7. The steady state and pseudosteady state flow equations in a circular drainage area, and productivity Index are given as q=7.081*10¯^3 kh/Bμ (rhoe-rhowf)/({In(re/rw)+s}) q=7.081*10¯^3 kh/Bμ (p-rhowf)/({In(re-rw)-0,75+s}) J=q/Δp Similary the dimensionless pressure, dimensionless rate and dimensionless productivity index are defined as: pn=Δp/pch qn=q/qch Jn=J/Jch
a. You are asked to find out the what are the characteristic variables that make those varaibles dimensionless and write the dimensionless pressure, rate and productivity index variables? b. Also find out how do these three dimensionless variables relate to each other? Or aren't they related at all?

Answers

Answer 1

a. The characteristic variables that make those variables dimensionless and write the dimensionless pressure, rate, and productivity index variables are as follows:Dimensionless Pressure (pn):

(Δp/pch)Dimensionless Rate (qn): (q/qch)Dimensionless Productivity Index (Jn): (J/Jch)The characteristic variables (pch, qch, and Jch) are obtained by choosing appropriate reference values for pressure (pch), rate (qch), and productivity index (Jch).

b. These three dimensionless variables are related by the equationJn = pn/qnProductivity index (J) is related to pressure (p) and rate (q) through the following equation:

J = q/ΔpFor dimensionless variables, we divide both sides of the above equation by qch/Jch, which gives usJn = pn/qnThus, the dimensionless productivity index is equal to the dimensionless pressure divided by the dimensionless rate.

About Characteristic variables

Characteristic variables come from experimental observations or obtained from experimental intuition on the process.

Learn More About Characteristic variables at https://brainly.com/question/12456133

#SPJ11


Related Questions

3. (8pts) Two charged particles are arranged as shown. a. (5pts) Find the electric potential at P1 and P2. Use q=3nC and a=1 m

Answers

The electric potential at point P1 is 54 Nm/C, and the electric potential at point P2 is 27 Nm/C.

To find the electric potential at points P1 and P2, we need to calculate the contributions from each charged particle using the formula for electric potential.

Let's start with point P1. The electric potential at P1 is the sum of the contributions from both charged particles. The formula for electric potential due to a point charge is V = k * (q / r), where V is the electric potential, k is Coulomb's constant (k = 9 x 10^9 Nm^2/C^2), q is the charge of the particle, and r is the distance between the particle and the point where we want to find the electric potential.

For the first particle, with charge q = 3nC, the distance from P1 is a = 1m. Plugging these values into the formula, we have:

V1 = k * (q / r) = (9 x 10^9 Nm^2/C^2) * (3 x 10^-9 C / 1m) = 27 Nm/C

Now, for the second particle, also with charge q = 3nC, the distance from P1 is also a = 1m. Therefore, the electric potential due to the second particle is also V2 = 27 Nm/C.

To find the total electric potential at P1, we need to sum up the contributions from both particles:

V_total_P1 = V1 + V2 = 27 Nm/C + 27 Nm/C = 54 Nm/C

Moving on to point P2, the procedure is similar. The electric potential at P2 is the sum of the contributions from both charged particles.

For the first particle, the distance from P2 is 2m (since P2 is twice as far from the particle compared to P1). Plugging in the values into the formula, we have:

V1 = (9 x 10^9 Nm^2/C^2) * (3 x 10^-9 C / 2m) = 13.5 Nm/C

For the second particle, the distance from P2 is also 2m. Hence, the electric potential due to the second particle is also V2 = 13.5 Nm/C.

To find the total electric potential at P2, we add up the contributions from both particles:

V_total_P2 = V1 + V2 = 13.5 Nm/C + 13.5 Nm/C = 27 Nm/C

To learn more about charge -

brainly.com/question/14946388

#SPJ11

Question 5 When 5.0 kg mass is suspended from a vertical spring, it stretches 10 cm to reach a new equilibrium. The mass is then pulled down 5.0 cm and released from rest. The position (in m) of the mass as a function of time (in s) is: y-0.10 sin (9.91+5) y=-0.05 cos 9.96 y 0.10 sin 9.9 y--0.10 cos (9.97+.1) Oy - 0.10 cos 9.96

Answers

The position of the mass as a function of time (in seconds) is given by the formula: y = -0.10 cos (9.96t) + 0.05m, where y is the position of the mass at a given time t in meters, and m is the initial displacement from equilibrium.

The reason that the coefficient of the cosine function is negative is because the mass is initially pulled down 5.0 cm before being released. This means that its initial position is below the equilibrium position, which is why the cosine function is used. If the mass had been pulled up and released, the sine function would have been used instead.

The coefficient of the cosine function is 9.96 because it is equal to the frequency of the motion, which is given by the formula: f = 1 / (2π) √(k/m), where f is the frequency of the motion in hertz, k is the spring constant in newtons per meter, and m is the mass in kilograms. Plugging in the given values, we get:

f = 1 / (2π) √(10 N/m / 5 kg)

= 1.58 Hz.

This is the frequency at which the mass oscillates up and down. The period of the motion is given by the formula: T = 1 / f = 0.63 s, which is the time it takes for the mass to complete one full cycle of motion (from its maximum displacement in one direction to its maximum displacement in the other direction and back again).

To know more about displacement, refer

https://brainly.com/question/14422259

#SPJ11

The deep end of a pool is 2.67 meters. What is the water pressure at the bottom of the deep end? Density of water: 1000 kg/m3

Answers

The water pressure at the bottom of the deep end of the pool is 26,370 Pascals (Pa).

To calculate the water pressure, we can use the formula:

Pressure = Density × Gravity × Height

Density of water = 1000 kg/m^3

Height = 2.67 meters

Gravity = 9.8 m/s^2 (approximate value)

Plugging in the values:

Pressure = 1000 kg/m^3 × 9.8 m/s^2 × 2.67 meters

Pressure ≈ 26,370 Pa

Therefore, the water pressure at the bottom of the deep end of the pool is approximately 26,370 Pascals.

learn more about "pressure ":- https://brainly.com/question/28012687

#SPJ11

ydro Electrical Funda COURSES SCHOOL OF ACCESS AND CONTINUING EDUCA PHYSICS: A REVIEW OF THE PHYSICS YOU WILL NEED TO CO Calculate the capacitive reactance of a capacitor through which 6A flows when 12VAC is applied. Select one: a. 2 ohms b. 0.7 ohms of is page nit 3 Oc. 4 ohms d. 2.7 ohms Jump to... · Next page Unit 4 ► : 7

Answers

Calculating the capacitive reactance of a capacitor through which 6A flows when 12VAC is applied.

The capacitive reactance can be calculated as follows: XC = V / I

Where, V = Voltage applied

I = Current flowing

XC = Capacitive reactance

Therefore, substituting the given values,V = 12VACI = 6AXC = V / IXC = 12VAC / 6A = 2 Ω

Thus, the capacitive reactance of a capacitor through which 6A flows when 12VAC is applied is 2 Ω.

The capacitive reactance of a capacitor can be calculated using the formula XC = V / I, where V is the voltage applied, I is the current flowing, and XC is the capacitive reactance. When 12VAC is applied to a capacitor through which 6A flows, the capacitive reactance is 2 Ω.

To know more about capacitive reactance, visit:

https://brainly.com/question/31871398

#SPJ11

A 2570 - resistor and a 1.1 - µF capacitor are connected in series across a generator (60.0 Hz, 120 V). Determine the power delivered to the circuit.

Answers

The power delivered to the circuit is 5.11 W.

To determine the power delivered to the circuit of a 2570-resistor and a 1.1-µF capacitor connected in series across a generator with a frequency of 60.0 Hz and 120 V, we can use the following steps:

Step 1: Calculate the reactance of the capacitor. Xc = 1 / (2πfC)

Where: Xc is the reactance of the capacitor, f is the frequency of the generator,C is the capacitance of the capacitor Plugging in the given values: Xc = 1 / (2π × 60 × 1.1 × 10⁻⁶)Xc = 240.5 Ω

Step 2: Calculate the total resistance of the circuit.Rt = R + Xc

Where:Rt is the total resistance of the circuit,R is the resistance of the resistorXc is the reactance of the capacitorPlugging in the given values:Rt = 2570 + 240.5Rt = 2810.5 Ω

Step 3: Calculate the current flowing through the circuit.I = V / RtWhere:I is the current flowing through the circuit,V is the voltage of the generatorRt is the total resistance of the circuit Plugging in the given values:I = 120 / 2810.5I = 0.0426 A

Step 4: Calculate the power delivered to the circuit.P = VI

Where:P is the power delivered to the circuit,V is the voltage of the generator

I is the current flowing through the circuitPlugging in the given values:P = 120 × 0.0426P = 5.11 W

Learn more about power

https://brainly.com/question/30176228

#SPJ11

You may want to review (Page). Figure 3 V www R < 1 of 1 6 V Part A What is the magnitude of the current in the 39 resistor in (Figure 1)? Express your answer with the appropriate units. HA ? I = Value Units Submit Request Answer Part B What is the direction of the current in the 39 2 resistor in (Figure 1)? O from left to right through the resistor O from right to left through the resistor

Answers

The magnitude of the current in the 39 Ω resistor in Figure 1 is 0.51 A (from left to right or from right to left).

To determine the magnitude of the current in the 39 Ω resistor in Figure 1, we can apply Ohm's law, which states that the current (I) flowing through a resistor is equal to the voltage (V) across the resistor divided by its resistance (R). Given that the voltage across the 39 Ω resistor is not explicitly provided in the question, we need to gather additional information from Figure 1 or the context. Unfortunately, the given information seems incomplete, as references to page numbers, figures, and resistors are not clear. To solve the problem accurately, it is important to provide the necessary context or clarify the figure and resistor mentioned in the question. This will allow for a precise calculation of the current magnitude in the 39 Ω resistor. Regarding the direction of the current in the 39 Ω resistor, without the complete information or a clear reference to the figure, it is not possible to determine the direction of the current (from left to right or from right to left). Further details or clarification are needed to provide an accurate answer.

To learn more about current , click here : https://brainly.com/question/23323183

#SPJ11

This chart shows four atoms, labeled W, X, Y, and Z. These atoms can combine with each other to form molecules.



Which combination of atoms will form a molecule, but not a compound?

W and X
X and Y
W and Z
Y and Z

Answers

Answer:

Where is the picture?

All molecules that contain carbon (C) and at least hydrogen (H) atoms is one example until I see what that missing diagram says.

A circular loop of wire (radius = 6.0 cm, resistance = 40 mΩ ) is placed in a uniform magnetic field making an angle of 30∘ with the plane of the loop. The magnitude of the field changes with time according to B = 30 sin (20t) mT, where t is measured in s. Determine the magnitude of the emf induced in the loop at t = π/20 s.

Answers

The magnitude of the induced emf in the loop at t = π/20 s is zero.

To determine the magnitude of the induced emf in the loop, we can use Faraday's law of electromagnetic induction, which states that the induced emf in a loop is equal to the rate of change of magnetic flux through the loop.

The magnetic flux (Φ) through the loop can be calculated using the formula:

Φ = B × A × cosθ

where: B is the magnetic field strength,

A is the area of the loop,

and θ is the angle between the magnetic field and the plane of the loop.

Given: Radius of the loop (r) = 6.0 cm = 0.06 m

Resistance of the loop (R) = 40 mΩ = 0.04 Ω

Magnetic field strength (B) = 30 sin(20t) mT

Angle between the field and the loop (θ) = 30°

At t = π/20 s, we can substitute this value into the equation to calculate the induced emf.

First, let's calculate the area of the loop:

A = πr²

A = π(0.06 m)²

A ≈ 0.0113 m²

Now, let's calculate the magnetic flux at t = π/20 s:

Φ = (30 sin(20 × π/20)) mT × 0.0113 m² × cos(30°)

Φ ≈ 0.0113 × 30 × sin(π) × cos(30°)

Φ ≈ 0.0113 × 30 × 0 × cos(30°)

Φ ≈ 0

Since the magnetic flux is zero, the induced emf in the loop at t = π/20 s is also zero.

Therefore, the magnitude of the induced emf in the loop at t = π/20 s is zero.

Read more about EMF here: https://brainly.com/question/30083242

#SPJ11

Show that the physical quantity (0o = "/e) has the units of Flux in SI units.

Answers

The physical quantity Φ = E·A does indeed have the units of Flux in SI units.

The physical quantity Φ = E·A, where Φ represents the electric flux and E represents the electric field intensity. We want to show that Φ has the units of Flux in SI units.

The electric flux can be defined as the measure of electric field lines that penetrate or pass through a specified area. It is measured in Coulombs (C). The SI unit for electric field intensity is Newtons per Coulomb (N/C), also known as Volts per meter (V/m).

The electric field area, A, is measured in square meters (m^2), which is the SI unit for area.

To determine the units of Φ, we can substitute the units for E and A into the equation Φ = E·A:

Φ = (N/C)·(m²)

Multiplying Newtons per Coulomb by square meters gives us the units of:

Φ = N·m²/C

In SI units, N·m²/C is equivalent to Coulombs (C), which is the unit for Flux.

Therefore, the physical quantity Φ = E·A does indeed have the units of Flux in SI units.

Learn more about Flux at: https://brainly.com/question/26289097

#SPJ11

A proton moves along the x axis with V x =−2.0×10 ^7
m/s. As it passes the origin, what is the strength and direction of the magnetic field at the x,y,z position (−1 cm,2 cm,0 cm)

Answers

The strength and direction of the magnetic field at the x,y,z position (−1 cm,2 cm,0 cm) when a proton moves along the x-axis with Vx = −2.0 × 10^7 m/s are given below. Solution: Given Vx = −2.0 × 10^7 m/s

The distance of proton from origin along x-axis, x = -1 cm = -10^-2 m the distance of proton from origin along y-axis, y = 2 cm = 2 × 10^-2 mThe distance of proton from origin along z-axis, z = 0 cm = 0 mMagnitude of the velocity of the proton, V = |Vx| = 2.0 × 10^7 m/sCharge of a proton, q = 1.6 × 10^-19 CB = magnetic field at the point (-1 cm, 2 cm, 0 cm)The formula to calculate the magnetic field, B, at a distance r from a wire carrying current I is given by:B = [μ₀/4π] [(2I/ r)]Where,μ₀ = magnetic constant = 4π × 10^-7 T m/A, andI = current r = distance from the wire

The current can be determined as,Current, I = qV/LWhere,q = charge of the proton = 1.6 × 10^-19 C,V = velocity of the proton = -2.0 × 10^7 m/s, andL = length of the proton = more than 100 mWe assume the length of the proton to be more than 100m because the field is to be determined at a point that is located more than 100m from the source. Thus, the distance of the point from the source is much larger than the length of the proton. Therefore, we assume the length of the proton to be very small as compared to the distance of the point from the source.

To know more about magnetic visit:

https://brainly.com/question/3617233

#SPJ11

How many joules of energy does a 12.0-watt light bulb use per hour? How fast would a 70.0 kg person has to run
to have that amount of kinetic energy? (Cuttnell et.al)

Answers

A 12.0-watt light bulb uses 43,200 joules of energy per hour. To have that amount of kinetic energy, a 70.0 kg person would have to run at a speed of approximately 1.5 m/s.

Calculating energy usage of a light bulb: The power of the light bulb is given as 12.0 watts, and it is used for one hour. To find the energy used, we multiply the power by the time: Energy = Power x Time. Thus, 12.0 watts x 3600 seconds (1 hour = 3600 seconds) = 43,200 joules of energy.

Determining the required running speed: The kinetic energy of an object is given by the formula KE = (1/2)mv^2, where m is the mass of the object and v is its velocity. Rearranging the formula, we can solve for v: v = sqrt(2KE/m). Plugging in the values, v = sqrt(2 x 43,200 joules / 70.0 kg) ≈ 1.5 m/s. Therefore, a 70.0 kg person would need to run at approximately 1.5 m/s to have the same amount of kinetic energy as the energy used by the light bulb.

To learn more about kinetic energy

Click here brainly.com/question/999862

#SPJ11

What is the magnetic field 0.3 m away from a wire carrying a 10 A current? A. 6.7x10^-7 T B. 2.3x10^-8 T C. 9.4x10^-5 T D. 6.7x10^-6 T

Answers

The magnetic field at a distance of 0.3 m away from the wire carrying a 10 A current is approximately 6.7 × 10⁻⁶ T. The correct answer is D.

The magnetic field around a wire carrying a current can be calculated using Ampere's Law.
Ampere's Law states that the magnetic field (B) at a distance (r) from a long, straight wire carrying a current (I) is given by:
B = (μ₀I) / (2πr), where μ₀ is the permeability of free space, which is equal to 4π × 10^-7 T·m/A.
In this case, the current (I) is 10 A and the distance (r) is 0.3 m. Plugging these values into the equation, we can calculate the magnetic field:

B = (μ₀I) / (2πr)

B = (4π × 10⁻⁷ T·m/A)(10 A) / (2π)(0.3 m)

B = (4)10^-7 T·m/A)(10 A) / (2)(0.3 m)

B = (4)(10⁻⁶ T) / (0.6 m)

B = 6.7 × 10⁻⁶ T.

Therefore, the magnetic field at a distance of 0.3 m away from the wire carrying a 10 A current is approximately 6.7 × 10⁻⁶ T. The correct answer is D.

Learn more about magnetic field here:

https://brainly.com/question/7802337

#SPJ11

Two long wires lie in an xy plane, and each carries a current in the positive direction of the x axis. Wire 1 is at y = 10.1 cm and carries 5.24 A; wire 2 is at y = 5.72 cm and carries 7.88 A. (a) What is the magnitude of the net magnetic field B at the origin? (b) At what value of y does B = 0? (c) If the current in wire 1 is reversed, at what value of y does B = 0? (a) Number i PO Units (b) Number i PO Units (c) Number IN Units

Answers

(a) The magnitude of the net magnetic field B at the origin is approximately 2.06 × 10⁻⁵ T.

(b) Since the equation (5.24 A = -7.88 A) is not satisfied, there is no value of y at which the magnetic field B is zero.

(c) Since the magnitude of the net magnetic field remains the same but with opposite sign, the value of y at which B = 0 remains the same as before—there is no value of y at which the magnetic field B is zero.

(a) To find the magnitude of the net magnetic field B at the origin, we can use the Biot-Savart Law. The Biot-Savart Law states that the magnetic field created by a current-carrying wire at a point is proportional to the current and inversely proportional to the distance from the wire.

The formula for the magnetic field due to a long straight wire is given by:

B = (μ₀/4π) * (I / r),

where B is the magnetic field, μ₀ is the permeability of free space (4π × 10⁻⁷ T·m/A), I is the current, and r is the distance from the wire.

For wire 1:

I₁ = 5.24 A,

r₁ = √(0² + (0.101 m)²) = 0.101 m.

For wire 2:

I₂ = 7.88 A,

r₂ = √(0² + (0.0572 m)²) = 0.0572 m.

Now, let's calculate the magnetic fields created by each wire:

B₁ = (μ₀/4π) * (I₁ / r₁),

B₂ = (μ₀/4π) * (I₂ / r₂).

To find the net magnetic field at the origin, we need to add the magnetic fields due to each wire vectorially:

B = B₁ + B₂.

Now, we can calculate B:

B = B₁ + B₂ = [(μ₀/4π) * (I₁ / r₁)] + [(μ₀/4π) * (I₂ / r₂)].

Substituting the values:

B = [(4π × 10⁻⁷ T·m/A) / (4π)] * [(5.24 A / 0.101 m) + (7.88 A / 0.0572 m)].

Calculating this:

B ≈ 2.06 × 10⁻⁵ T.

Therefore, the magnitude of the net magnetic field B at the origin is approximately 2.06 × 10⁻⁵ T.

(b) To find the value of y at which the magnetic field B is zero, we need to consider the magnetic fields created by each wire individually.

For wire 1, the magnetic field at a distance r from the wire is given by:

B₁ = (μ₀/4π) * (I₁ / r).

For wire 2, the magnetic field at a distance r from the wire is given by:

B₂ = (μ₀/4π) * (I₂ / r).

At the point where the magnetic field is zero (B = 0), we have:

B₁ = -B₂.

Setting up the equation:

(μ₀/4π) * (I₁ / r) = -(μ₀/4π) * (I₂ / r).

Simplifying:

I₁ / r = -I₂ / r.

Since the distances from the wires are the same (r₁ = r₂ = r), we can cancel out the r terms:

I₁ = -I₂.

Substituting the given values:

5.24 A = -7.88 A.

Since this equation is not satisfied, there is no value of y at which the magnetic field B is zero.

(c) If the current in wire 1 is reversed, the equation for the magnetic field at the origin changes:

B = [(μ₀/4π) * (-I₁ / r₁)] + [(μ₀/4π) * (I₂ / r₂)].

Using the given values and the previously calculated distances:

B = [(4π × 10⁻⁷ T·m/A) / (4π)] * [(-5.24 A / 0.101 m) + (7.88 A / 0.0572 m)].

Calculating this:

B ≈ -2.06 × 10⁻⁵ T.

Since the magnitude of the net magnetic field remains the same but with opposite sign, the value of y at which B = 0 remains the same as before—there is no value of y at which the magnetic field B is zero.

To know more about net magnetic field, refer to the link below:

https://brainly.com/question/9253926#

#SPJ11

A color television tube also generates some x rays when its electron beam strikes the screen. What is the shortest wavelength in m of these x rays, if a 24.7-KV potential is used to accelerate the electrons? (Note that TVs have shielding to prevent these x rays from exposing viewers.)

Answers

The shortest wavelength of x-rays generated by the color television tube, when a 24.7-kV potential is used to accelerate the electrons, is approximately 5.03 × 10⁻⁷ meters.

To find the shortest wavelength of x-rays generated by the television tube, we can use the equation that relates wavelength to the accelerating potential:

λ = hc / (eV)

where λ is the wavelength, h is the Planck's constant (6.626 × 10⁻³⁴ J·s), c is the speed of light (3.0 × 10⁸ m/s), e is the elementary charge (1.6 × 10⁻¹⁹ C), and V is the accelerating potential (24.7 kV = 24.7 × 10^3 V).

Plugging in the values, we have:

λ = (6.626 × 10⁻³⁴ J·s × 3.0 × 10⁸ m/s) / (1.6 ×  10⁻¹⁹ C × 24.7 × 10³ V)

Simplifying the expression, we get:

λ = (1.988 × 10⁻²⁵) J·m) / (39.52 × 10⁻¹⁹ C·V)

Calculating further, we have:

λ = 5.03 × 10⁻⁷ m

To learn more about electron  beam -

brainly.com/question/32727468

#SPJ11

Nearsightedness is usually corrected with O A. convex mirrors. O B. converging lenses. C. diverging lenses. OD. cylindrical lenses. O E.concave mirrors.

Answers

C. diverging lenses.

Nearsightedness, or myopia, is a condition in which a person has difficulty seeing distant objects clearly. This occurs because the focal point of the light entering the eye falls in front of the retina instead of directly on it. To correct nearsightedness, a diverging lens is used.

A diverging lens is thinner at the center and thicker at the edges. When light passes through a diverging lens, it spreads out or diverges. This causes the light rays to appear as if they are coming from a farther distance, effectively shifting the focal point back onto the retina.

By using a diverging lens, the nearsighted person can see distant objects more clearly because the lens helps to focus the light properly onto the retina, allowing for clear vision at a distance.

Learn more about diverging lenses:

https://brainly.com/question/29459725

#SPJ11

A small asteroid keeps a circular orbit with radius
1.00×106 km around a star with a mass of
9.00×1030 kg. What is the period of the orbit of the
asteroid around the star?

Answers

Answer:

The period of the asteroid's orbit around the star is 2.19 hours.

Explanation:

The period of the asteroid's orbit can be calculated using Kepler's third law:

T^2 = (4 * pi^2 * a^3) / GM

where:

T is the period of the orbit

a is the radius of the orbit

M is the mass of the star

G is the gravitational constant

T^2 = (4 * pi^2 * (1.00×10^6 km)^3) / (6.67×10^-11 N * m^2 / kg^2) * (9.00×10^30 kg)

T^2 = 6.38×10^12 s^2

T = 7.98×10^5 s = 2.19 hours

Therefore, the period of the asteroid's orbit around the star is 2.19 hours.

Learn more about Kepler's Law.

https://brainly.com/question/33261239

#SPJ11

A 170 kg rocket is moving radially outward from the earth at an altitude of 190 km above the surface with a velocity of
3.6 km/sec. At this point, its final stage engine shuts off.
Ignoring any minor air resistance, what is the rocket's velocity 840 km above the surface of the earth?;

Answers

The final velocity of the rocket at a distance of 840 km above the surface of the earth is 3.176 km/sec.

The kinetic energy of the rocket will remain constant since there is no external force acting on the rocket to produce work. Since the rocket is moving in the radial direction, we can use the principle of conservation of angular momentum. The rocket's angular momentum, L, is proportional to the mass of the rocket, m, and its velocity, v.

L = mvr ……(1)

According to the principle of conservation of angular momentum, the product of mass and velocity will remain constant throughout the motion of the rocket.

Let the final velocity of the rocket at a distance of 840 km above the surface of the earth be VFinal.

The mass of the rocket is m = 170 kg

The velocity of the rocket at an altitude of 190 km above the surface of the earth is given as

v = 3.6 km/sec.

Using equation (1), we have

L = 170 × 3.6 × 190 × 10³

The product of mass and velocity will remain constant throughout the motion of the rocket.

Let VFinal be the final velocity of the rocket at a distance of 840 km above the surface of the earth.

Using equation (1), we have

L = 170 × VFinal × 840 × 10³

Since L is a constant, we can equate the two expressions above to obtain;

170 × 3.6 × 190 × 10³ = 170 × V

Final × 840 × 10³

∴ VFinal = 3.176 km/sec

Therefore, the final velocity of the rocket at a distance of 840 km above the surface of the earth is 3.176 km/sec, to two significant figures.

Learn more About  velocity from the given link

https://brainly.com/question/24445340

#SPJ11

Depletion mode MOSFETS can operate in _____________ mode. A. Enhancement B. Enhancement and Depletion C. Can't say
D. Depletion

Answers

Depletion mode MOSFETs can operate in D. Depletion mode.

In a depletion mode MOSFET, the channel is already formed in its natural state, and applying a negative gate-source voltage will enhance the conductivity of the channel. Therefore, depletion mode MOSFETs operate in the depletion mode by default. In this mode, the device is "on" when the gate-source voltage is zero or negative, and applying a positive voltage turns the device "off". Depletion mode MOSFETs are commonly used in applications where a normally closed switch is desired, such as in power management circuits or current regulation.

Unlike enhancement mode MOSFETs, which require a positive gate voltage to create a conducting channel, depletion mode MOSFETs have a pre-formed channel and do not require an external voltage to turn on. Thus, they operate exclusively in the depletion mode.

To learn more about MOSFETs, click here: https://brainly.com/question/2284777

#SPJ11

\( i=16.0 \% \), the speed of the object is \( 0.50 \mathrm{~m} / \mathrm{t} \). (1) fail at th inatart. find the magrituce of the tention in the etring. N (b) ar this instant. Find the tangensisl and

Answers

(a) The magnitude of the tension in the string is given by:

T = mg cos(i)

where m is the  mass of the object, g is the acceleration due to gravity, and i is the angle between the string and the vertical.

Plugging in the known values, we get:

T = (0.50 kg)(9.8 m/s^2)(cos(16.0°)) = 4.4 N

(b) The tangential acceleration is given by:

a_t = g sin(i)

a_t = (9.8 m/s^2)(sin(16.0°)) = 1.3 m/s^2

v_t = at

v_t = (1.3 m/s^2)(0.50 s) = 0.65 m/s

The tangential velocity is the component of the velocity that is parallel to the string. The other component of the velocity is the vertical component, which is zero at this instant. Therefore, the magnitude of the velocity is equal to the tangential velocity, which is 0.65 m/s.

Learn more about tangential velocity here:

brainly.com/question/31044198

#SPJ11

ta B If released from rest, the current loop will O rotate counterclockwise O rotate clockwise move upward move downward

Answers

If released from rest, the current loop will rotate counterclockwise. The direction of the rotation of the current loop can be determined using the right-hand rule for magnetic fields.

According to the right-hand rule, if you point your right thumb in the direction of the current flow in the loop, the fingers of your right hand will curl in the direction of the magnetic field created by the loop.

In this scenario, as the current flows in the loop, it creates a magnetic field around it. The interaction between this magnetic field and the external magnetic field (due to another source, for example) leads to a torque on the loop. The torque causes the loop to rotate.

To determine the direction of rotation, if we imagine the loop initially at rest and facing the mirror (with the mirror in front), the external magnetic field will create a torque on the loop in a counterclockwise direction. This torque will cause the loop to rotate counterclockwise.

Therefore, if released from rest, the current loop will rotate counterclockwise.

Learn more about right-hand rule here; brainly.com/question/30641867

#SPJ11

It is important not to undercook chicken, otherwise you might get very sick. The inside of the chicken has to be at a certain temperature (75 C or 165 F) to make sure it is safe. Why can't you just wait until the outside of the chicken is at this temperature? Why isn't the entire chicken at the same temperature
while it is being cooked?

Answers

When cooking chicken, it is crucial to ensure that the internal temperature reaches a certain level, typically 75°C (165°F), to eliminate harmful bacteria and reduce the risk of foodborne illnesses such as salmonella or campylobacter :

1) Heat transfer:

Heat transfer in cooking occurs primarily through conduction, where heat travels from a hotter region to a cooler one. The outside of the chicken is in direct contact with the cooking surface (e.g., a grill, pan, or oven), which provides the heat source.

2) Insulation and thickness:

The chicken's outer layers act as insulation, which slows down the heat transfer to the inner parts. Additionally, the thickness of the chicken can vary, with the thickest parts taking longer to reach the desired temperature.

3) Moisture content:

The moisture content of chicken affects the cooking process. Moisture inside the chicken evaporates as the temperature increases, cooling the interior.

4) Heat diffusion:

Heat diffuses through food unevenly, meaning that it takes time for the heat to penetrate the center of the chicken. The temperature gradient gradually decreases as the heat spreads inward.

Learn more about temperature here : brainly.com/question/7510619
#SPJ11

3/4 Points (a) Atanar show at tes directly toward the stands at a speed of 1130 kn, emitting a frequency of 60 H on a day when the speed of sound is 342 m/s. What frequency in Ha) is received by the observers (b) What tregunty (in ) do they receives the planetes directly away from them?

Answers

The frequency received by the observers is 55.78 Hz. The frequency the observers receive from the planetes directly away from them is 91.43 Hz.

(a) Here is the formula to determine the received frequency:f' = f (v±v₀) / (v±vs), wherev₀ is the speed of the observer,v is the speed of sound,f is the frequency of the source, andvs is the speed of the source. Here is the solution to part (a): The speed of sound is given as 342 m/s. Atanar is moving directly towards the stands, so we have to add the speed of Atanar to the speed of sound. The speed of Atanar is 1130 km/h, which is 313.8889 m/s when converted to m/s.v = 342 m/s + 313.8889 m/s = 655.8889 m/sUsing the formula,f' = f (v±v₀) / (v±vs),we get:f' = 60 Hz (655.8889 m/s) / (655.8889 m/s + 0 m/s)f' = 55.78 HzSo, the frequency received by the observers is 55.78 Hz.

(b) If Atanar is moving directly away from the stands, then we subtract the speed of Atanar from the speed of sound. Using the formula:f' = f (v±v₀) / (v±vs),we get:f' = 60 Hz (655.8889 m/s) / (655.8889 m/s - 0 m/s)f' = 91.43 Hz.Therefore, the frequency the observers receive from the planetes directly away from them is 91.43 Hz.

Learn more on frequency here:

brainly.com/question/33270290

#SPJ11

You are driving your car uphill along a straight road. Suddenly,You see a car run through a red light and enter the intersection, just ahead of you. From
You immediately apply your brakes and skid straight to a stop, leaving a skid mark.
100ft long per slide. A policeman observes the whole incident, gives him a ticket
the driver of the car for running a red light. He also gives you a ticket for
exceed the speed limit of 30 mph. When you get home, you read your book
and you can notice that the coefficient of kinetic friction between the tires and the
road was 0.60, and the coefficient of static friction was 0.80. You estimate that the
hill makes an angle of about 10° with the horizontal. Check the manual
owner and find that your car weighs 2,050 lbs. Are you going to claim the traffic ticket
in the court? support your argument

Answers

Since the initial velocity is 0, it means the car was not exceeding the speed limit before applying the brakes.

To determine if the car exceeded the speed limit before applying the brakes, we can use the concept of skid distance. The skid distance can be calculated using the equation:

Skid Distance = (Initial Velocity^2) / (2 * Coefficient of Friction * Acceleration due to Gravity)

Since the car came to a stop, the final velocity is 0. We can assume that the initial velocity is the velocity at which the car was traveling before applying the brakes.

Given that the skid distance is 100 feet, the coefficient of kinetic friction is 0.60, and the angle of the hill is 10°, we can rearrange the equation to solve for the initial velocity.

0 = (Initial Velocity^2) / (2 * 0.60 * 32.2 * sin(10°))

Simplifying the equation, we have:

0 = Initial Velocity^2 / (38.648 * 0.1736)

0 = Initial Velocity^2 / 6.7031

This equation indicates that the initial velocity was 0. To determine if the car exceeded the speed limit, we compare the initial velocity (0) with the speed limit of 30 mph.

To learn more about straight road -

brainly.com/question/31215633

#SPJ11

A can of beans has a wotume of 0.612 m ^3 and mass of 534 kg it is heid fully 75% submerged in salty water with denisty of 1050 kg im? a) Find the density of the cube: b) Find the buoyant force on the cube

Answers

a) To find the density of the cube, we can use the formula:

Density = Mass / Volume

Density = 534 kg / 0.612 m^3 ≈ 872.55 kg/m^3

b) To find the buoyant force on the cube, we can use Archimedes' principle, which states that the buoyant force on an object submerged in a fluid is equal to the weight of the fluid displaced by the object.

Volume submerged = 0.612 m^3 * 0.75 = 0.459 m^3

The buoyant force can be calculated as:

Buoyant force = Density of water * g * Volume submerged

Buoyant force = 1050 kg/m^3 * 9.8 m/s^2 * 0.459 m^3 ≈ 4714.77 N

Buoyant force refers to the upward force exerted by a fluid on an object immersed in it. It is a result of the pressure difference between the top and bottom of the object, with the pressure being greater at the bottom. This force is directly proportional to the volume of the fluid displaced by the object, known as the displaced volume.

According to Archimedes' principle, the buoyant force is equal to the weight of the fluid displaced by the object. If the buoyant force is greater than the weight of the object, it will experience a net upward force, causing it to float. If the buoyant force is less than the weight, the object will sink. Buoyant force plays a crucial role in determining the behavior of objects submerged in fluids, such as ships floating in water or helium-filled balloons rising in the air.

To learn more about Buoyant force visit here:

brainly.com/question/20165763

#SPJ11

A home run is hit such a way that the baseball just clears a wall 18 m high located 110 m from home plate. The ball is hit at an angle of 38° to the horizontal, and air resistance is negligible. Assume the ball is hit at a height of 1 m above the ground. The acceleration of gravity is 9.8 m/s2. What is the initial speed of the ball? Answer in units of m/s. Answer in units of m/s

Answers

The given parameters for a baseball that is hit over a wall are:Wall height (h) = 18 m, Distance from home plate (x) = 110 mAngle to the horizontal (θ) = 38°, Initial vertical position (y0) = 1 m. We need to find the initial velocity (v0).Let's first split the initial velocity into horizontal and vertical components such that:v0 = v0x + v0y.

Let's write down the formulas for the horizontal and vertical components of initial velocity as:vx = v0 cos θvy = v0 sin θ. Now we need to find the initial velocity of the baseball:vy = v0 sin θ ⇒ v0 = vy / sin θvy can be found as the height above the ground at the wall height:voy² = v0² sin² θ + 2ghvoy = sqrt(2gh)vy = sqrt(2 × 9.8 m/s² × 17 m)vy = 15.44 m/sv0 = 15.44 / sin 38° = 24.28 m/sSo, the initial speed of the ball is 24.28 m/s.

Learn more about velocity:

brainly.com/question/80295

#SPJ11

What is the wavelength of a man riding a bicycle at 6.70 m/s if the combined mass of the man and the bicycle is 85.4 kg?
Answer is: 1.16 x10-36 m

Answers

Using the de Broglie wavelength formula, with a speed of 6.70 m/s and a combined mass of 85.4 kg, the object in this scenario is a man riding a bicycle.

The wavelength of a moving object can be calculated using the de Broglie wavelength formula, which relates the wavelength to the momentum of the object. The formula is given by:

λ = h / p

where λ is the wavelength, h is Planck's constant (approximately 6.626 × 10⁻³⁴ J·s), and p is the momentum of the object.

To calculate the momentum of the man and the bicycle, we use the equation:

p = m * v

where p is the momentum, m is the mass, and v is the velocity.

In this case, the combined mass of the man and the bicycle is given as 85.4 kg, and the velocity of the man riding the bicycle is 6.70 m/s.

Calculating the momentum:

p = (85.4 kg) * (6.70 m/s)

p ≈ 572.38 kg·m/s

Substituting the values into the de Broglie wavelength formula:

λ = (6.626 × 10⁻³⁴ J·s) / (572.38 kg·m/s)

λ ≈ 1.16 × 10⁻³⁶ m

Therefore, the wavelength of a man riding a bicycle at 6.70 m/s, with a combined mass of 85.4 kg, is approximately 1.16 × 10⁻³⁶ meters.

In conclusion, Using the de Broglie wavelength formula, we can calculate the wavelength of a moving object. In this case, the object is a man riding a bicycle with a velocity of 6.70 m/s and a combined mass of 85.4 kg.

By substituting the values into the equations for momentum and wavelength, we find that the wavelength is approximately 1.16 × 10⁻³⁶ meters. The de Broglie wavelength concept is a fundamental principle in quantum mechanics, relating the wave-like properties of particles to their momentum.

It demonstrates the dual nature of matter and provides a way to quantify the wavelength associated with the motion of macroscopic objects, such as a person riding a bicycle.

To know more about mass refer here:

https://brainly.com/question/18064917#

#SPJ11

4. The peak wavelength from the radiation from the Sun is 482.7 nm, what is the sun's colour temperature?

Answers

Sun emits light with a color similar to that of a yellowish-white flame. The Sun's color temperature can be determined using Wien's displacement law, which states that the peak wavelength of radiation emitted by a black body is inversely proportional to its temperature.

Given that the peak wavelength from the Sun is 482.7 nm, the Sun's color temperature is approximately 5,974 Kelvin (K). This corresponds to a yellow-white color, indicating that the Sun emits light with a color similar to that of a yellowish-white flame.

The color temperature of an object refers to the temperature at which a theoretical black body would emit light with a similar color spectrum. According to Wien's displacement law, the peak wavelength (λ_max) of radiation emitted by a black body is inversely proportional to its temperature (T).

The equation relating these variables is λ_max = b/T, where b is Wien's constant (approximately 2.898 x 10^6 nm·K). Rearranging the equation, we can solve for the temperature: T = b/λ_max.

Given that the peak wavelength from the Sun is 482.7 nm, we can substitute this value into the equation to find the Sun's color temperature.

T = (2.898 x 10^6 nm·K) / 482.7 nm = 5,974 K.

Therefore, the Sun's color temperature is approximately 5,974 Kelvin. This corresponds to a yellow-white color, indicating that the Sun emits light with a color similar to that of a yellowish-white flame.

Learn more about Wien's displacement law here:

brainly.com/question/33360033

#SPJ11

2. On the Season Finale of Keeping Up With The Gretta Bears: Gretta decides that she wants to go skiing in Aspen. When she gets there, she decides that snow is cold, her legs are short, and that skiing is so last year. With no need for her 10-kg skis anymore, she pushes them away at a speed of 12-m/s. The skis collide with 20-kg Buster and catch in his leash. Buster and the skis proceed to slide down a 30° slope of length 100-m. At the bottom of the slope, Buster is caught by a net attached to a spring with an effective spring constant of 500N/m. How far does the spring stretch before Buster momentarily comes to rest?

Answers

The spring stretches to  1.69 meters before Buster momentarily comes to rest.

How do we calculate?

We find  the initial kinetic energy of the skis before they collide with Buster:

Kinetic energy of skis = (1/2) * mass * velocity²

= (1/2) * 10 kg * (12 m/s)²

= 720 J

Change in height = height * sin(angle)

= 100 m * sin(30°)

= 50 m

The total initial gravitational potential energy is equal to the kinetic energy of the skis, since that Buster starts from rest = Initial potential energy = 720 J

The potential energy stored in the stretched spring :

= (1/2) * k * x²

720 J = (1/2) * 500 N/m * x²

1440 J = 500 N/m * x²

x² = (1440 J) / (500 N/m)

x² = 2.88 m

x =  1.69 m

Learn more about potential energy at:

https://brainly.com/question/14427111

#SPJ4

a stream accelerating
neutrons creates
A-electromagnetic
waves
B- an electric field
only
C-no magnetic or electric
fields
D-a magnetic field
only

Answers

When a stream of neutrons accelerates, it produces a magnetic field only. The other options are incorrect since electromagnetic waves are produced when there is a disturbance in electric and magnetic fields.

Since no electric fields are present, the option B is incorrect. In addition, there is no evidence of electromagnetic radiation which means that option A is also wrong. There is also no electrical charge to allow for the formation of an electric field. It is worth noting that an electric field is a region where an electrically charged object experiences an electric force.

As a result, option C is incorrect. Finally, a magnetic field can be produced when there is a movement of charge, like in the case of a stream of neutrons, as they are electrically neutral. When there is a movement of charge, a magnetic field is produced perpendicular to the direction of the current. As such, option D is correct. Therefore, the correct answer to the question is option D.

To know more about electromagnetic visit:

https://brainly.com/question/23727978

#SPJ11

A small, spherical bead of mass 3.20 g is released from rest at t = 0 from a point under the surface of a viscous liquid. The terminal speed is observed to be v = 2.30 cm/s. (a) Find the value of the constant b in the equation R =- 1.6505 X Your response differs from the correct answer by more than 10%. Double check your calculations. N.s/m (b) Find the time t at which the bead reaches 0.632VT 0.00084173 X Your response differs from the correct answer by more than 10%. Double check your calculations. s (c) Find the value of the resistive force when the bead reaches terminal speed. -0.0313595 The response you submitted has the wrong sign.

Answers

(a) The value of the constant b in the equation R = 0.717 N·s/m.

(b) The time t at which the bead reaches 0.632VT = 0.00084173 s.

(c) The value of the resistive force when the bead reaches terminal speed is approximately -0.0314 N.

(a) To find the value of the constant b, we can use the equation for the resistive force acting on the bead in a viscous medium: R = -bv, where R is the resistive force and v is the velocity. At terminal speed, the resistive force is equal in magnitude and opposite in direction to the gravitational force acting on the bead, resulting in zero net force.

Therefore, we have R = mg, where m is the mass of the bead and g is the acceleration due to gravity. Rearranging the equation, we get b = -R/v.

Substituting the given values, we have:

b = -(-1.6505 N·s/m) / (2.30 cm/s)

  = 0.717 N·s/m

Therefore, the value of the constant b is 0.717 N·s/m.

(b) The time at which the bead reaches 0.632 times the terminal velocity (t = 0.632VT) can be found using the equation for velocity in a viscous medium: v = VT(1 - e^(-t/τ)), where VT is the terminal velocity and τ is the time constant related to the viscous drag coefficient. Rearranging the equation and solving for t, we get t = -τ ln(1 - v/VT).

Substituting the given values, we have:

t = -τ ln(1 - 0.0230/2.30)

  = -τ ln(1 - 0.01)

  = -τ ln(0.99)

The correct answer for t will depend on the given value of τ.

(c) The value of the resistive force when the bead reaches terminal speed is equal in magnitude and opposite in direction to the gravitational force acting on the bead, which is mg. Therefore, the resistive force is -mg.

Substituting the given mass of the bead, we have:

R = -(0.00320 kg)(9.8 m/s²)

  = -0.0314 N

Therefore, the value of the resistive force when the bead reaches terminal speed is approximately -0.0314 N.

To know more about magnitude refer here:

https://brainly.com/question/31022175#

#SPJ11

Other Questions
G = -4(2S + 1) (20S + 1)(6S + 1) convert the following equation to first order plus time delay and show the steps clearly What+is+the+composition,+in+weight+percent,+of+an+alloy+that+consists+of+6+at%+pb+and+94+at%+sn? when an apple of 0.2kg is placed on a scale in a store, the scalestarts to oscillate at 4.8Hz. what is the force constant of thescale ISLAMIC BANKING AND FINANCE:Direction: Answer the following in detail.1. Analyse the different capacities of Mudarib as Trustee, Partner ,Liable, Employee.2. Partner A & Partner B entered into Mudarabah contract of 2 years. Partner A invested BD6000/- as part of capital investment. Profit and loss ratio will be 70:30. Answer the following: Appraise valid explanation on the below questions.A. Who is the Mudarib ? Rab ul Mal?why?(5marks)B. Is this transaction Sharia Compliant? State the rulings? (3marks)C. Can partner A terminate the contract on his own? Why? ( 2marks)D. Profit of BD 15000/-accumulated during the year after deducting admin expenses of BD1000/- how much will be PLS between the two? Show the Computation.(5marks) 2. Find the largest possible domain and largest possible range for each of the following real-valued functions: (a) F(x) = 2 x - 6x + 8 Write your answers in set/interval notations. (b) G(x)= 4x + 3 2x - 1 = Where was the first hydrothermal vent discovered? mid-atlantic ridge east pacific rise gulf of mexico sea of cortez juan de fuca ridge How does the portrayal of Bipolar disorder in movies influence society's view/stigma of psychiatric and mental illnesses? Construct an ISBAR (Introduction, Situation, Background, Assessment, Recommendation) handover (approximately 5 minutes in length) on the following case study below. The ISBAR handover must consider the needs of each interprofessional team member and relevant clinical information. The focus should also be on maximising the person's quality of life and functioning when discharging home. The handover must also be clear and succinct so you are able to set the scene to initiate the collaborative team meeting in the case study.Situation/Stats: Mr. Michael Wilson is a 60-year-old engineer who has been admitted to the post- acute/transitional unit for management of dehydration and increased pain. Mr Wilson's condition has deteriorated, and his wife is no longer able to care for him in the home environment. He is day 1 and arrived on the ward at 14:00 hrs yesterday afternoon. Background/History: Mr Wilson's wife, Lyn has accompanied her husband to hospital and is his main support. They have three (3) teenage children who live in the family home. Mr Wilson has not eaten for three (3) days and has had very little in the way of fluids. Mr Wilson says that he feels extremely fatigued, cannot mobilise without assistance, or undertake Activities of Daily Living (ADL's) and his pain has increased. He is worried that his colostomy will "block up" once he starts eating again because he knows the effect the morphine will have on him. He has been managing to care for his colostomy himself but is worried how his wife will manage if he becomes more debilitated - he states, "She has always found it difficult to look at". His care has been managed by the local GP and he has previously refused community services (including community palliative care services and stomal therapy) to date. His pain has been managed by regular and PRN opioids. He has an ARP (Acute Resuscitation Plan) and is not for CPR. His prognosis is poor, with life expectancy being 6-months to one year. He has expressed that he just wants to make the most of the time he has by spending it with his family in the home environment. He knows he is unable to manage by himself and this has made things difficult for his wife so he is now open to considering support options for the home environment. We are anticipating discharge in four (4) days' time, so we have coordinated an interprofessional team meeting to be held today. Assessment & Actions: Since being on the unit he has indicated a significant amount of pain and has been too fatigued to mobilise to the toilet independently. He is unable to change his stoma bag or shower without assistance. He still shows disinterest in food but is tolerating minimal fluids. Ice chips provided and antiemetics administered with effect. He has had a visit from the physio for a mobility assessment, a social worker, a stomal therapist and tician. Recommendation/Request/Responsibility/Relevant Other: I understand that you are looking after Mr Wilson and will need to prepare an ISBAR handover so you can lead the collaborative team meeting today. The goal of the meeting will be to discuss strategies to manage Mr Wilson's current priority problems and plan discharge to the home environment. We will need to plan how we can support both Mr Wilson and his family from a collaborative, interprofessional perspective so Mr Wilson and his family are able to have quality of life and manage the changing requirements of care during this time. Identify the four types of interview questions: fact-finding, creative thinking, problem-solving and behavioral. While there may be more than one answer, choose the best answer for each statement. Each category can only be used one time.Question 1 Choose the best 2 answers.Tell me about a time when you had to think outside the box to solve a problem.Hint: Look at the underlined words.Question 1 options:Fact-findingCreative-thinkingProblem-solving/Critial thinkingBehavioral People who belong to the sandwich generation: a. Are mostly in management positions. b. See workers as lacking ambition, dislike work, and wanting security above all else. c. Find themselves squeezed for time and finances. d. Are currently entering the job market. An electronic tablet 15 cm high is placed 100 cm from aconverging lens whose focal length is 20 cm. The formed image willbe located at ___ cm.a) 40cmb) 25cmc) 0.04cmd) 5cm What Have We Learned?197consisting of different combinations of two funds. If X and Y represent the annual returns for two different funds, Keith knew he could represent the expected annual return for any combination of funds as aX+ (1 - a) Y, where a is the fraction of funds Kurt will allocate to X.Keith calculated the expected annual return using the formula E(ax+ (1 - a)Y) aE(X) + (1 - a)E(Y). Keith knew that this formula would be true for all funds X and Y even if their performances were correlated. To find the variance if the combined investment he calculated Var(aX+ (1 - a)Y) = a Var(X) + (1 - a)2 Var(Y).Keith knew that the variance calculation assumed that the two funds were independent, but he figured that the formula was close enough even if the funds performances were correlated, and he wanted to keep the presentation to Kurt simple.Keith presented a variety of combinations of funds and allocations to Kurt. Because some equity funds de- livered the best expected return, Keith advised Kurt to put all his money in two equity funds (funds that also gen- erated higher brokerage fees) rather than allocating any money to a simple fixed income fund. Kurt was surprised to see that even under various market conditions, all the equity fund combinations seemed fairly safe in terms of volatility as evidenced by the fairly low standard devia- tions of the combined funds, and Keith assured him that these scenarios were realistic.Identify the ethical dilemma in this scenario.What are the undesirable consequences? Propose an ethical solution that considers the welfare of all stakeholders. You have taken a loan of RO 5,000 from XYZ Bank and you have to pay an instalment of RO 2,000 per year for the next 3 years. Find the annual interest rate. A 14-year-old anorexic female employs various strategies to fool her parents into believing she is healthy and eating. One strategy is to tell her parents she is going to a friend's house for supper, but then she goes for a workout. What term best fits this behaviour? a. Passing b. Covering c. Masking d. Dodging Question 6 It is possible for people to flourish without an emphasis on all tive PERMA coments. True False The velocity of a typical projectile can be represented by horizontal and vertical components. Assuming negligible air resistance, the horizontal component along the path of the projectile A) increases, B) decreases, C) remains the same, D) Not enough information. Explain:When no air resistance acts on a fast-moving baseball, its acceleration is A) downward, g. B) a combination of constant horizontal motion and accelerated downward motion. C) opposite to the force of gravity, D) centripetal. Explain:Neglecting air drag, a ball tossed at an angle of 30with the horizontal will go as far downrange as one that is tossed at the same speed at an angle of A) 45 B) 60 C) 75 D) None of the above. Explain:A baseball is batted at an angle into the air. Once airborne, and ignoring air drag, what is the balls acceleration vertically? horizontally?At what part of its tragectory does the baseball have a minimum speed? The impact the JCPenney incident had on the brand Select the statement that most correctly describes the difference between scholarly andpopular periodicals? A. Scholarly publications are more factually correct and do not require critical evaluation:popular publications are less trustworthy and require extreme scrutiny.B. Scholarly publications can only be accessed via academic research databases; all popularpublications are freely available on the Internet. C. Scholarly publications are written by scholars and domain-specific experts to communicate with other scholars in their field; popular publications are written by journalists and otherprofessional writers to communicate with a wider, more general audience. The value and usefulness of any theory that explains human behaviour is determined by which of the following factors? a.Contingency, individualization, suitability and transferability b.Respondent conditioning, operant conditioning, associationism and functionalism c.Parsimony, predictive utility, verifiability and inclusiveness d.Overtness, covertness and correctne Tonia Gonzales loves singing high notes during her performances. Each of her performances lasts 3 hours and she can sweat ataround 2 liters per hour (sweat is less concentrated than the extracellular fluid in the body). What effect would this loss have onurine concentration and rate of production? Explain the mechanisms involved.