9.(10) Let X be a discrete random variable with probability mass function p given by:
a -4 -2 1 3 5
p(a) 0,3 0,1 0,25 0,2 0,15 Find E(X), Var(X) E(5X - 3) and Var(4X + 2) .
10. (10) An urn contains 9 white and 6 black marbles. If 11 marbles are to be drawn at random with replacement and X denotes the number of black marbles, find E(X)

Answers

Answer 1

E(X) = 4.4

To find E(X), the expected value of a discrete random variable, we multiply each possible value of X by its corresponding probability and sum them up.

Given the probability mass function p(a) for X:

a -4 -2 1 3 5

p(a) 0.3 0.1 0.25 0.2 0.15

E(X) = (-4)(0.3) + (-2)(0.1) + (1)(0.25) + (3)(0.2) + (5)(0.15)

= -1.2 - 0.2 + 0.25 + 0.6 + 0.75

= 0.2

So, E(X) = 0.2.

To find Var(X), the variance of a discrete random variable, we use the formula:

Var(X) = E(X^2) - [E(X)]^2

First, we need to find E(X^2):

E(X^2) = (-4)^2(0.3) + (-2)^2(0.1) + (1)^2(0.25) + (3)^2(0.2) + (5)^2(0.15)

= 5.2

Now we can calculate Var(X):

Var(X) = E(X^2) - [E(X)]^2

= 5.2 - (0.2)^2

= 5.2 - 0.04

= 5.16

So, Var(X) = 5.16.

To find E(5X - 3), we can use the linearity of expectation:

E(5X - 3) = 5E(X) - 3

= 5(0.2) - 3

= 1 - 3

= -2

So, E(5X - 3) = -2.

Similarly, to find Var(4X + 2), we use the linearity of variance:

Var(4X + 2) = (4^2)Var(X)

= 16Var(X)

= 16(5.16)

= 82.56

So, Var(4X + 2) = 82.56.

Now, for the second part of the question:

An urn contains 9 white and 6 black marbles. If 11 marbles are to be drawn at random with replacement and X denotes the number of black marbles, we can use the concept of the expected value for a binomial distribution.

The probability of drawing a black marble in a single trial is p = 6/15 = 2/5, and the number of trials is n = 11.

E(X) = np = 11 * (2/5) = 22/5 = 4.4

Therefore, E(X) = 4.4.

Learn more about: expected value

https://brainly.com/question/28197299

#SPJ11


Related Questions

Use the given information to test the following hypothesis. H0:μ=18
,Xˉ=16,
S=4,n=16,
α=0.01
Ha:μ ≠18

Answers

We fail to reject the null hypothesis H0: μ = 18.

To test the hypothesis H0: μ = 18 against the alternative hypothesis Ha: μ ≠ 18, we can use a t-test. Given the following information:

Sample mean (X) = 16

Sample standard deviation (S) = 4

Sample size (n) = 16

Significance level (α) = 0.01

We can calculate the t-value using the formula:

t = (X - μ) / (S / √n)

Substituting the values:

t = (16 - 18) / (4 / √16)

t = -2 / (4 / 4)

t = -2

Next, we compare the calculated t-value with the critical t-value from the t-distribution table. Since the alternative hypothesis is two-sided, we divide the significance level by 2 to get α/2 = 0.01/2 = 0.005.

With 15 degrees of freedom (n - 1 = 16 - 1 = 15), the critical t-value for a two-sided test with α/2 = 0.005 is approximately ±2.947.

Since the calculated t-value (-2) does not exceed the critical t-value (-2.947), we fail to reject the null hypothesis H0. There is not enough evidence to conclude that the population mean is significantly different.

To know more about null hypothesis  refer to-

https://brainly.com/question/30821298

#SPJ11

Complete Question

Use the given information to test the following hypothesis.

(a) What is the number of permutations that can be made using letters: {H, L, B, F, S, R, K}. (b) If there are six cars in a race, in how many different ways: i. can they place first, second, third, and fourth? ii. can they place first, second, and third?

Answers

The number of permutations = 7! = 7 x 6 x 5 x 4 x 3 x 2 x 1 = 5,040

We have to determine the entire number of arrangements that may be produced in order to calculate the number of permutations that can be made using the provided letters, "H, L, B, F, S, R, K."

Therefore

There are 7 letters in total, the number of permutations can be calculated using the formula for permutations of n distinct objects, which is n!.

The number of permutations = 7! = 7 x 6 x 5 x 4 x 3 x 2 x 1 = 5,040

b I. To determine the number of ways they can place first, second, third, and fourth, we can use the formula for permutations of n objects taken r at a time, which is P(n, r) = n! / (n - r)!.

In this case,

n = 6 (number of cars)

r = 4 (number of places).

Number of ways = P(6, 4) = 6! / (6 - 4)! = 6! / 2! = (6 x 5 x 4 x 3 x 2 x 1) / (2 x 1) = 6 x 5 x 4 x 3 = 360.

So, there are 360 different ways the six cars can place first, second, third, and fourth.

II. To calculate the number of ways they can place first, second, and third, we use the same formula as before but with r = 3 (number of places).

Number of ways = P(6, 3) = 6! / (6 - 3)! = 6! / 3! = (6 x 5 x 4 x 3 x 2 x 1) / (3 x 2 x 1) = 6 x 5 x 4 = 120.

Therefore, there are 120 different ways the six cars can place first, second, and third.

Learn more about permutation and combination here

https://brainly.com/question/30557707

#SPJ4

Given twoindependent random samples with the following resilts: n1=16 n2=9 ​ˉx1=109 ˉx2=78 x1=16 s2=17 Use this data to find the 98% confidence interval for the true difference between the population means. Assume that the population variances are equal and that the two populations are normally distributed. Step 1 of 3: Find the point estimate that should be used in constructing the confidence interval. Step 2 of 3: Find the margin of error to be used in constructing the confidence interval. Round your answer to six decimal places. Step 3 of 3 : Construct the 98% confidence interval. Round your answers to the nearest whole number.

Answers

1: The point estimate for the difference between the population means is 31.

2: The margin of error for constructing the confidence interval is 17.689889.

3: The 98% confidence interval for the true difference between the population means is (13, 49).

The point estimate for the difference between the population means is calculated by subtracting the sample mean of the second sample (x₂) from the sample mean of the first sample (x₁), resulting in a value of 31.

The margin of error is determined by considering the sample sizes (n₁ and n₂) and the sample variances (s1² and s2²). Since the population variances are assumed to be equal, a pooled standard deviation can be calculated by taking the square root of the average of the sample variances.

The margin of error is then obtained by multiplying the critical value (obtained from the t-distribution with degrees of freedom equal to n₁ + n₂ - 2 and a desired confidence level of 98%) by the pooled standard deviation, which in this case is 17.689889.

The confidence interval is constructed by taking the point estimate (31) and adding/subtracting the margin of error (17.689889). The resulting confidence interval is (13, 49), indicating that we can be 98% confident that the true difference between the population means falls within this range.

Learn more about Confidence interval

brainly.com/question/32546207

#SPJ11

Use the product rule to find the first derivative of h(x) = (x³ + 2x − 7) sin(x) —

Answers

The product rule is a differentiation technique that aids in determining the derivative of a function. The product rule formula is used to solve the problem.The product rule is given as (fg)′ = f′g + fg′where f and g are two differentiable functions.

Therefore, the derivative of h(x) is given by;

h'(x) = [(d/dx) (x³ + 2x − 7)]sin(x) + (x³ + 2x − 7) [(d/dx) sin(x)]

Now we need to solve each term separately using the power rule and the derivative of sin(x).h'(x) = (3x² + 2)sin(x) + (x³ + 2x − 7)cos(x)

Given function, h(x) = (x³ + 2x − 7) sin(x)To find the first derivative of h(x), we will use the product rule of differentiation. The product rule states that if f(x) and g(x) are two differentiable functions, then the derivative of their product is given byf'(x)g(x) + f(x)g'(x)Let f(x) = x³ + 2x − 7 and g(x) = sin(x)Now, f'(x) = 3x² + 2 (using power rule of differentiation)and, g'(x) = cos(x) (using derivative of sin(x))Putting the values in the product rule formula we get,h'(x) = (3x² + 2)sin(x) + (x³ + 2x − 7)cos(x)Therefore, the first derivative of the function h(x) is h'(x) = (3x² + 2)sin(x) + (x³ + 2x − 7)cos(x).

Thus, using the product rule, we found that the first derivative of the function h(x) = (x³ + 2x − 7) sin(x) is h'(x) = (3x² + 2)sin(x) + (x³ + 2x − 7)cos(x).

To learn more about product rule visit:

brainly.com/question/31585086

#SPJ11

Find the volume of the solid bounded by z = 2sqrt(x^2+y^2) and z = 3 − (x^2 + y^2 )

Answers

The volume of the solid bounded by the given surfaces is -27π/8. To find the volume of the solid bounded by the given surfaces:

We can use the method of double integration in cylindrical coordinates. The solid is bounded by two surfaces: z = 2sqrt(x^2 + y^2) and z = 3 - (x^2 + y^2).

Step 1: Determine the region of integration in the xy-plane.

To find the region of integration, we equate the two given surface equations: 2sqrt(x^2 + y^2) = 3 - (x^2 + y^2).

Simplifying, we have 3(x^2 + y^2) - 4sqrt(x^2 + y^2) - 9 = 0.

Let r^2 = x^2 + y^2, the equation becomes 3r^2 - 4r - 9 = 0.

Solving this quadratic equation, we find r = 3 and r = -3/2.

Since r represents the distance from the z-axis and must be positive, the region of integration is a circle with radius 3.

Step 2: Set up the integral in cylindrical coordinates.

The volume can be expressed as V = ∬R f(r, θ) dr dθ, where R is the region of integration, f(r, θ) is the height function, and dr dθ represents the differential area element.

In this case, the height function is h(r, θ) = 3 - r^2.

Thus, the integral becomes V = ∬R (3 - r^2) r dr dθ.

Step 3: Evaluate the integral.

Integrating with respect to r first, we have V = ∫[0, 2π] ∫[0, 3] (3r - r^3) dr dθ.

Evaluating the inner integral, we get V = ∫[0, 2π] [(3/2)r^2 - (1/4)r^4]∣[0, 3] dθ.

Simplifying, we have V = ∫[0, 2π] [(27/2) - (81/4)] dθ.

Evaluating the integral, V = (27/2 - 81/4)∫[0, 2π] dθ.

Finally, V = (27/2 - 81/4) * 2π = 3π(9/2 - 81/8) = 3π(72/8 - 81/8) = 3π(-9/8) = -27π/8.

To learn more about method of double integration in cylindrical coordinates click here:

brainly.com/question/17360689

#SPJ11

Draw a sample distribution curve of the made up ages for a large population of power distribution poles, with:
a range of 0 to 50 years
a mean of 30 years
a small standard deviation

Answers

The sample distribution of ages for a large population of power distribution poles, with a range of 0 to 50 years, a mean of 30 years, and a small standard deviation, would likely exhibit a bell-shaped, approximately normal distribution.

We have,

Since the mean is 30 years and the distribution is centered around this value, the highest point on the distribution curve would be at the mean.

The curve would be symmetric, with values gradually decreasing as you move away from the mean in both directions.

The standard deviation being small indicates that the data points are closely clustered around the mean.

This would result in a relatively narrow and peaked distribution curve, reflecting less variability in the ages of the power distribution poles.

Thus,

The sample distribution of ages for a large population of power distribution poles, with a range of 0 to 50 years, a mean of 30 years, and a small standard deviation, would likely exhibit a bell-shaped, approximately normal distribution.

Learn more about normal distribution here:

https://brainly.com/question/15103234

#SPJ4

Differentiate. G(x) = (2x2+5) (4x+√√x) G'(x) =

Answers

To differentiate G(x) = (2x^2 + 5)(4x + √√x), we can use the product rule. The product rule states that for two functions u(x) and v(x), the derivative of their product is given by: (d/dx)(u(x)v(x)) = u'(x)v(x) + u(x)v'(x).

Applying the product rule to G(x), we have: G'(x) = (d/dx)[(2x^2 + 5)(4x + √√x)] = (2x^2 + 5)(d/dx)(4x + √√x) + (4x + √√x)(d/dx)(2x^2 + 5).Now, let's find the derivatives of each term separately: (d/dx)(4x + √√x) = 4 + (d/dx)√√x; (d/dx)(2x^2 + 5) = 4x. Substituting these derivatives back into the equation, we have: G'(x) = (2x^2 + 5)(4) + (4x + √√x)(4 + (d/dx)√√x) = 8x^2 + 20 + (4x + √√x)(4 + 0.5x^(-0.5)(0.5)). Simplifying further: G'(x) = 8x^2 + 20 + (4x + √√x)(4 + 0.25x^(-0.5)).

Thus, the derivative of G(x) is G'(x) = 8x^2 + 20 + (4x + √√x)(4 + 0.25x^(-0.5)).

To learn more about differentiate click here: brainly.com/question/24062595

#SPJ11

Fiber content (in grams per serving) and sugar content (in grams per serving) for 10 high fiber cereals are shown below. Fiber Content = [3 12 10 9 8 7 13 13 8 17]
Sugar Content = [6 15 14 13 12 9 14 10 19 20] If you were to construct an outlier (modified) boxplot for the Fiber Content data, the lines coming out of the box (box whiskers) would extend to what values?
O a. 7, 12 O b. 1;17 O c. 3.5, 15.5 O d. 3, 17 O e. 8; 13 10

Answers

To construct an outlier (modified) boxplot for the Fiber Content data, the lines coming out of the box (box whiskers) would extend to the values of 3 and 17.

:

To construct an outlier (modified) boxplot, we need to determine the lower and upper whiskers. The lower whisker extends to the smallest value that is not considered an outlier, while the upper whisker extends to the largest value that is not considered an outlier.

For the Fiber Content data, the smallest value is 3, and the largest value is 17. These values represent the minimum and maximum values within the data set that are not considered outliers. Therefore, the lines coming out of the box (box whiskers) would extend to the values of 3 and 17. Option (d) correctly represents these values: 3, 17.

Learn more about outlier here: brainly.com/question/24583510

#SPJ11

What are the domain and range for this list of ordered pairs: {(15, 4), (7,-5), (13,-7), (-3,4)} O Domain: (15, 7, 13,-3) Range: (4,-5, -7, -3) O Domain: (-7, -5, 4) Range: (-3, 7, 13, 15) O Domain: (-3, 7, 13, 15) Range: (-7,-5, 4) O Domain: (15,4,7,-5) Range: [13, -7, -3,4)

Answers

Domain: (15, 7, 13, -3)  ,Range: (4, -5, -7, 4) are the domain and range for this list of ordered pairs.

The domain of a set of ordered pairs refers to the set of all possible x-values or first coordinates in the pairs. In this case, the domain includes the x-values of the given pairs, which are 15, 7, 13, and -3.

The range of a set of ordered pairs refers to the set of all possible y-values or second coordinates in the pairs. In this case, the range includes the y-values of the given pairs, which are 4, -5, -7, and 4.

To learn more about domain click here:

brainly.com/question/32722977

#SPJ11

Determine if the sequence converges absolutely, conditionally converges or diverges. The prove your conclusion. a. 1(-1)+1 ln(1 + 1+1/2)

Answers

The given sequence is conditionally convergent.


Given sequence: 1(-1) + 1 ln(1 + 1 + 1/2)

To determine if the given sequence converges absolutely, conditionally converges, or diverges, we need to evaluate the sequence step by step.

Evaluate the given expression:

1(-1) + 1 ln(1 + 1 + 1/2)

Apply the series expansion for ln(1 + x):

ln(1 + x) = x - x^2/2 + x^3/3 - ...

Applying this series expansion to the expression:

ln(1 + 1 + 1/2) = (1 + 1/2) - (1 + 1/2)^2/2 + (1 + 1/2)^3/3 - ...

Simplify the expression:

1 ln(1 + 1 + 1/2) = (1 + 1/2) - (1 + 1/2)^2/2 + (1 + 1/2)^3/3 - ...

               = -1 + (1 + 1/2) - (1 + 1/2)^2/2 + (1 + 1/2)^3/3 - ...

We observe that the series is an alternating series.

Check for absolute convergence:

| 1 ln(1 + 1 + 1/2) | = | 1 ln(5/2) |

                      = 1.2039...

Since the absolute value of the series is greater than 1, the series is not absolutely convergent.

Check for conditional convergence:

Let Sn be the sum of the first n terms of the series.

| Sn - Sn-1 | = | an |, where an is the nth term of the series.

| an | = | (-1)^(n-1) ln(5/2) |

        = ln(5/2)

Therefore, | Sn - Sn-1 | = ln(5/2)

As ln(5/2) is positive, it satisfies the alternating series test. Hence, the series is conditionally convergent.

To know more about convergence, click here

https://brainly.com/question/28202684

#SPJ11

Amy and Charles are at a bus stop. There are two busses, B1 and B2, that stop at this station, and each person takes whichever bus that comes first. The buses B1 and B2, respectively, arrive in accordance with independent Poisson processes with rates 1 per 15 minutes and 1 per 10 minutes. Assume that Amy and Charles wait for a bus for independently and exponentially distributed amount of times X and Y, with respective means 15 and 20 minutes, then they give up and go back home, independenlty of each other, if any bus still has not come that time. Let T^1 and T^2 denote the first interarrival times of the busses B1 and B2, respectively. Assume that X,Y,T^1 and T^2 are independent. What is the probability that no one takes the bus?

Answers

We add up the probabilities of the four cases to get the total probability that no one takes the bus.

The probability that no one takes the bus can be calculated as follows:

P(X + T1 > 15) P(Y + T1 + T2 > 20 + 15) +

P(X + T1 + T2 > 15 + 10) P(Y + T2 > 20) +

P(X + T2 > 15) P(Y + T1 + T2 > 20 + 15) +

P(X + T1 + T2 > 15 + 10) P(Y + T1 > 20)

Here's a step-by-step explanation of how this formula was obtained:

The event "no one takes the bus" occurs if both Amy and Charles give up waiting for the bus before either bus arrives. We can divide this into four mutually exclusive cases:

Amy gives up before bus B1 arrives and Charles gives up before both buses arrive.

Charles gives up before bus B2 arrives and Amy gives up before both buses arrive.

Amy gives up before both buses arrive and Charles gives up after bus B1 arrives but before bus B2 arrives.

Charles gives up before both buses arrive and Amy gives up after bus B2 arrives but before bus B1 arrives.

The probability of each of these four cases can be calculated using the fact that X, Y, T1, and T2 are independent and exponentially distributed. For example, the probability of the first case is given by P(X + T1 > 15) P(Y + T1 + T2 > 20 + 15), which is the probability that Amy gives up before bus B1 arrives and Charles gives up before both buses arrive.

To know more  probabilities

https://brainly.com/question/29381779

#SPJ11

I need assistance to the following models and its MLE
3.6 Poisson IGARCH
3.6.1 Maximum Likelihood Method for Poisson IGARCH
3.7 Poisson INGARCH
3.7.1 Maximum Likelihood Method for Poisson IGARCH
3.8 Poisson INARMA
3.8.1 Maximum Likelihood Method for Poisson INARMA

Answers

3.6 Poisson IGARCH The Poisson IGARCH is a stochastic process model that combines the Poisson distribution for the mean and the IGARCH process for the volatility. The IGARCH process is similar to the GARCH process, but is used for non-negative data that may have changing volatility.

The Maximum Likelihood Method for Poisson IGARCH estimates the parameters of the model that best fit the data. This method involves finding the parameter values that maximize the likelihood function, which is the probability of the observed data given the parameter values. This involves taking the derivative of the log-likelihood function with respect to each parameter and setting it equal to zero to solve for the maximum.

, $h$ is the vector of conditional variances, $r$ is the vector of returns, and $\mu$ is the vector of conditional means.3.7 Poisson INGARCHThe Poisson INGARCH model is similar to the Poisson IGARCH model, but uses the INGARCH process instead of the IGARCH process for the volatility.

The INGARCH process is similar to the IGARCH process, but uses a non-negative integer-valued random variable for the innovation term instead of a continuous random variable. The Maximum Likelihood Method for Poisson INGARCH estimates the parameters of the model that best fit the data.

The Maximum Likelihood Method for Poisson INARMA estimates the parameters of the model that best fit the data. This method involves finding the parameter values that maximize the likelihood function, which is the probability of the observed data given the parameter values.

To know more about process  visit:

https://brainly.com/question/14832369

#SPJ11

2)
Anyone know this please?
2. The ODE y"-y=e+e has complementary function Yh = Ae + B. Use the method of undetermined coefficients to find a particular integral yp. [5]

Answers

To find the particular integral yp for the given ordinary differential equation (ODE), we can use the method of undetermined coefficients. The particular integral for the given ODE is yp = e^x + 1.

To find the particular integral yp for the given ordinary differential equation (ODE), we can use the method of undetermined coefficients. We start by finding the complementary function Yh, which represents the general solution of the homogeneous equation. Then, we assume a particular form for the particular integral and determine the coefficients by substituting it into the ODE.

The given ODE is y'' - y = e^x + e.

First, let's find the complementary function Yh, which satisfies the homogeneous equation y'' - y = 0. The characteristic equation is obtained by substituting Yh = e^mx into the homogeneous equation:

m^2 - 1 = 0.

Solving the characteristic equation, we get m = ±1. Therefore, the complementary function is Yh = Ae^x + Be^(-x), where A and B are constants to be determined.

Next, we assume a particular form for the particular integral yp. Since the right-hand side of the ODE contains e^x and a constant term, we can assume a particular solution of the form yp = C1e^x + C2, where C1 and C2 are constants to be determined.

Substituting yp into the ODE, we have:

(y'') - (y) = (C1e^x + C2) - (C1e^x + C2) = e^x + e.

Comparing the coefficients of like terms, we find C1 = 1 and C2 = 1. Therefore, the particular integral is yp = e^x + 1.

The general solution of the ODE is given by the sum of the complementary function and the particular integral: y = Yh + yp.

Hence, the general solution of the ODE is y = Ae^x + Be^(-x) + e^x + 1.

In summary, the particular integral for the given ODE is yp = e^x + 1.


To learn more about differential equation click here: brainly.com/question/32524608

#SPJ11

To me pot at cridiondastane prevalence in cuss 227% Arandos samps of 31 of these cities is selected What in the probability that the mean childhood asthma prevation for the same gate than 20% liegt in pratty Aume 130% ound to the discs as needed i

Answers

The prevalence of childhood asthma in 31 selected cities is 227% of the national average and the probability that the mean prevalence is above 20% can be calculated using statistical tools.

According to the given information,

We know that the prevalence of childhood asthma in 31 selected cities is at 227% of the national average.

This means that the prevalence in these cities is higher than in other areas.

Now, we are asked to find the probability that the mean childhood asthma prevalence for the same group of cities is above 20%.

To solve this problem, we need to use statistical tools. We can assume that the childhood asthma prevalence in these cities follows a normal distribution, which allows us to use the central limit theorem.

Using the central limit theorem,

We can calculate the standard deviation of the sample mean using the formula:

σ = σ/√n

Where σ is the standard deviation of the population,

n is the sample size,

And √n is the square root of n.

We are not given the standard deviation of the population,

So we will use the standard deviation of the sample as an estimate.

Using a standard normal distribution table,

We can find the probability that the mean childhood asthma prevalence is greater than 20%.

The formula we use is:

P(Z > (20%-μ)/(σ/√n))

Where μ is the mean prevalence in the sample,

Which we assume to be 227%,

And Z is the standard normal variable.

Once we calculate this probability,

We can round it to the desired number of decimal places.

Thus, the probability that the mean childhood asthma prevalence for the same group of cities is above 20% is calculated using the central limit theorem and a standard normal distribution table. It is important to note that this calculation assumes certain statistical assumptions and is subject to error.

To learn more about statistics visit:

https://brainly.com/question/30765535

#SPJ4

Assignment: Instantaneous Rate of Change and Tangent Lines Score: 60/130 6/13 answered Progress saved Done 日酒 Question 8 Y < > 0/10 pts 295 Details Find the average rate of change of f(x) = 42² -8 on the interval [1, t]. Your answer will be an expression involving t Question Help: Video Post to forum Submit Question Jump to Answer

Answers

To find the average rate of change of the function f(x) = 42x² - 8 on the interval [1, t], we can use the formula for average rate of change: Average rate of change = (f(t) - f(1)) / (t - 1).

Substituting the function f(x) = 42x² - 8 into the formula, we have: Average rate of change = (42t² - 8 - (42(1)² - 8)) / (t - 1). Simplifying the expression, we get: Average rate of change = (42t² - 8 - 34) / (t - 1). Combining like terms, we have: Average rate of change = (42t² - 42) / (t - 1).

So, the expression for the average rate of change of f(x) = 42x² - 8 on the interval [1, t] is (42t² - 42) / (t - 1).

To learn more about function   click here: brainly.com/question/22847740

#SPJ11

The board of examiners that administers the real estate broker's examination in a certain state found that the mean score on the test was 324 and the standard deviation was 46 . If the board wants to set the passing score so that only the best 90% of all applicants pass, what is the passing score? Assume that the scores are normally distributed.

Answers

The board of examiners that administers the real estate broker's examination in a certain state found that the mean score on the test was 324 and the standard deviation was 46.

We have to find the passing score so that only the best 90% of all applicants pass. Let's proceed and solve this problem.Therefore, the z-value for the 90th percentile is 1.28.Using the z-score formula, the passing score can be found as follows:z = (x - μ) / σ1.28 = (x - 324) / 46

We can solve for x by cross multiplying and solving for x:x - 324 = 58.88x = 382.88The passing score is 382.88. Therefore, the answer to the given problem is 382.88.

To know more about administers visit:

https://brainly.com/question/28321763

#SPJ11

A quality-control engineer selects a random sample of 3 batteries from a lot of 10 car batteries ready to be shipped. The lot contains 2 batteries with slight defects. Let X be the number of defective batteries in the sample chosen. (a) What are the values that X takes? (b) In how many ways can the inspector select none of the batteries with defects? (c) What is the probability that the inspector's sample will contain none of the batteries with defects? (d) What is the probability that the inspector's sample will contain exactly two batteries with defects?

Answers

(a) X can take values 0, 1, 2, and 3; (b) there are 56 ways to select none of the defective batteries; (c) the probability of selecting none of the defective batteries is 7/15 ≈ 0.4667; (d) the probability is 1/15 ≈ 0.0667.

(a) The values that X can take are 0, 1, 2, and 3. X represents the number of defective batteries in the sample, so it can range from 0 (no defective batteries) to 3 (all batteries defective).

(b) To select none of the batteries with defects, we need to choose all 3 batteries from the remaining 8 non-defective batteries. Therefore, there are C(8, 3) = 56 ways to select none of the defective batteries.

(c) The probability of selecting none of the defective batteries is the ratio of the favorable outcomes (56) to the total possible outcomes (C(10, 3) = 120). Hence, the probability is 56/120 = 7/15 ≈ 0.4667.

(d) The probability of selecting exactly two batteries with defects can be calculated as the product of selecting 2 defective batteries (C(2, 2) = 1) and selecting 1 non-defective battery (C(8, 1) = 8) divided by the total possible outcomes. Therefore, the probability is (1 * 8) / 120 = 8/120 = 1/15 ≈ 0.0667.

In summary, (a) X can take values 0, 1, 2, and 3; (b) there are 56 ways to select none of the defective batteries; (c) the probability of selecting none of the defective batteries is 7/15 ≈ 0.4667; (d) the probability of selecting exactly two batteries with defects is 1/15 ≈ 0.0667.


To learn more about probability click here: brainly.com/question/32117953

#SPJ11

The purchased cost of a 5-m3 stainless steel tank in 1995 was $10,900. The 2-m-diameter tank is cylindrical with a flat top and bottom. If the entire outer surface of the tank is to be covered with 0.05-m-thickness of magnesia block, estimate the current total cost for the installed and insulated tank. The 1995 cost for the 0.05-m-thick magnesia block was $40 per square meter while the labor for installing the insulation was $95 per square meter.

Answers

The estimated current total cost for the installed and insulated tank is $12,065.73.

The first step is to calculate the surface area of the tank. The surface area of a cylinder is calculated as follows:

surface_area = 2 * pi * r * h + 2 * pi * r^2

where:

r is the radius of the cylinder

h is the height of the cylinder

In this case, the radius of the cylinder is 1 meter (half of the diameter) and the height of the cylinder is 1 meter. So the surface area of the tank is:

surface_area = 2 * pi * 1 * 1 + 2 * pi * 1^2 = 6.283185307179586

The insulation will add a thickness of 0.05 meters to the surface area of the tank, so the total surface area of the insulated tank is:

surface_area = 6.283185307179586 + 2 * pi * 1 * 0.05 = 6.806032934459293

The cost of the insulation is $40 per square meter and the cost of labor is $95 per square meter, so the total cost of the insulation and labor is:

cost = 6.806032934459293 * (40 + 95) = $1,165.73

The original cost of the tank was $10,900, so the total cost of the insulated tank is:

cost = 10900 + 1165.73 = $12,065.73

Therefore, the estimated current total cost for the installed and insulated tank is $12,065.73.

Learn more about cylinder current total cost https://brainly.com/question/25109150

#SPJ11

You plan to conduct a survey to find what proportion of the workforce has two or more jobs. You decide on the 90% confidence level and state that the estimated proportion must be within 4% of the population proportion. A pilot survey reveals that 3 of the 70 sampled hold two or more jobs. How many in the workforce should be interviewed to meet your requirements? (Round the intermediate calculation to 2 decimal places. Round the final answer to the nearest whole number.) Number of persons to be interviewed ___

Answers

Answer:

Approximately 167 persons should be interviewed in the workforce to meet the requirements of a 90% confidence level and a 4% margin of error.

Step-by-step explanation:

To determine the sample size required for the survey, we can use the formula:

n = (Z^2 * p * (1-p)) / E^2

where:

- n is the required sample size

- Z is the z-score corresponding to the desired confidence level (90% confidence level corresponds to a z-score of approximately 1.645)

- p is the estimated proportion of the population with two or more jobs

- E is the desired margin of error

In this case, the desired margin of error is 4% (0.04), and the pilot survey revealed that 3 out of 70 sampled hold two or more jobs. Therefore, the estimated proportion is p = 3/70.

Substituting these values into the formula, we have:

n = (1.645^2 * (3/70) * (1 - 3/70)) / (0.04^2)

Calculating this expression:

n ≈ 166.71

Rounding this to the nearest whole number, we get:

Number of persons to be interviewed ≈ 167

Therefore, approximately 167 persons should be interviewed in the workforce to meet the requirements of a 90% confidence level and a 4% margin of error.

Learn more about population:https://brainly.com/question/29885712

#SPJ11

Which of the following is not a characteristic of the sampling distribution of the sample mean? a. The sampling distribution of mean is always normally distributed regardless of the shape of the original distribution. b. If the original distribution is not normally distributed, the sampling distribution of the mean will be approximately normally distributed when the sample size is large. c. The mean of the sampling distribution of mean is equal to the mean of the original distribution. d. If the original distribution is normally distributed, the sampling distribution of the mean will be normally distributed regardless of the sample size.

Answers

The characteristic that is not true about the sampling distribution of the sample mean is option (d): If the original distribution is normally distributed, the sampling distribution of the mean will be normally distributed regardless of the sample size.

The sampling distribution of the sample mean follows certain characteristics. Firstly, option (a) is correct, stating that the sampling distribution of the mean is always normally distributed regardless of the shape of the original distribution. This is due to the Central Limit Theorem, which states that as the sample size increases, the sampling distribution of the mean approaches a normal distribution, even if the original population distribution is not normal.

Option (b) is also correct, mentioning that if the original distribution is not normally distributed, the sampling distribution of the mean will be approximately normally distributed when the sample size is large. Again, this is due to the Central Limit Theorem, which allows the sampling distribution of the mean to become approximately normal when the sample size is sufficiently large, regardless of the shape of the original distribution.

Option (c) is true, stating that the mean of the sampling distribution of the mean is equal to the mean of the original distribution. This is an important property of the sampling distribution of the mean.

However, option (d) is false. If the original distribution is already normally distributed, the sampling distribution of the mean will also be normally distributed, regardless of the sample size. The Central Limit Theorem is not applicable in this case because the distribution is already normal. The Central Limit Theorem comes into play when the original distribution is non-normal.

Therefore, the correct answer is option d.

Learn more about distribution

brainly.com/question/29664127

#SPJ11

(7 points) 10. Use cylindrical coordinates to evaluate fff(x+y+z) dV where E is the solid enclosed by the paraboloid z = 4 - ² - y² and the xy-plane.

Answers

To evaluate the triple integral fff(x+y+z) dV over the solid E enclosed by the paraboloid z = 4 - x^2 - y^2 and the xy-plane, we can use cylindrical coordinates. The integral in cylindrical coordinates is ∫∫∫(rcosθ + rsinθ + z) r dz dr dθ.

In cylindrical coordinates, the paraboloid equation becomes z = 4 - r^2, where r represents the radial distance and θ represents the angle in the xy-plane. The solid E is bounded below by the xy-plane, so the limits for z are from 0 to 4 - r^2. For the radial coordinate, r, the limits are determined by the projection of the solid onto the xy-plane, which is a circle centered at the origin with radius 2. Therefore, r varies from 0 to 2. The angle θ can vary from 0 to 2π to cover the entire circle. Substituting these limits and the appropriate Jacobian into the integral, we get the expression mentioned above.

Learn more about cylindrical coordinates here: brainly.com/question/31434197

#SPJ11

Tom and Kath want to borrow a $35,000 in order to build an addition to their home. Their bank will lend them the money for 12 years at an interest rate of 5 %%. How much will they pay in interest to the bank over the life of the loan?

Answers

Tom and Kath will pay a total of $21,000 in interest to the bank over the 12-year life of the loan.

The interest paid over the life of the loan, we need to use the formula for simple interest:

Interest = Principal × Rate × Time

In this case, the principal amount is $35,000, the interest rate is 5% (or 0.05 in decimal form), and the time is 12 years.

Plugging in the values into the formula, we get:

Interest = $35,000 × 0.05 × 12

Calculating the expression, we find:

Interest = $21,000

Therefore, Tom and Kath will pay a total of $21,000 in interest to the bank over the 12-year life of the loan.

Learn more about loan : brainly.com/question/30015539

#SPJ11

Suppose that you had the following data set. 100200250275300 Suppose that the value 250 was a typo, and it was suppose to be −250. How would the value of thi standard deviation change if 250 was replaced with −250 ? it would get larger. It would get smaller. It would stay the same.

Answers

If we replace the value of 250 with -250, then the standard deviation of the data set would get larger. Here's why Standard deviation is a measure of the amount of variation or dispersion of a set of data values from their mean.

Mathematically, it is calculated as the square root of the variance of the data set. Suppose we have the original data set: 100, 200, 250, 275, 300 To calculate the standard deviation of this data set, we first need to calculate the mean, which is (100+200+250+275+300)/5 = 225. Then, we subtract the mean from each data point and square the result, and take the average of these squared differences. This gives us the variance, which is:

((100-225)^2 + (200-225)^2 + (250-225)^2 + (275-225)^2 + (300-225)^2)/5

= ((-125)^2 + (-25)^2 + (25)^2 + (50)^2 + (75)^2)/5

= 3875/5

= 775 Finally, we take the square root of the variance to get the standard deviation, which is approximately 27.83. Now, if we replace the value of 250 with -250, we get the data set: 100, 200, -250, 275, 300 The mean of this data set is still 225. But when we calculate the variance, we get:

((100-225)^2 + (200-225)^2 + (-250-225)^2 + (275-225)^2 + (300-225)^2)/5

= ((-125)^2 + (-25)^2 + (-475)^2 + (50)^2 + (75)^2)/5

= 60125/5

= 12025 Taking the square root of the variance, we get the standard deviation, which is approximately 109.62. This is much larger than the original standard deviation of 27.83, indicating that the data set has become more spread out or variable with the replacement of 250 with -250.

To know more about deviation visit:

https://brainly.com/question/29758680

#SPJ11

A developmental psychologist is examining the development of language skills from age 2 to age 4. Three different groups of children are obtained, one for each age, with n = 18 children in each group. Each child is given a language-skills assessment test. The resulting data were analyzed with an ANOVA to test for mean differences between age groups. The results of the ANOVA are presented in the following table. Fill in all of missing values:
Source: SS df MS F
Between: 48 -
Within:
– – –
Total 252 - -
Find the critical F-value using an α = .01.
What can you conclude with respect to the null hypothesis?
Calculate η2 and state whether the effect is small, medium, or large.

Answers

The critical value is 5.2431. We reject the null hypothesis. Since 0.1905 is closer to 0.10 than 0.30, the effect is small.

Null hypothesis:In statistical inference, the null hypothesis is the default hypothesis that there is no significant difference between two measured phenomena.Calculation:We are given the following information:Source: SS df MS FBetween: 48 -Within:- - -Total: 252 - -Degree of freedom for between is = k - 1 = 3 - 1 = 2Degree of freedom for within is = N - k = 54 - 3 = 51Mean Square for between is calculated as follows:MSb = SSB/dfbMSb = 48/2MSb = 24Mean Square for within is calculated as follows:MSw = SSW/dfwMSw = (SS - SSB)/dfwMSw = (252 - 48)/51MSw = 3.5294F-statistic:It can be calculated using the formula:F = MSb / MSwF = 24 / 3.5294F = 6.8078Conclusively, to find the critical value we use F distribution table. Here, the degree of freedom between is 2 and degree of freedom within is 51. Since alpha value is 0.01, we consider right tailed distribution. Thus, the critical value is 5.2431.

We can conclude that there is a significant difference between the mean of the groups as the calculated F-statistic (6.8078) is greater than the critical F-value (5.2431) at α = .01. Therefore, we reject the null hypothesis. We accept that at least one group's mean score is significantly different from the other groups.

Calculate η2 and state whether the effect is small, medium, or large.η² is the proportion of the total variation in the dependent variable that is accounted for by the variation between the groups in ANOVA.The sum of squares total is represented by SST = SSB + SSW.In the ANOVA table, total SS is 252. Therefore,SST = SSB + SSW252 = 48 + SSWSSW = 204The formula for η² is as follows:η² = SSB / SST = 48 / 252η² = 0.1905. Since 0.1905 is closer to 0.10 than 0.30, the effect is small.

Learn more about Null hypothesis :

https://brainly.com/question/28920252

#SPJ11

An oncologist performs a high-risk treatment on a very
aggressive type of cancer for 28 different patients. The procedure
has a success rate of only 34%. What is the probability that
exactly half of t

Answers

The probability of exactly half of the 28 treatments being successful is 0.0102. The probability of at least 5 of the treatments being successful is 0.9941.

To calculate the probability of exactly half of the 28 treatments being successful, we can use the binomial probability formula. In this case, the success rate is 34% (0.34) and the number of trials is 28. Plugging these values into the formula, we find that the probability is approximately 0.0102.

To calculate the probability of at least 5 of the treatments being successful, we need to calculate the probabilities for each possible outcome from 5 to 28 and sum them up. Using the binomial probability formula, we find that the probability is approximately 0.9941.

To find the expected number of successful treatments, we multiply the total number of treatments (28) by the success rate (0.34), resulting in 9.52 patients.

Using the Range Rule of Thumb, we can estimate the approximate range of successful treatments. The range is typically calculated by subtracting and adding two times the standard deviation to the mean. Since the standard deviation is not given, we can use a rough estimate based on the binomial distribution.

The square root of the product of the number of trials (28) and the success rate (0.34) gives us an approximate standard deviation of 2.45. Therefore, the approximate range is 9.52 - 2.45 to 9.52 + 2.45, which is 0 to 19 patients.

Learn more about probability  here:

https://brainly.com/question/31828911

#SPJ11

Our classroom (MNT 203) is lit partially by fluorescent tubes, each of which fails, on average, after 4000 hours of operation. Since it is costly to have a technician in place to replace tubes whenever they fail, the management decided to check them for replacement after 3000 hours. Assuming that we have 300 fluorescent tubes in MNT 203: a. What is the probability that the first tube fails before 1000 hours? b. On average, how many failed tubes will be replaced on 3000 hours replacement check?

Answers

a. . The probability is approximately 0.223.

b. On average, about 66 failed tubes will be replaced during the 3000-hour replacement check.

a. To calculate the probability that the first tube fails before 1000 hours, we can use the exponential distribution formula: P(X < x) = 1 - e^(-x/λ), where λ is the average lifespan of a tube. In this case, λ is 4000 hours. Plugging in the values, we have P(X < 1000) = 1 - e^(-1000/4000) ≈ 0.223. Therefore, the probability that the first tube fails before 1000 hours is approximately 0.223.

b. On average, the number of failed tubes that will be replaced during the 3000-hour replacement check can be calculated by dividing the total number of tubes by the average lifespan of a tube. In this case, there are 300 tubes and the average lifespan is 4000 hours. Therefore, the expected number of failed tubes during the 3000-hour replacement check is (300 tubes) * (3000 hours / 4000 hours) ≈ 66. This means that, on average, approximately 66 failed tubes will be replaced during the 3000-hour check.

To learn more about probability click here, brainly.com/question/31828911

#SPJ11

Average temperature in a chemical reaction chamber should be 8.2 degree Celsius for successful reaction. If temperature of 9 sample reactions were resulted in a mean of 9.1 and sample standard deviation of 0.22. Do these sample readings different than the needed average. a) Test this hypothesis at 5% significance level.

Answers

Average temperature in a chemical reaction chamber should be 8.2 degree Celsius for successful reaction. If temperature of 9 sample reactions were resulted in a mean of 9.1 and sample standard deviation of 0.22. The sample readings differ from the needed average temperature of 8.2 degrees Celsius.

To test whether the sample readings are significantly different from the needed average temperature of 8.2 degrees Celsius, we can perform a one-sample t-test. The null hypothesis (H0) is that the true population mean is equal to 8.2, and the alternative hypothesis (Ha) is that the true population mean is not equal to 8.2.

Sample mean (X) = 9.1

Sample standard deviation (s) = 0.22

Sample size (n) = 9

Required average temperature (μ) = 8.2

Significance level (α) = 0.05 (5%)

First, we calculate the t-value using the formula:

t = (X - μ) / (s / √n)

Substituting the values:

t = (9.1 - 8.2) / (0.22 / √9)

t = 0.9 / (0.22 / 3)

t = 0.9 / 0.0733

t ≈ 12.27

Next, we determine the critical t-value for a two-tailed test at a 5% significance level with (n-1) degrees of freedom. With 8 degrees of freedom (n-1 = 9-1 = 8), the critical t-value is approximately ±2.306.

Since the calculated t-value (12.27) is greater than the critical t-value (2.306), we reject the null hypothesis H0. There is enough evidence to conclude that the sample readings are significantly different from the needed average temperature at the 5% significance level.

To know more about sample readings refer to-

https://brainly.com/question/29151417

#SPJ11

If 115 people attend a concert and tickets for adults cost $4.00 while tickets for children cost $1.75 and total receipts for the concert was $345.25, how many of each went to the concert?
There were adults and children that attended the concert.

Answers

These were 64 adults and 51 children attended the concert.

Let's assume the number of adults attending the concert is A, and the number of children attending the concert is C.

According to the given information, the total number of people attending the concert is 115, so we have the equation:

A + C = 115

The total receipts from the concert is $345.25, which can be expressed as the sum of the adult ticket sales and the children ticket sales:

4A + 1.75C = 345.25

Now we can solve these equations simultaneously to find the values of A and C.

Using the substitution method, we can solve the first equation for A:

A = 115 - C

Substituting this value of A into the second equation, we get:

4(115 - C) + 1.75C = 345.25

Expanding and simplifying:

460 - 4C + 1.75C = 345.25

-2.25C = 345.25 - 460

-2.25C = -114.75

Dividing both sides by -2.25:

C = -114.75 / -2.25

C ≈ 51

Substituting the value of C back into the first equation:

A + 51 = 115

A = 115 - 51

A = 64

Therefore, there were 64 adults and 51 children that attended the concert.

learn more about "equation":- https://brainly.com/question/29174899

#SPJ11

John spent 80% of his money and saved the rest. Peter spent 75% of his money and saved the rest. If they saved the same amount of money, what is the ratio of John’s money to Peter’s money? Express your answer in its simplest form.

Answers

The ratio of John's money to Peter's money is 5/4. This means if John has a total amount of 5 then Peter will have a total of 4 as his amount.

Let's assume John has 'x' amount of  money, Peter has 'y' amount of money, The money John saved is 'p' and the money Peter saved is 'q'

So,

p = x - 80x/100                (equation 1)

q = y - 75y/100                (equation 2)

According to the given question, the amount John saved is equal to the amount Peter saved. Hence, we can equate equations 1 and 2.

p = q

x- 80x/100 = y - 75y/100

x - 0.8x = y - 0.75y

0.2x = 0.25y

x =  0.25y/0.2

x/y = 0.25/0.2

x/y = 25/20

x/y = 5/4

Hence, the ratio of John's money to Peter's money is 5/4.

To learn more about Ratio:

https://brainly.com/question/13419413

Instructions: In the excel spreadsheets, you are given three data sets that are named: "Africa corona virus data"; "Covid 19- geographic distribution worldwide data and Cote d'Ivoire Covid data. For each one of those data, answer the questions below: A) Africa corona virus data (pt) 1- Construct a Pareto graph comparing the total number of deaths in Benin, Burkina Faso, Gabon, Guinea, Ghana, Ivory Coast, Liberia, Mali, Niger, Senegal and Nigeria pts) 2- Construct a Pie chart representing the total number of deaths in Burkina, Guinea, Ivory Coast, Liberia, Ghana and Mali. (pt)

Answers

As a text-based AI, I don't have access to specific Excel spreadsheets or ability to analyze  data directly. I can provide you with general explanation of how to construct Pareto and Pie charts.

To construct a Pareto graph comparing the total number of deaths in Benin, Burkina Faso, Gabon, Guinea, Ghana, Ivory Coast, Liberia, Mali, Niger, Senegal, and Nigeria, you would need the data for the total number of deaths in each country. You can then arrange the countries in descending order based on their number of deaths and plot a bar graph with the countries on the x-axis and the number of deaths on the y-axis. Additionally, you can include a cumulative percentage line graph to represent the cumulative contribution of each country to the total number of deaths.

For the Pie chart representing the total number of deaths in Burkina Faso, Guinea, Ivory Coast, Liberia, Ghana, and Mali, you would need the data for the number of deaths in each country. You can then calculate the percentage of deaths for each country out of the total deaths in the given countries and create a pie chart where each country's sector represents its percentage contribution to the total.

Please refer to the provided Excel spreadsheets and their respective datasets to obtain the necessary data for constructing the Pareto and Pie charts accurately.

To learn more about Pie charts click here : brainly.com/question/9979761

#SPJ11

Other Questions
Find the domain and range of the function. f(x)= 10 + x Identify the domain of f(x). (Type your answer in interval notation.) The lengths of a professor's classes has a continuous uniform distribution between 50.0 min and 52.0 min. If one such class is randomly selected, find the probability that the class length is less than 50.9 min.P(X< 50.9)= When flowcharting the supply chain network, which step involves limiting the number of entities to be included in the supply chain map? A. Move and reposition nodes and links as needed. B. Place and fill nodes and linksspecial attention to up and downstream critical players. C. Place and fill nodes and linksspecial attention to up and downstream critical players. D. Node and link specificationicon selection, information depth, aggregation decisions, key business process integration, information to display, and key metrics to include. E. Disseminate/publish "as-is" map Mikhail and Stefan are both artists who can create sculptures or paintings each day. The following table describes their maximum outputs per day. Use this table to answer the following questions. Sculptures Paintings Mikhail 10 5 Stefan 6 2 Based on the table, does Mikhail or Stefan have a comparative advantage? Yes, Mikhail has a comparative advantage in paintings, and Stefan has a comparative advantage in sculptures. No, neither has a comparative advantage. Yes, Mikhail has a comparative advantage in both sculptures and paintings. Yes, Mikhail has a comparative advantage in sculptures, and Stefan has a comparative advantage in paintings. Yes, Stefan has a comparative advantage in both sculptures and paintings. In terms of jurisdiction, the Supreme Court hasexecutive and appellate.original and appellate.legislative and original.original and executive. QUESTION 1What are three provincial courts in Canada?A.The Provincial Courts of Appeal, the Provincial Superior Courts, the Provincial Courts.B.The Provincial Courts, the Provincial Courts of Appeal, the Provincial Tax CourtC.The Provincial Tax Court, the Provincial Military Court, the Provincial Courts of Appeal A firm wishes to choose the location for a new factory. Profits obtained will depend on whether a new railroad spur is constructed to serve the town in which the new factory will be located. The following payoff table summarizes the relevant information:New RailroadNo New RailroadAlternativesSpur BuiltSpurLocation A$1*$14Location B210Location C46*Profits in $ millions.Determine the location that should be chosen if the firm uses the maximax criterion. (Enter your answers in millions.)Maximum payoff for each alternative:Location A$MLocation B$MLocation C$MMaximax payoff: LocationatM The table shows the results of a research study. During the study, the plants were kept in greenhouses where light exposure wasstrictly regulated. Each group contained 50 plants of one species and maturity. Based on the table, what was the most likely source oferror? Hi, can you please check my work, specifically the gross margin. I think I didn't do that right. If not, please explain to me how to do it right.Using direct labor hours as the base for allocating overhead costs to products, determine the cost per unit for each model and the total gross margin for each product for the upcoming year. The companys pricing policy is cost plus 40%.Overhead cost per unit for each model = Total budgeted overhead/total budgeted allocation base= 900,000/[(5000 x 2) + (40,000 x 1)] = 900,000/50,000 = $18 per unit DLHOH cost per model:Deluxe$18 per DLH x 2 DLH = $36Regular$18 per DLX x 1 DLH = $18Deluxe RegularDirect Materials $40 $25Direct Labor $14 $7OH Cost Per Unit $36 $18TOTAL COST PER UNIT $90 $50PRICE PER UNIT (COST + 40%) $126 $70ANSWER: Cost per unit for Deluxe is $90 and cost per unit for Regular is $50. The gross margin for the Deluxe is $36 and the gross margin for Regular is $20. The company priced it at cost plus 40 percent which is $126 for the Deluxe and $70 for the Regular. Find the sum of the first 11 terms of the geometric sequence if the first term is 4 and the common ratio is -3. (ACF231) Taxation Accounting Problem Solving (bl: 5 Marks) The International Trading Company imported goods with value of 4,000,000BD and paid 1,000,000BD as custom fees. The company paid 10% VAT on total cost of the imported goods. If the company has sales as following: First month: 1,000,000BD Second month: 1,500,000BD Third month: 2,000,000BD Fourth Month: 2,500,000BD Required: 1) What is the VAT paid and the VAT collected by this company? 2) Prepare VAT tax due statement on monthly basis for this company. Shopping mall construction project1)Identify the most important TWENTY (20) activities including their (descriptions, dependencies, and duration) for the above construction project. 2)By using the activity list in Q2, complete the following tasks: a)Draw the Activity on Node diagram and find the critical pathb)Perform a Forward and Backward pass.c)Replace the duration of the first eight activities and draw the network diagram. A random sample of n = 1,000 observations from a binomial population contained 380 successes. You wish to show that p < 0.4. n = 1,000 and x = 380. You wish to show that p < 0.4. A button hyperlink to the SALT program that reads: Use SALT. Calculate the appropriate test statistic. (Round your answer to two decimal places.) z = Calculate the p-value. (Round your answer to four decimal places.) p-value = ? Assume you are considering two projects, Stock A and Stock B, for which the following estimated data have been made available in Table 1: i) Calculate the expected rate of return, [E(NPV)] for both the projects. ii) Calculate the standard deviation, (o) for both the projects. iii) Find the Coefficient of Variation (CV) for both projects and discuss which project is a better investment. iv) Find the Semi- Variance (SV) and Semi Standard Deviation (SSD) for both projects and discuss which project is a better investment. Your answer Table 1: for question no. 2 Probability Possible NPV of B 1 0.30 800 2 0.25 1100 3 0.20 1500 4 0.25 900 Possible NPV of A 1000 1200 1400 1600 Walsh Company manufactures and sells one product. The following information pertains to each of the company's first two years of operations: Variable costs per unit: Manufacturing: Direct materials 29 13 Direct labor $4 Variable manufacturing overhead $3 Variable selling and administrative Fixed costs per year: Fixed manufacturing overhead 400,000 Fixed selling and administrative expenses 70,000 During its first year of operations, Walsh produced 50,000 units and sold 40,000 units. During its second year of operations, it produced 40,000 units and sold 50,000 units. The selling price of the company's product is $57 per unit. Bilateral damage to the anterior funiculus would result in: loss of non-conscious proprioception Loss in ability to orient the head during visual tracking Loss of motor input to the lower extremities Damage to the rubrospinal track None of the above For a given data, calculate the net present value: Initial Investment: $100,000; Project Life: 16 years; Salvage Value: $ 45,000; Annual $ 25,000; Annual Receipts: Disbursements: $ 25,000; Annual Discount Rate: 12% Dog Up! Franks is looking at a new sausage system with an installed cost of $385,000 that will last for five years. This cost will be depreciated using 100 percent bonus depreciation in the first year. At the end of the project, the sausage system can be scrapped for $60,000. The sausage system will save the firm $135,000 per year in pretax operating costs, and the system requires an initial investment in net working capital of $35,000. If the tax rate is 21 percent and the discount rate is 10 percent, what is the NPV of this project? (Do not round intermediate calculations and round your answer to 2 decimal places, e.g., 32.16.) The directors of GHP Ltd. ask you to advise them in the following situation:The directors consider that they should invest profits into purchasing capital equipment, rather than declaring a dividend. The shareholders are unhappy and the directors wish to know whether a court is likely to interfere with their discretion not to declare a dividend.In addition, you should advise what the possible practical consequences are for the directors if they adopt a meagre dividend policy. Which is an example of a non-controllable cost? O a. Housekeeping salaries O b. Housekeeping wages O c. Laundry equipment depreciation O d. Linen cost per occupied room K