 10 m/s^2 is 5000 Newtons (N).

drawing shows a force vector that has a magnitude of 475 newtons.
Find the
(a) X,
(b) y, and
(c) z components of the vector.

Answers

X, Y, and Z components of the vector are 398, 384 and 279 resp.

Vector is a physical quantity which has both magnitude and direction. Vector A can be written as A = a₁i + a₂j + a₃k where a₁, a₂, a₃ are components along X, Y, Z axis resp. and i,j,k, are the unit vectors along X,Y,Z axis resp.

In this figure

vector F is at angle 36° from y axis, hence

x = Fcos33 = 475cos33 = 398 N

y = Fcos36 = 475cos36 = 384 N

z = Fsin36 =  475sin36 = 279 N

The vector can be written as

F = 398i + 384j + 279k

Hence x, y and z components of this force is 398, 384 and 279 resp.

To know more about Vector :

https://brainly.com/question/13322477

#SPJ1.

a) i) Calculate the change in length of a 1.5m long copper bar when its temp is raised from 303K to 353K . (3mks)

Answers

Answer:

the change in length of the copper bar is 1.26 x 10^-3 meters (or 1.26 millimeters).

Explanation:

The change in length of a copper bar can be calculated using the formula:

ΔL = L₀αΔT

where:

ΔL = change in length

L₀ = original length of the copper bar (1.5 m)

α = coefficient of linear expansion for copper (16.8 x 10^-6 K^-1)

ΔT = change in temperature (353 K - 303 K = 50 K)

Plugging in the values, we get:

ΔL = (1.5 m)(16.8 x 10^-6 K^-1)(50 K)

ΔL = 1.26 x 10^-3 m

The figure shows wire 1 in cross section; the wire is long and straight, carries a current of 4.20 mA out of the page, and is at distance d₁ = 2.58 cm from a surface. Wire 2. which is parallel to wire 1 and also long, is at horizontal distance d-5.05 cm from wire 1 and carries a current of 6.88 mA into the page. What is the x component of the magnetic force per unit length on wire 2 due to wire 1?

Answers

Wire 1 in cross section; the wire is long and straight, carries a current of 4.20 mA out of the page, and is at distance d₁ = 2.58 cm from a surface. Wire 2. which is parallel to wire 1 and also long, is at horizontal distance d-5.05 cm from wire 1 and carries a current of 6.88 mA.

To find the x component of the magnetic force per unit length on wire 2 due to wire 1, we can use the formula for the magnetic force between two parallel current-carrying wires we get

F = μ₀I₁I₂/(2πd)

Where F is the magnetic force per unit length, μ₀ is the magnetic constant (4π x [tex]10^{-7}[/tex]Tm/A), I₁ and I₂ are the currents in the wires, and d is the distance between the wires.

In this problem, we need to find the x component of the magnetic force per unit length on wire 2 due to wire 1. We can break down the problem into components by considering the direction of the magnetic field due to wire 1 at the position of wire 2. The magnetic field due to wire 1 will be perpendicular to both wire 1 and wire 2, and will be directed into the page.

To find the x component of the magnetic force, we need to consider the component of the magnetic force that is perpendicular to wire 2. This component will be directed along the x axis, and will have a magnitude of

[tex]F_{x}[/tex] = Fsinθ

Where θ is the angle between the direction of the magnetic force and the x axis. Since the magnetic force is directed into the page, θ is 90 degrees, and sinθ = 1.

Substituting the values given in the problem, we get

F = (4π x [tex]10^{-7}[/tex]Tm/A)(4.20 x[tex]10^{-3}[/tex] A)(6.88 x [tex]10^{-3}[/tex]A)/(2π*0.0258 m)

F = 3.99 x [tex]10^{-10}[/tex] N/m

Therefore, the x component of the magnetic force per unit length on wire 2 due to wire 1 is

[tex]F_{x}[/tex] = Fsinθ= (3.99 x [tex]10^{-10}[/tex] N/m)(1) = 3.99 x [tex]10^{-10}[/tex] N/m

Hence, the x component of the magnetic force per unit length on wire 2 due to wire 1 is 3.99 x [tex]10^{-10}[/tex] N/m.

To know more about cross section here

https://brainly.com/question/31476632

#SPJ1

A complete circuit with a capacitor is turned on. What causes that potential energy produced?

The voltage difference across the capacitor.
The switch adds energy to the system through the capacitor.
The electrons are removed from one side of the capacitor and moved to the other side.
The current running through the wire causes the capacitor to heat up, raising the resistance of the wire.

Answers

The correct answer is a. The voltage difference across the capacitor.

When a complete circuit with a capacitor is turned on, the capacitor begins to charge up. This means that charge is transferred from one plate of the capacitor to the other, creating a voltage difference across the capacitor. This voltage difference represents potential energy stored in the electric field between the plates of the capacitor. Therefore, the potential energy produced when a complete circuit with a capacitor is turned on is due to the voltage difference across the capacitor.

The potential energy produced in a complete circuit with a capacitor is caused by the voltage difference across the capacitor.

A capacitor is an electrical component that stores electric charge. When a capacitor is connected to a complete circuit and a voltage is applied, it becomes charged. The voltage difference across the capacitor creates an electric field between its plates, which stores potential energy in the electric field.

As the capacitor charges, electrons accumulate on one plate, creating a negative charge, while the other plate becomes positively charged due to the loss of electrons. This separation of charge creates an electric potential difference (voltage) between the two plates of the capacitor.

The potential energy stored in the capacitor is directly proportional to the square of the voltage across it and the capacitance (C) of the capacitor, and is given by the formula:

Potential energy (PE) = (1/2) * C * V²

where V is the voltage across the capacitor.

As the voltage across the capacitor increases, more potential energy is stored in the electric field between its plates. When the circuit is turned off or the capacitor is discharged, this stored potential energy is released back into the circuit in the form of electrical energy. Capacitors play a crucial role in many electronic devices and circuits by providing energy storage and smoothing out voltage fluctuations.

To learn more about capacitor, here

https://brainly.com/question/31627158

#SPJ2

Two charges of Q coul each are placed at two opposite corners of a square. What additional charges q placed at each of the other two corners will reduce the resultant electric force on each of the charges Q to zero? Is it possible to choose these charges so that the resultant force on all the charges is zero?​

Answers

Answer:

Hlooooo Please mark as the brainliest answer

btw ....there r 4 images pls slide and view the answer

Which of the following is most likely the caption for the illustration that was scratched out of the textbook?

A. An electrically-charged object can attract an uncharged object with magnetic properties.

B. An electrically-charged object is stronger than a magnet.

C. A dry cell battery has magnetic properties.

D. An electric circuit can only have one dry cell battery.

IMAGE DOWN BELOW OR UP

Answers

The correct statement is " A dry cell battery has magnetic properties.", The correct option is C.

A dry cell battery does generate its own magnetic field due to the flow of electric current through the battery.

The magnetic field is created by the movement of charged particles (electrons) within the battery. This magnetic field is relatively weak and is not typically strong enough to be used for practical applications outside of the battery itself.

So, the magnetic properties of the dry cell battery are important for understanding its behavior within an electrical circuit.

Therefore, The correct answer is option C.

To learn more about magnetic flux click:

brainly.com/question/30201571

#SPJ1

CAN ANYONE PLEASE HELP!


One long wire lies along an x axis and carries a current of 36 A in the positive x direction. A second long wire is perpendicular to the xy plane, passes through the point (0,5.8 m, 0), and carries a current of 73 A in the positive z direction. What is the magnitude of the resulting magnetic field at the point (0, 2.0 m, 0)?

Answers

The resultant magnetic field magnitude at the position (0, 2.0 m, 0) is 1.9 x 10⁻⁵ T.

How to find resulting magnetic field?

The magnetic field due to each wire at point P will be:

B₁ = μ₀I₁/2πr₁ and B₂ = μ₀I₂/2πr₂

Where,

μ₀ = 4π x 10⁻⁷ T m/A is the permeability of free space,

I₁ = 36 A is the current in the first wire,

I₂ = 73 A is the current in the second wire,

r₁ = distance between point P and the first wire,

r₂ = distance between point P and the second wire.

As the first wire is along the x-axis, its magnetic field at point P will be purely in the y-direction. The magnitude of B₁:

B₁ = μ₀I₁/2πr₁ = (4π x 10⁻⁷ T m/A)(36 A)/(2π(2.0 m)) = 1.8 x 10⁻⁵ T

The second wire is perpendicular to the xy-plane, so its magnetic field at point P will be purely in the x-direction. The distance r₂ using the Pythagorean theorem:

r₂ = √(5.8 m)² + (2.0 m)² = 6.1 m

The magnitude of B₂:

B₂ = μ₀I₂/2πr₂ = (4π x 10⁻⁷ T m/A)(73 A)/(2π(6.1 m)) = 6.0 x 10⁻⁶ T

The resulting magnetic field at point P will be the vector sum of the magnetic fields due to each wire:

B = √(B₁² + B₂²) = √((1.8 x 10⁻⁵ T)² + (6.0 x 10⁻⁶ T)²) = 1.9 x 10⁻⁵ T

Therefore, the magnitude of the resulting magnetic field at the point (0, 2.0 m, 0) is 1.9 x 10⁻⁵ T.

Find out more on magnetic field here: https://brainly.com/question/17329944

#SPJ1

An electron is accelerated by a constant electric field of magnitude 403 N/C.
(a) Find the acceleration of the electron.
(b) Find the electron's speed after 1.41 ✕ 10-8 s, assuming it starts from rest.

Answers

An electron is accelerated by a constant electric field of magnitude 403 N/C.  The acceleration of the electron is 7 × 10¹³ m/s². electron's speed after 1.41 ✕ 10-8 s is 987000 m/s.

Electric field is field around electrically charged particle where columbic force of attraction or repulsion can be experienced by other charged particles. It is denoted by letter E and it's SI unit is V/m Volt per meter or N/C newton per coulomb.

F = qE where E is electric field, q = 1.60 × 10⁻¹⁹ C is charge on the electron and F is Force on the electron

F = 1.60 × 10⁻¹⁹ C ×  403 N/C

F = 644.8  × 10⁻¹⁹ N

F = ma

where m =  9.1 × 10⁻³¹ kg , mass of the electron

a = F/m

a =  644.8  × 10⁻¹⁹ N ÷ 9.1 × 10⁻³¹ kg

a = 7 × 10¹³ m/s²

The acceleration of the electron is 7 × 10¹³ m/s².

The electron's speed after 1.41 ✕ 10⁻⁸ s is,

v = u + at

where u is initial velocity, which is zero.

v = at

v = 7 × 10¹³ m/s² × 1.41 ✕ 10⁻⁸ s

v = 987000 m/s

To know more about Electric field :

https://brainly.com/question/8971780

#SPJ1.

A 20 kg child is on a swing that hangs from 2.6-m-long chains. What is her maximum speed if she swings out to a 50 degree angle?

Answers

To find the maximum speed of the child on the swing, we can use the conservation of energy principle, which states that the total energy of a system is conserved.

At the highest point of the swing, the child has maximum potential energy and zero kinetic energy. At the lowest point of the swing, the child has maximum kinetic energy and zero potential energy. Therefore, the total energy of the system remains constant, and we can write:

PE = KE

where PE is the potential energy and KE is the kinetic energy.

The potential energy of the child on the swing can be calculated as:

PE = mgh

where m is the mass of the child, g is the acceleration due to gravity, and h is the height of the swing at the highest point. Since the swing hangs from 2.6-m-long chains, the height of the swing at the highest point is:

h = 2.6 m - 2.6 m cos(50°) = 1.32 m

Substituting the values, we get:

PE = (20 kg)(9.81 m/s^2)(1.32 m) = 258.2 J

At the lowest point of the swing, all the potential energy is converted to kinetic energy. The kinetic energy of the child on the swing can be calculated as:

KE = (1/2)mv^2

where v is the speed of the child at the lowest point. Substituting the values, we get:

KE = (1/2)(20 kg)v^2

Equating the potential and kinetic energies, we get:

PE = KE
mgh = (1/2)mv^2
2gh = v^2
v = sqrt(2gh)

Substituting the values, we get:

v = sqrt(2 × 9.81 m/s^2 × 1.32 m) = 4.06 m/s

Therefore, the maximum speed of the child on the swing is 4.06 m/s.

A voltage of 32 V generates a work done of 2.10x10^-7 J. Calculate the charge.

Answers

The work done (W) by an electric field is given by the formula W = qV, where q is the charge and V is the voltage.

Rearranging the formula gives q = W/V.

Substituting the given values, we get:

q = (2.10 x 10^-7 J) / (32 V)

q = 6.56 x 10^-9 C

Therefore, the charge is 6.56 x 10^-9 C.

*Calculation
An intensity level change of 1 dB correspond
s to what percentage change in intensity?

Answers

Answer:

An intensity level change of 1 dB corresponds to a 10% change in intensity.

3) Vector A is 2.8 cm at 60° above the positive x-axis. Vector B is 1.90 cm at 60° below the
positive x-axis. Use components to find the following:
a) A + B
b) A -B
c) B-A

Answers

a) A + B: 3.9 cm, 0°

b) A - B: 0.9 cm, 60°

c) B - A: 0.9 cm, 240°

An unhappy 0.400 kg rodent, moving on the end of a spring with force constant 3.50 N/m , is acted on by a damping force Fx=−bvx .

Answers

The equation of motion for the rodent is x(t) = -1.12cos(3.20t), and the damping force is Fd = -0.62*vx(t). The damping force will cause the amplitude of the motion to decrease over time, and the rodent will eventually come to rest at the equilibrium position.

We can use the following equations to solve this problem:

F = -kx (Hooke's Law)

F = ma (Newton's Second Law)

a = d^2x/dt^2 (Definition of Acceleration)

Fd = -bv (Definition of Damping Force)

x(t) = A*cos(ωt + φ) (Equation of Motion for Simple Harmonic Motion)

We will need to use these equations to find the displacement, velocity, and acceleration of the rodent as a function of time, and then use that information to calculate the damping force and solve for the parameters of the motion.

First, let's find the natural frequency of the system:

ω = sqrt(k/m) = sqrt(3.50 N/m / 0.400 kg) = 3.20 rad/s

Next, let's assume that the rodent starts at its maximum displacement and moves in simple harmonic motion. We can use the equation of motion for simple harmonic motion to write:

x(t) = A*cos(ωt + φ)

where A is the amplitude of the motion and φ is the phase angle.

To find A and φ, we need to use the initial conditions. We know that at t=0, the rodent is at its maximum displacement, so x(0) = A. We also know that at t=0, the velocity of the rodent is zero, so vx(0) = -Aωsin(φ) = 0. This means that either A=0 (the rodent is not moving) or sin(φ) = 0 (the rodent is moving with maximum velocity). We will assume that the latter is true, so sin(φ) = 0 and cos(φ) = 1.

Now we can write:

x(t) = A*cos(ωt)

To find A, we use the fact that the rodent has a mass of 0.400 kg and is moving on a spring with force constant 3.50 N/m. The force on the rodent is given by:

F = -kx = -3.50 N/m * A*cos(ωt)

At maximum displacement, the force is equal to the weight of the rodent:

mg = 0.400 kg * 9.81 m/s^2 = 3.92 N

So we can write:

3.92 N = -3.50 N/m * A

A = -1.12 m

Therefore, the equation of motion for the rodent is:

x(t) = -1.12cos(3.20t)

To find the velocity and acceleration of the rodent, we take the derivative of the displacement with respect to time:

vx(t) = dx/dt = 3.58sin(3.20t)

ax(t) = d^2x/dt^2 = -11.46cos(3.20t)

To find the damping force, we use the equation:

Fd = -bv = -bdx/dt = -b3.58sin(3.20t)

We don't know the value of b, so we can't solve for it directly. However, we can use the fact that the damping force is equal to the work done by the damping force over one cycle of motion. This work is equal to the energy lost by the system due to damping. Since the system is losing energy at a rate proportional to its velocity, we can write:

Energy lost per cycle = Average damping force * Distance traveled per cycle

The distance traveled per cycle is equal to 2piA = 7.04 m, since the rodent moves from its maximum displacement to its minimum displacement and back again in one cycle.

The average damping force over one cycle is equal to the time average of the damping force:

<Fd> = (1/T)∫[0,T] -bdx/dt dt

where T = 2*pi/ω is the period of the motion. Evaluating the integral gives:

<Fd> = (1/T)∫[0,T] -b(-1.12)3.20sin(3.20*t) dt

<Fd> = 3.58*b

Since the energy lost per cycle is also equal to (1/2)kA^2, we can write:

(1/2)kA^2 = <Fd>2pi*A

Solving for b, we get:

b = (kA)/(2pi)

Substituting the given values, we get:

b = (3.50 N/m * 1.12 m)/(2*pi) = 0.62 Ns/m

Therefore, the equation of motion for the rodent is:

x(t) = -1.12cos(3.20t)

vx(t) = 3.58sin(3.20t)

ax(t) = -11.46cos(3.20t)

and the damping force is given by:

Fd = -0.62*vx(t)

Note that the negative sign indicates that the damping force acts in the opposite direction to the velocity of the rodent. This means that the damping force will cause the amplitude of the motion to decrease over time, and the rodent will eventually come to rest at the equilibrium position.

Therefore,The equation of motion for the rodent is x(t) = -1.12cos(3.20t), and the damping force is Fd = -0.62*vx(t).

To learn more about Newton's law of motion click:

brainly.com/question/29775827

#SPJ1

Why do we know so much Earth's Composition?

A.Digging to the inner core
B.Looking at the Earth's Magnetic Field
C.Studying Seismic Waves

Answers

Answer:

C

Explanation:

Since we can't go to the center of Earth, we have to rely on indirect observations of the materials of the interior. The seismic waves are generated by earthquakes and explosions that travel through Earth and across its surface. Thanks to that, it reveals the structure of the interior of the planet. Thousands of earthquakes occur every year, and each one provides a glimpse of the Earth's interior.

C studying seismic waves

A block of mass m is released from the top of a spring and goes through simple harmonic motion. Use equations to show your work (no numerical values).

a. What is the compression of the spring at equilibrium?

b. What is the maximum compression in the spring?

c. Find the maximum acceleration of the block.

Answers

The equations we'll need to use are:

1. Hooke's Law: F = -kx
2. Energy Conservation: 1/2 kx^2 = mgh = 1/2 mv^2
3. Period of motion: T = 2π√(m/k)

where:
F = force exerted by the spring
k = spring constant
x = displacement from equilibrium
m = mass of the block
g = acceleration due to gravity
h = height of the block above the equilibrium point
v = velocity of the block
T = period of motion

a. When the block is at equilibrium, it is at rest and the net force on it is zero. Therefore, we have:

F = -kx = 0

Solving for x, we get:

x = 0

So the compression of the spring at equilibrium is zero.

b. The maximum compression in the spring occurs when the block is at its maximum displacement from equilibrium. At this point, the block momentarily stops before reversing direction. Using energy conservation, we have:

1/2 kx^2 = 1/2 mv^2

where v = 0 at the maximum compression point. Solving for x, we get:

x = √(2mg/k)

So the maximum compression in the spring is √(2mg/k).

c. The maximum acceleration of the block occurs at the equilibrium point, when the spring is fully compressed and then released. At this point, the net force on the block is equal to the maximum force exerted by the spring. Using Hooke's Law, we have:

F = -kx

At the equilibrium point, x = √(2mg/k), so we have:

F = -2mg

The acceleration of the block is given by:

a = F/m = -2g

So the maximum acceleration of the block is 2g downward.

Two balloons with charges of 8.37 µC and unknown one repel each other with a force of 0.5 Newton in the distance of 30mm. Determine the unknown charge.

Answers

The electrostatic force between two charged objects is given by Coulomb's law:

F = k * (q1 * q2) / r^2

where F is the force, k is Coulomb's constant (9 x 10^9 N*m^2/C^2), q1 and q2 are the charges of the two objects, and r is the distance between them.

In this case, we have two balloons with charges of 8.37 µC and q2 (unknown), separated by a distance of 30 mm, and experiencing a repulsive force of 0.5 N.

We can plug in the given values and solve for q2:

0.5 N = (9 x 10^9 N*m^2/C^2) * (8.37 µC * q2) / (0.03 m)^2

Simplifying:

q2 = (0.5 N * 0.03 m^2) / (9 x 10^9 N*m^2/C^2 * 8.37 µC)

q2 = 2.05 µC

Therefore, the unknown charge is 2.05 µC.

What areas of daily life are the effects of the laws of physics seen?

Answers

Answer: Our day-to-day life highly relates to physics.

Explanation: We know that in physics there are many laws such as gravitational laws, laws of friction, and inertia.For example

When we drive a car, and suddenly apply the bake the drive moves forward. This is actually the LAW OF INERTIA.If we placed a ball on the surface it does not change its position until a force is applied. When we placed an object on the surface of the earth, it does not change its position and size until an external force is applied. This is an example of NEWTON'S FIRST LAW.Writing with a ballpoint pen is another example of a LAW OF GRAVITY. When we write with a ballpoint pen the ball spins and because of the gravity the ink travel to the paper.

       

The Gift of the Magi
by O Henry

After Della counted her money she flopped down on the couch and began to scream and cry. Sobs, sniffles and smiles seem to be a progression from sadness to satisfaction.

Read the passage closely and answer the following question:

On reflection, what did Della (Mrs. James Dillingham Young) decide that life was made up of?

Answers

On reflection, what did Della (Mrs. James Dillingham Young) decide that life was made up of happiness.

In the context of mental or emotional states, happiness refers to good or pleasant emotions ranging from satisfaction to profound delight. Life satisfaction, well-being, subjective well-being, flourishing, and eudaimonia are some of the other types.

Happiness research has been carried out in a wide range of scientific fields since the 1960s, including gerontology, social psychology and positive psychology, clinical and medical research, and happiness economics.

when he saw how much money he is having he found that he has lots of money, he scream and cry with happiness and joy. Then he decided that the life is made up of happiness.

To know more about happiness :

https://brainly.com/question/30750535

#SPJ1.

Which sentence best describes what happens when you turn on a light? (1 point)

A. Potential energy is changed into kinetic energy.

B. Electrical energy is changed into light energy and thermal energy.

C. Light energy is created.

D. Chemical energy is changed into electrical energy and light energy.

Answers

B. Electrical energy is changed into light energy and thermal energy.

help
1. Calculate the Energy of skater at all the positions shown. Position C is the highest point the skater reaches

Answers

The energy of the skater at each position is:

A: 1920 JB: 1764 JC: 3528 J

How to calculate conservation of energy?

At position A, the skater is at the lowest point, so the PE is zero. The KE can be calculated using the formula KE = (1/2)mv², where m is the mass of the skater and v is the velocity:

KE = (1/2)(60 kg)(8 m/s)²

KE = 1920 J

Therefore, at position A, the skater has 1920 J of kinetic energy and 0 J of potential energy.

At position B, the skater has gained some height, so there is some potential energy. The KE can be calculated as before, and the PE can be calculated using the formula PE = mgh, where m is the mass of the skater, g is the acceleration due to gravity (9.81 m/s²), and h is the height:

KE = (1/2)(60 kg)(8 m/s)²

KE = 1920 J

PE = (60 kg)(9.81 m/s²)(3 m)

PE = 1764 J

Therefore, at position B, the skater has 1920 J of kinetic energy and 1764 J of potential energy.

At position C, the skater has reached the highest point, so the KE is zero. The PE can be calculated as before:

PE = (60 kg)(9.81 m/s²)(6 m)

PE = 3528 J

Therefore, at position C, the skater has 0 J of kinetic energy and 3528 J of potential energy.

Find out more on energy conservation here: https://brainly.com/question/166559

#SPJ1

What is the primary difference between outlaw motorcycle gangs and social motorcycle groups?
O A.
OB.
O C.
O D.
being a structured group with roles
having a group leader
their group activities and behavior
having group rules

Answers

Answer:

The primary difference between outlaw motorcycle gangs and social motorcycle groups is their group activities and behavior. Outlaw motorcycle gangs are typically involved in criminal activities, such as drug trafficking, extortion, and violence. They often have a hierarchical structure and strict rules for membership and behavior. In contrast, social motorcycle groups are primarily focused on riding motorcycles and socializing with other riders. They do not engage in criminal activities and do not have a strict hierarchy or rules for membership. While both types of groups may have some level of structure, such as having a group leader or group rules, the main difference lies in their group activities and behavior.

A man is in a helicopter ascending vertically at constant rate of 24.5m/s accidentally drops a toy out the window when the helicopter is 120.0m above the ground. (g = 9.8m / s)

a. How long will it take the toy to reach the ground

b. What will its speed be when it hits the ground?​

Answers

It will take the toy  5.02 seconds to reach the ground, The speed at which the toy hits the ground is 49.0 m/s.

Free fall is the motion of an object falling solely under the influence of gravity. In free fall, the object experiences an acceleration of 9.8 m/s^2 downwards towards the ground (assuming no air resistance), regardless of its mass or size.

a. To determine the time it takes for the toy to reach the ground, we can use the formula for the height of an object in free fall:

h = (1/2)gt^2

Where h is the initial height, g is the acceleration due to gravity, and t is time.

At the instant the toy is dropped, its initial height above the ground is h = 120.0 m, and the acceleration due to gravity is g = 9.8 m/s^2. Thus, we can rearrange the formula to solve for time:

t = sqrt(2h/g)

t = sqrt(2(120.0 m)/(9.8 m/s^2)) = 5.02 s

So, it will take the toy approximately 5.02 seconds to reach the ground.

b. To find the speed at which the toy hits the ground, we can use the formula for final velocity in free fall:

v = sqrt(2gh)

Where v is the final velocity, g is the acceleration due to gravity, and h is the initial height. At impact, the initial height of the toy is 0 m. Therefore:

v = sqrt(2gh)

v = sqrt(2(9.8 m/s^2)(120.0 m))

v = 49.0 m/s

So, the speed at which the toy hits the ground is approximately 49.0 m/s.

Hence, The toy will fall to the earth in 5.02 seconds, hitting the ground at a speed of 49.0 m/s.

To learn more about  Gravitational potential energy click:

brainly.com/question/31096472

#SPJ1

Calculate the energy changes corresponding to the transitions of the hydrogen atom. From n = 3 to n = ∞.

Answers

Answer: ΔE = -2.42 × 10^-19 J

Explanation:

The energy of an electron in the nth energy level of a hydrogen atom is given by the following formula:

E = (-2.18 × 10^-18 J) × (Z^2 / n^2)

where Z is the atomic number (1 for hydrogen) and n is the principal quantum number.

The energy change corresponding to a transition from energy level n1 to energy level n2 is given by the formula:

ΔE = E2 - E1 = (-2.18 × 10^-18 J) × Z^2 (1/n2^2 - 1/n1^2)

Given that the electron transitions from n = 3 to n = ∞, we can substitute n1 = 3 and n2 = ∞ in the above formula to obtain:

ΔE = (-2.18 × 10^-18 J) × 1^2 (1/∞^2 - 1/3^2)

ΔE = (-2.18 × 10^-18 J) × (1/9)

ΔE = -2.42 × 10^-19 J

Therefore, the energy change corresponding to the transition of the hydrogen atom from n = 3 to n = ∞ is -2.42 × 10^-19 J.

The energy change for the transition of a hydrogen atom from n = 3 to n = ∞ is 1.511 eV. This transition represents the electron moving to an energy level where it is essentially unbound from the nucleus, resulting in an energy increase.

The energy changes corresponding to the transitions of a hydrogen atom can be calculated using the formula for energy levels in hydrogen:

E = -13.6 eV * (Z² / n²)

Where:

E is the energy of the electron in electronvolts (eV).

Z is the atomic number, which is 1 for hydrogen.

n is the principal quantum number, representing the energy level.

Given the transition from n = 3 to n = ∞, we can calculate the energy change:

Calculate the initial energy (n = 3):

Einitial = -13.6 eV * (1² / 3²) = -13.6 eV * (1/9) = -1.511 eV

Calculate the final energy (n = ∞):

Efinal = -13.6 eV * (1² / ∞²)

In the final state, as n approaches infinity, the energy becomes zero.

Calculate the energy change (ΔE):

ΔE = Efinal - Einitial = 0 - (-1.511 eV) = 1.511 eV

So, the energy change corresponding to the transition of a hydrogen atom from n = 3 to n = ∞ is 1.511 electronvolts (eV).

For more such information on: transition

https://brainly.com/question/30771613

#SPJ2

The magnitude of a uniform electric field between two plates is about 1.7 ✕ 106 N/C. If the distance between these plates is 3.7 cm, find the potential difference between the plates.

Answers

The magnitude of a uniform electric field between two plates of capacitor is about 1.7 ✕ 106 N/C. If the distance between these plates is 3.7 cm then the potential difference between the plates is 62.5 kV.

A capacitor is a device that stores electrical energy in an electric field by collecting electric charges on two isolated surfaces. It is a two-terminal passive electrical component.

Electric field of the parallel plate capacitor is given as,

E = V/d

Given,

E =  1.7 ✕ 10⁶ N/C.

d = 3.7 cm,

V= Ed

V = 1.7 ✕ 10⁶ N/C × 3.7 × 10⁻² m

V = 62.5 kV.

To know more about Capacitor :

https://brainly.com/question/17176550

SPJ1.

A simple circuit contains a battery connected with wires to a small bulb that has a resistance of 150 ohms. If the power dissipated by the bulb is 0.4 W, what is the voltage of the battery?

Remember to identify all data (givens and unknowns), list equations used, show all your work, and include units and the proper number of significant digits to receive full credit.

Answers

Answer: The answer is 7.75v

Explanation; As we know,

                                    power dissipated= (voltage)^2/resistance

                                             0.4w = v^2/150  

                                                 v^2=0.4w*150ohm

                                                   v^2=60

                                                     v=7.75v

3
Extremist groups typically mix radical beliefs or values with anger over some aspect of society.
OA. True
OB. False

Answers

A) true
Extremist groups typically mix radical beliefs or values with anger over some aspect of society"
True.
Because Extremist groups often mix radical beliefs or values with anger over some aspect of society. They may believe that their group or ideology is under threat, and they may use violence or other extreme measures to defend their beliefs or advance their cause. Extremist groups can be found on the far right, far left, or in religious or cultural movements, and their tactics can range from peaceful protests to terrorism.

What two things can be considered to be substances?

Answers

Answer:Classification of Matter According To Composition

When you think about classifying matter, you likely think of the three states of matter: solid, liquid, and gas. But, thinking back to the donut metaphor, we can also classify matter according to what it is made of (aka its chemical composition)! So, what makes up matter? Well, on a molecular level, all matter is made up of atoms that can form elements, compounds, and molecules! Even with all these different components, matter can be split into two broad categories based on its composition: pure substances and mixtures. We will spend most of our time on pure substances, but briefly cover mixtures! So, let’s dive into pure substances!

We will go into more detail on all the components of matter, but for a more thorough review, check out Atomic Structure!

Definition of Pure Substances

A simple way to think about pure substances is as something that is made up of only one type of matter that always has the same properties, such as melting point, boiling point, density, etc.

Pure substances are matter that has a fixed chemical composition and properties that do not change.

Can you guess what are pure substances in your day-to-day life? I bet you may have salt (NaCl) and tin cans (Sn) in your pantry! These are perfect examples of pure substances because salt is made up of purely NaCl molecules, and tin is made up of only tin atoms.

But wait, you may have noticed a difference between salt and tin and asked how exactly salt is only made up of one type of matter when it’s two different atoms bonded together?

Pure substances can be further divided into two classes: elements and compounds.

Pure Substance Examples

We are going to spend some time looking at elements and compounds separately and some common examples of each!

Elements

If you think elements sound familiar, you are correctly thinking of the 118 organized in the periodic table. Tin is an example of an element!

Explanation:

There are two resistors connected in parallel: R1-43 Ohms and R2-43 Ohms.
Determine the equivalent resistance. Round your answer to 2 significant digits only. For example, if the answer is 65.4 Ohms write 65.

Answers

The equivalence resistance rounded off to two significant digits is

22 Ohms.

How to find the equivalent resistance

The equation used to work out the equivalent resistance of two resistors in parallel is as follows:

1/Req = 1/R1 + 1/R2

When R1 and R2 are set at 43 Ohms, we can fill in the placed values like so:

1/Req = 1/43 + 1/43

Simplifying to reduce the equation

1/Req = 2/43

cross multiplying the sides of the equation:

2 x Req = 43

Isolating Req

Req = 43/2

Req = 21.5 Ohms

Req = 22 Ohms to 2 significant figures

Learn more about resistors at

https://brainly.com/question/24858512

#SPJ1

Other Questions
Fournotts Corp. manufactures a special kind of filter that can purify water quickly, but the consumers in the market are not aware of the existence of the product. In this case, which of the following strategies will increase the sales of the filter?A. Using customer-generated advertising.B. Using status-conscious advertising.C. Using direct response advertisingD. Using selective advertising Q2 In a triangle, the sum of its base and height is 12cm. a) What is the maximum possible area of the triangle? (4 marks) b) What are the base and height of the triangle found in (a)? (2 marks) What are some common recommendations in intelligence or aptitude assessment? One month Eric rented 3 movies and 5 video games for a total of $34. The next month he rented 9 movies and 7 video games for a total of $56. Find the rentalcost for each movie and each video game.Rental cost for each movie:Rental cost for each video game:GOG Notebook Write a summary of this excerpt from the "Four Freedoms" speech. During the cell division process, Sulfolobus segregates its chromosomes in a manner similar to bacteria, and performs cytokinesis in a manner similar to that of eukaryotes. (T/F) A rental car company charges $20 per day to rent a car and $0.10 for every mile driven. Addison wants to rent a car, knowing that: She plans to drive 100 miles. She has at most $80 to spend.Write and solve an inequality which can be used to determine xxx, the number of days Addison can afford to rent while staying within her budget. List any four positive and negative aspects of internet the competitive firm's long-run supply curve is that portion of the group of answer choices average variable cost curve that lies above marginal cost. marginal cost curve that lies above average variable cost. average total cost curve that lies above marginal cost. marginal cost curve that lies above average total cost. at which level of anxiety does problem solving feel impossible, and the person is unable to see connections between events or details? in the tables that follow you will find consolidated balance sheets for the commercial banking system and the 12 federal reserve banks. use columns 1 through 3 to indicate how the balance sheets will read after each of transactions a to c is completed. do not cumulate your answers; that is, analyze each transaction separately, starting in each case from the numbers provided. all accounts are in billions of dollars. leks generally located near ponds visited by females THIS AGREES WITH WHAT MODEL Which of the following techniques is used to intentionally introduce changes into the DNA sequence to analyze gene function and gene products?DNA sequencingDNA microarrayMutagenesisDNA probesRestriction enzyme analysisGene cloning Question 1 of 5Which verb makes an incorrect shift in tense?Yvette stepped off the path into a small forest. She looked up, but allshe could see were pine needles and branches. It is a cold, cloudy day,though she heard the warm song of a lone sparrow overhead.OA. isB. steppedO C. heardOD. looked a 60.0kg crate slides from rest at h(1)=1.46m down to a horizontal surface where it passes over a 1.60m patch .the rough patch has a kinetic friction coefficient of 0.34 an incline has 25.0 degrees .what is the maximum height the crate reach Ms. Applewood has a young boy in her classroom who has behavioral problems. She has tried multiple strategies, unsuccessfully, to reduce the number of his inappropriate behaviors. Only one of those strategies seems to work. Which strategy is it? De qu poca son los objetos que se muestran en este evento Read the passage.[1] I had just transferred to a new school, and at the end of my first day, the teacher announced that we would be starting a group projectcovering material from the previous two weeks. [2] I wanted to quickly learn the material so I could help them. [3] I asked the teacher if shewould get one of my classmates to share his notes with me. [4] The teacher did, and I used the classmate's notes to get caught up. [5] Then I wasable to help my group with the project. [6] Our group learned so much completing the project, and we had a lot of fun, too.Which revision is needed to correct vague pronoun use in the passage?O 1. Replace "my" with "the" in sentence 1.O2. Replace "them" with "my group" In sentence 2.3. Replace "she" with "the teacher" in sentence 3.O4. Replace "we" with "I" in sentence 6. What medication is classified as a topical corticosteroid? Adapalene Hydrocortisone Mupirocin Tretinoin Can you tell me the story about the Franco-Prussian War?