(a) The recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder is -4.91 m/s.
(b) The kinetic energy gained by the rifle is 33.15 J.
(c) The kinetic energy transferred to the rifle-shoulder combination is (3.46 - 0) J = 3.46 J.
(a) Calculate the recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder.
Given:
Mass of bullet, m1 = 0.0255 kg
Mass of rifle, m2 = 2.75 kg
Speed of bullet, v1 = 530 m/s
Initial velocity of bullet, u1 = 0 m/s
Initial velocity of rifle, u2 = 0 m/s
Final velocity of rifle, v2 = ?
The total momentum of the rifle and bullet is zero before and after the shot is fired.
Therefore, according to the law of conservation of momentum, the total momentum of the system remains constant, i.e.,
(m1 + m2) u2
= m1 v1 + m2 v2⇒
v2 = [(m1 + m2) u2 - m1 v1]/m2
The negative sign indicates that the direction of the recoil velocity is opposite to the direction of the bullet's velocity.
Since the bullet is moving in the positive direction, the recoil velocity will be in the negative direction.
v2 = [(0.0255 + 2.75) × 0 - 0.0255 × 530]/2.75v2
= -4.91 m/s
Therefore, the recoil velocity of the rifle, in meters per second, if it is held loosely away from the shoulder is -4.91 m/s.
(b) How much kinetic energy, in joules, does the rifle gain?
Given:
Mass of bullet, m1 = 0.0255 kg
Mass of rifle, m2 = 2.75 kg
Speed of bullet, v1 = 530 m/s
Initial velocity of bullet, u1 = 0 m/s
Initial velocity of rifle, u2 = 0 m/s
Final velocity of rifle, v2 = -4.91 m/s
Kinetic energy is given by the formula:
K = 1/2 mv²
Kinetic energy of the rifle before the shot is fired, K1 = 1/2 × 2.75 × 0² = 0 J
Kinetic energy of the rifle after the shot is fired, K2 = 1/2 × 2.75 × (-4.91)² = 33.15 J
Therefore, the kinetic energy gained by the rifle is 33.15 J.
(c) What is the recoil velocity, in meters per second, if the rifle is held tightly against the shoulder, making the effective mass 28.0 kg?
Given:
Mass of bullet, m1 = 0.0255 kg
Mass of rifle, m2 = 28.0 kg
Speed of bullet, v1 = 530 m/s
Initial velocity of bullet, u1 = 0 m/s
Initial velocity of rifle, u2 = 0 m/s
Final velocity of rifle, v2 = ?
Effective mass, M = m1 + m2
= 0.0255 + 28.0
= 28.0255 kg
Using the law of conservation of momentum,(m1 + m2) u2 = m1 v1 + m2 v2⇒
v2 = [(m1 + m2) u2 - m1 v1]/m2
v2 = [(0.0255 + 28.0) × 0 - 0.0255 × 530]/28.0v2 = -0.473 m/s
Therefore, the recoil velocity, in meters per second, if the rifle is held tightly against the shoulder is -0.473 m/s.
(d) How much kinetic energy, in joules, is transferred to the rifle-shoulder combination?
Given:
Mass of bullet, m1 = 0.0255 kg
Mass of rifle, m2 = 28.0 kg
Speed of bullet, v1 = 530 m/s
Initial velocity of bullet, u1 = 0 m/s
Initial velocity of rifle, u2 = 0 m/s
Final velocity of rifle, v2 = -0.473 m/s
Effective mass, M = m1 + m2
= 0.0255 + 28.0
= 28.0255 kg
Using the law of conservation of momentum,(m1 + m2) u2 = m1 v1 + m2 v2⇒
v2 = [(m1 + m2) u2 - m1 v1]/m2
v2 = [(0.0255 + 28.0) × 0 - 0.0255 × 530]/28.0
v2 = -0.473 m/s
Kinetic energy is given by the formula:
K = 1/2 mv²Kinetic energy of the rifle-shoulder combination before the shot is fired, K1 = 1/2 × M × 0² = 0 J
Kinetic energy of the rifle-shoulder combination after the shot is fired, K2 = 1/2 × M × (-0.473)² = 3.46 J
Therefore, the kinetic energy transferred to the rifle-shoulder combination is (3.46 - 0) J = 3.46 J.
Learn more about kinetic energy from this link:
https://brainly.com/question/8101588
#SPJ11
An air-track cart with mass m=0.45kgm=0.45kg and speed v0=1.2m/sv0=1.2m/sapproaches two other carts that are at rest and have masses 2mm and 3mm,as indicated in (Figure 1). The carts have bumpers that make all the collisions elastic.
1)Find the final speed of cart 1, assuming the air track extends indefinitely in either direction.
Express your answer to two significant figures and include appropriate units.
2)Find the final speed of cart 2, assuming the air track extends indefinitely in either direction
Express your answer to two significant figures and include appropriate units.
3)Find the final speed of cart 3, assuming the air track extends indefinitely in either direction.
Express your answer to two significant figures and include appropriate units.
When the air-track cart with a mass of 0.45 kg and an initial speed of 1.2 m/s collides with the two carts at rest, we can use the principles of conservation of momentum and kinetic energy to determine the final speeds of each cart.
1.To find the final speed of cart 1, we consider the conservation of momentum:
(mv0) + (2m)(0) + (3m)(0) = (m)(v1) + (2m)(v2) + (3m)(v3)
1.2 + 0 + 0 = 0.45v1 + 0.9v2 + 1.35v3
Next, we use the conservation of kinetic energy:
(1/2)(m)(v0^2) = (1/2)(m)(v1^2) + (1/2)(2m)(v2^2) + (1/2)(3m)(v3^2)
0.5(0.45)(1.2^2) = 0.5(0.45)(v1^2) + 0.5(2)(0.45)(v2^2) + 0.5(3)(0.45)(v3^2)
By solving the system of equations formed by the conservation of momentum and kinetic energy, we find the final speed of cart 1 to be approximately 0.9 m/s.
2.Following the same approach, we find the final speed of cart 2:
1.2 + 0 + 0 = 0.45v1 + 0.9v2 + 1.35v3
0.5(0.45)(1.2^2) = 0.5(0.45)(v1^2) + 0.5(2)(0.45)(v2^2) + 0.5(3)(0.45)(v3^2)
Solving this system of equations yields a final speed of approximately 0.6 m/s for cart 2.
3.Similarly, the final speed of cart 3 is determined by:
1.2 + 0 + 0 = 0.45v1 + 0.9v2 + 1.35v3
0.5(0.45)(1.2^2) = 0.5(0.45)(v1^2) + 0.5(2)(0.45)(v2^2) + 0.5(3)(0.45)(v3^2)
Solving for cart 3 gives a final speed of approximately 0.3 m/s.
Learn more about speed
brainly.com/question/17661499
#SPJ11
"A 12.5 cm pencil is placed 15 cm from a converging lens. The
image is located through the lens at a distance of 20.0 cm. What is
the focal point of the lens? What is the height of the image?
The length of the focal point is -60 cm. The height of the image is -50/3 cm. The negative sign shows that it is an inverted image.
Object distance (u) = 15 cm
Image distance (v) = 20 cm
The lens formula used to calculate the focal point is:
1/f = 1/v - 1/u
1/f = 1/v - 1/u
1/f = (u - v) / (u * v)
f = (u * v) / (u - v)
f = (15 cm * 20 cm) / (15 cm - 20 cm)
f = (15 cm * 20 cm) / (-5 cm)
f = -60 cm
The length of the focal point is -60 cm and the negative sign indicates that lens used is a converging lens.
The magnitude of the image is:
m = -v / u
m = -20 cm / 15 cm
m = -4/3
The magnification of the len is -4/3, which means the image is inverted.
H= m * h
Height of the object (h) = 12.5 cm
H = (-4/3) * 12.5 cm
H = -50/3 cm
Therefore we can conclude that the height of the image is -50/3 cm. The negative sign shows that it is an inverted image.
To learn more about focal length
https://brainly.com/question/980823
#SPJ4
The thermal energy of 0.600 mol of substance is
increased by 1 Joule (J).
Part A) What is the temperature change if the system is a monatomic
gas?
Part B) Diatomic gas?
Part C) Solid?
Part C What is the temperature change if the system is a solid? Express your answer with the appropriate units. TH UA ? Value Units Part C What is the temperature change if the system is a solid? Ex
The temperature changes for monatomic gas, diatomic gas and solid are 0.494 K, 0.370 K and 0.103 K respectively.
The thermal energy of 0.600 mol of substance is increased by 1 Joule (J).The relation between thermal energy and temperature can be given as,q = nCΔTTaking ΔT as temperature change.The values of C for different substances are as follows:For monatomic gas, C = 3/2 RFor diatomic gas, C = 5/2 RFor solids, C = 3RWe need to find the temperature change for different substances using the above relation.
Part A) For monatomic gas, C = 3/2 RTaking C = 3/2 R, n = 0.600 mol and q = 1 J,ΔT = q/nC = 1/(0.600 × 3/2 R) = 0.8888 RWe can convert this into Kelvin as follows:ΔT = 0.8888 R × (5/9) K/R = 0.494 KTherefore, the temperature change for monatomic gas is 0.494 K.Part B) For diatomic gas, C = 5/2 RTaking C = 5/2 R, n = 0.600 mol and q = 1 J,ΔT = q/nC = 1/(0.600 × 5/2 R) = 0.6667 RWe can convert this into Kelvin as follows:ΔT = 0.6667 R × (5/9) K/R = 0.370 KTherefore, the temperature change for diatomic gas is 0.370 K.
Part C) For solids, C = 3RTaking C = 3R, n = 0.600 mol and q = 1 J,ΔT = q/nC = 1/(0.600 × 3R) = 0.1852 RWe can convert this into Kelvin as follows:ΔT = 0.1852 R × (5/9) K/R = 0.103 KTherefore, the temperature change for solid is 0.103 K.Hence, the temperature changes for monatomic gas, diatomic gas and solid are 0.494 K, 0.370 K and 0.103 K respectively.
Learn more about thermal energy:
https://brainly.com/question/14515276
#SPJ11
In an inertial reference frame, a rest particle with mass m is observed to decay into two photons. Consider decay simply as a 4-momentum conserving process, noting that the original particles are not the same as those resulting from the decay. Determine the relativistic energy and relativistic momentum of each photon.
In an inertial reference frame, a resting particle with mass m decays into two photons. By considering the decay as a 4-momentum conserving process.
We can determine the relativistic energy and relativistic momentum of each photon.
In a rest frame, the initial particle has zero momentum and energy given by E = mc². When it decays into two photons, momentum and energy are conserved. Since the photons are massless particles, their energy is given by E = pc, where p is the momentum. The total energy of the system remains equal to mc².
For a decay process, the total energy before and after the decay should be equal. Therefore, the energy of the two photons combined is mc². Since the photons have equal energy, each photon carries mc²/2 energy. Similarly, the momentum of each photon is given by p = mc/2.
To know more about momentum click here: brainly.com/question/30677308
#SPJ11
A 4 V battery is connected to a circuit and causes an electric current. 10 C of charge passes between its electrodes + and -. The battery gave them, during their march from one electrode to the other, a total of _ J.
The total energy given by the battery to the electric charge during their march from one electrode to the other is 40 J.
A 4 V battery is connected to a circuit and causes an electric current. 10 C of charge passes between its electrodes + and -. The battery gave them, during their march from one electrode to the other, a total of 40 J. Electric potential difference is known as the potential difference between two points in an electric circuit. Voltage is an energy unit that has potential energy. A battery is an electrochemical device that converts chemical energy into electrical energy. A battery has two electrodes that are the positive and negative terminals, and the flow of electric current is caused by the movement of electrons from one terminal to the other.
The electric charge can be calculated by the formula q = i x t Where,q is the charge in coulombs is the current in ampere is the time in seconds Therefore, for the given values,i = 1 AT = 10 seconds q = i x tq = 1 x 10q = 10 C The electric potential difference between the electrodes is 4 V. The work done by the battery to move 10 C of charge from one electrode to the other can be calculated using the formula W = q x VW = 10 x 4W = 40 J Therefore, the total energy given by the battery to the electric charge during their march from one electrode to the other is 40 J.
To know more about battery visit
https://brainly.com/question/16791263
#SPJ11
A force F = F₂û + F with F₂ = 51 N and F, = 11 N is exerted axis from = 1.0 m to on a particle as the particle moves along the x = -5.0 m. Part A Determine the work done by the force on the particle. Express your answer with the appropriate units. μA ? W = Value Units Submit Request Answer Part B What is the angle between the force and the particle's displacement? LE ΑΣΦ ← ? Request Answer A = Submit < Return to Assignment Provide Feedback 0 Constants Periodic Table
The work done by the force on the particle is 62 Nm (or 62 Joules) and the angle between the force and the displacement is 0 degrees.
The problem involves a
force
exerted on a particle as it moves along the x-axis. The force is given by F = F₂û + F, where F₂ = 51 N and F = 11 N. The particle's displacement is 1.0 m along the x-axis from x = -5.0 m to x = -4.0 m.
To find the work done by the force, we can use the formula W = F * d * cos(theta), where F is the force, d is the
displacement
, and theta is the angle between the force and the displacement. In this case, the angle between the force and the displacement is 0 degrees.
To calculate the work done by the force, we can find the dot product between the force and the displacement
vectors
. The dot product of two vectors A and B is given by A · B = |A| * |B| * cos(theta). Since the force and the displacement are parallel, the angle between them is 0 degrees, and
cos(theta)
= 1. Therefore, the work done is simply the product of the force, displacement, and the cosine of 0 degrees.
Plugging in the given values, we have:
W = (F₂û + F) · d
= (51 N * û + 11 N) · 1.0 m
= 51 N * û · 1.0 m + 11 N * 1.0 m
= 51 N * 1.0 m + 11 N * 1.0 m
= 51 Nm + 11 Nm
= 62 Nm
Therefore, the work done by the force on the particle is
62 Nm
(or 62 Joules). Additionally, since the force and the displacement are both along the x-axis, the angle between them is 0 degrees.
In summary, the force exerted on the particle results in a work of
62 Joules
. The force and the particle's displacement are along the x-axis, making the angle between them 0 degrees.
Learn more about
displacement
here:
brainly.com/question/29769926
#SPJ11
A 4.0 kg block is pushed upward at point X and gained an initial velocity of 9.0 m/s [upward]. The ramp has a negligible friction. a. Draw a free body diagram, and label all forces acting on the block. b. Calculate the acceleration of the block as it moves up the ramp. c. What is the maximum distance, d, travelled by the block before it comes to a complete stop?
[tex]-9.8 m/s^2[/tex]The acceleration of the block as it moves up the ramp is -9.8 m/s^2 (directed downward).
The maximum distance traveled by the block before it comes to a complete stop is approximately 4.13 meters.
a. Free body diagram:
^ Normal Force (N)
|
|__ Weight (mg)
|
|
|__ Applied Force (F)
b. To calculate the acceleration of the block, we need to use Newton's second law of motion, which states that the net force acting on an object is equal to the mass of the object multiplied by its acceleration.
The forces acting on the block are the weight (mg) acting downward and the applied force (F) acting upward. Since the block is moving upward, we can write the equation as:
F - mg = ma
Where:
F = Applied force
= 0 (since the block comes to a stop)
m = Mass of the block
= 4.0 kg
g = Acceleration due to gravity
= [tex]9.8 m/s^2[/tex]
a = Acceleration (to be calculated)
Substituting the known values into the equation:
0 - (4.0 kg)([tex]9.8 m/s^2[/tex]) = (4.0 kg) * a
-39.2 N = 4.0 kg * a
a = -39.2 N / 4.0 kg
a = [tex]-9.8 m/s^2[/tex]
The acceleration of the block as it moves up the ramp is -9.8 m/s^2 (directed downward).
c. To find the maximum distance travelled by the block before it comes to a complete stop, we can use the equation of motion:
[tex]v^2 = u^2 + 2as[/tex]
Where:
v = Final velocity = 0 m/s (since the block comes to a stop)
u = Initial velocity = 9.0 m/s (upward)
a = Acceleration = [tex]-9.8 m/s^2[/tex] (downward)
s = Distance (to be calculated)
Substituting the known values into the equation:
[tex]0^2 = (9.0 m/s)^2 + 2(-9.8 m/s^2) * s\\0 = 81.0 m^2/s^2 - 19.6 m/s^2 * s\\19.6 m/s^2 * s = 81.0 m^2/s^2\\s = 81.0 m^2/s^2 / 19.6 m/s^2\\s ≈ 4.13 m[/tex]
Therefore, the maximum distance traveled by the block before it comes to a complete stop is approximately 4.13 meters.
Learn more about acceleration, here:
https://brainly.com/question/2303856
#SPJ4
A strong magnet is dropped through a copper tube. Which of the following is most likely to occur? Since the magnet is attracted to the copper, it will be attracted to the copper tube and stick to it. Since the magnet is not attracted to the copper, it will fall through the tube as if it were just dropped outside the copper tube (that is, with an acceleration equal to that of freefall). O As the magnet falls, current are generated within the copper tube that will cause the magnet to fall faster than it would have if it were just dropped without a copper tube. As the magnet falls, current are generated within the copper tube that will cause the magnet to fall slower than it would have if it were just dropped without a copper tube.
When a strong magnet is dropped through a copper tube, the most likely scenario is that currents are generated within the copper tube, which will cause the magnet to fall slower than it would have if it were just dropped without a copper tube.
This phenomenon is known as electromagnetic induction.
As the magnet falls through the copper tube, the changing magnetic field induces a current in the copper tube according to Faraday's law of electromagnetic induction.
This induced current creates a magnetic field that opposes the motion of the magnet. The interaction between the induced magnetic field and the magnet's magnetic field results in a drag force, known as the Lenz's law, which opposes the motion of the magnet.
Therefore, the magnet experiences a resistive force from the induced currents, causing it to fall slower than it would under freefall conditions. The stronger the magnet and the thicker the copper tube, the more pronounced this effect will be.
Learn more about electromagnetic induction here : brainly.com/question/32444953
#SPJ11
The real image of a tree is magnified -0.085 times by a telescope's primary mirror. If the tree's image forms 35 cm in front of the mirror, what is the distance between the mirror and the tree? What is the focal length of the mirror? What is the value for the mirror's radius of curvature? Is the image virtual or real? Is the image inverted or upright?
Given information: The real image of a tree is magnified -0.085 times by a
telescope's primary mirror
.
If the tree's image forms 35 cm in front of the mirror, what is the distance between the mirror and the tree? What is the focal length of the mirror? What is the value for the mirror's radius of curvature? Is the image virtual or real? Is the image inverted or upright?The negative magnification value indicates that the image formed is real and inverted.
The distance between the object and mirror can be calculated using the
magnification
formula:Magnification = - v/u=-0.085Given v = -35 cm. Substitute and solve for u.-0.085 = -35/u u = 411.76 cmTherefore, the distance between the mirror and the tree is 411.76 cm.The focal length of the mirror can be calculated using the formula:f = -v/m= 35/0.085 = 411.76 cm
Therefore, the focal
length
of the mirror is 411.76 cm.Using the mirror formula, the radius of curvature of the mirror can be calculated as:1/f = 1/v + 1/u=1/35 + (-0.085)/(-411.76) = 0.02857 cmThe radius of curvature of the mirror is 0.02857 cm.The image formed is real and inverted since the magnification value is negative.
to know more about
telescope's primary mirror
pls visit-
https://brainly.com/question/31460196
#SPJ11
The magnetic field of a plane EM wave is given by B= B0
cos(kz−ωt)ˆj. Indicate:
a) The direction of propagation of the wave
b) The direction of E.
The direction of propagation is k, the electric field is i, and the magnetic field is j.
a) The direction of propagation of the wave
The direction of propagation of an electromagnetic wave is perpendicular to both the electric field and the magnetic field. The magnetic field vector in your question is in the j-direction, so the direction of propagation is in the k-direction.
b) The direction of E
The electric field vector is perpendicular to the magnetic field vector and the direction of propagation. Since the magnetic field vector is in the j-direction, the electric field vector is in the i-direction.
Here is a diagram of the electromagnetic wave:
|
| E
|
\|/
k---
The direction of propagation is k, the electric field is i, and the magnetic field is j.
Learn more about magnetic with the given link,
https://brainly.in/question/1172708
#SPJ11
An airplane is flying horizontally at a speed of 247 m/s at an altitude of 395 m. Assume the ground is level. At what horizontal distance (km) from a target must the pilot drop a bomb to hit the target? Give his answer to a decimal place.
(Un avión vuela horizontalmente a una velocidad de 247 m/s a una altitud de 395 m. Supongamos que el suelo está nivelado. ¿A qué distancia horizontal (km) de un objetivo debe el piloto soltar una bomba para dar en el blanco? De su respuesta a una cifra decimal. )
Is all they give me
Given: Velocity of the airplane, v = 247 m/altitude, h = 395 mime of flight, t = ?Distance, d = We know that, the equation of motion for an object under the acceleration due to gravity is given as:-h = 1/2 gt² .....(i)where g is the acceleration due to gravity and t is the time of flight.
We know that the horizontal distance, d travelled by the airplane is given aside = vt ......(ii)Now, from equation (i) we can find time of flight t as: -h = 1/2 gt² => 2h/g = t² => t = sqrt(2h/g)
Now, we know that the acceleration due to gravity g is 9.8 m/s². On substituting the given values of h and g we get:-t = sqrt (2 x 395/9.8) => t = 8.019 snow, from equation.
To know more about acceleration visit:
https://brainly.com/question/2303856
#SPJ11
5. In order to get to its destination on time, a plane must reach a ground velocity of 580 km/h [E 42° N]. If the wind is coming from [E 8° S] with a velocity of 110 km/h, find the required air velocity. Round speed to 1 decimal place and measure of angle to the nearest degree. Include a diagram. (6 marks)
The ground velocity is given as 580 km/h [E 42° N], and the wind velocity is 110 km/h [E 8° S]. By vector subtraction, we can find the required air velocity.
To find the required air velocity, we need to subtract the wind velocity from the ground velocity.
First, we resolve the ground velocity into its eastward and northward components. Using trigonometry, we find that the eastward component is 580 km/h * cos(42°) and the northward component is 580 km/h * sin(42°).
Next, we resolve the wind velocity into its eastward and northward components. The wind is coming from [E 8° S], so the eastward component is 110 km/h * cos(8°) and the northward component is 110 km/h * sin(8°).
To find the required air velocity, we subtract the eastward and northward wind components from the corresponding ground velocity components. This gives us the eastward and northward components of the air velocity.
Finally, we combine the eastward and northward components of the air velocity using the Pythagorean theorem and find the magnitude of the air velocity.
The required air velocity is found to be approximately X km/h [Y°], where X is the magnitude rounded to 1 decimal place and Y is the angle rounded to the nearest degree.
Learn more about velocity here:
https://brainly.com/question/30559316
#SPJ11
If a moon on Jupiter has 1/8 the mass of the Earth and 1/2 the Earth's radius, what is the acceleration of gravity on the planet's surface? The acceleration of gravity on Earth's surface is 10 m/s 1. 3 m/s 2
2. 1 m/s 2
3. 5 m/s2
4. 4 m/s 2
5. 2 m/s 2
The acceleration of gravity on planet's surface is 2 m/s^2.
The acceleration of gravity on a planet is directly proportional to its mass and inversely proportional to the square of its radius.
So, if the moon on Jupiter has 1/8 the mass of the Earth and 1/2 the Earth's radius, then the acceleration of gravity on its surface will be 1/8 * (1/4)^2 = 2 m/s^2.
Here is the formula for calculating the acceleration of gravity:
g = GM/r^2
where:
* g is the acceleration of gravity
* G is the gravitational constant
* M is the mass of the planet
* r is the radius of the planet
we have:
g = 6.674 * 10^-11 m^3/kg*s^2 * (1/8) * (5.972 * 10^24 kg)/(2)^2 = 2 m/s^2
Learn more about gravity with the given link,
https://brainly.com/question/557206
#SPJ11
In a demolition derby, a car known as 'slippery Pete' has a mass of 1520 kg is moving east with a speed of 15.79 m/s. the driver small truck named 'vindicator" has a mass of 1350 kg is driving north at 17.4 m/s. when the two cars collide their bodies stick together.
what is the common speed of the cars after the collision?
a) 11.5 m/s
b) 11.7 m/s
c) 11.1 m/s
d) 11.3 m/s
Counties fairs and international events frequently feature demolition derbies.
Thus, The traditional demolition derby event features five or more drivers compete by purposefully smashing their automobiles into one another, though restrictions vary depending on the event. The winner is the last driver whose car is still in working order.
The United States is where demolition derbies first appeared, and other Western countries swiftly caught on. For instance, the country of Australia hosted its inaugural demolition derby in January 1963. Demolition derbies—also known as "destruction derbies"—are frequently held in the UK and other parts of Europe after a long day of banger racing.
Whiplash and other major injuries are uncommon in demolition derbies, although they do occur.
Thus, Counties fairs and international events frequently feature demolition derbies.
Learn more about Demolition, refer to the link:
https://brainly.com/question/15817190
#SPJ4
The correct option is (none of the above). The given masses of the cars involved in the collision are:
Mass of 'slippery Pete' = 1520 kg
Mass of 'vindicator' = 1350 kg
The given velocities of the cars involved in the collision are:
Velocity of 'slippery Pete' = 15.79 m/s
Velocity of 'vindicator' = 17.4 m/s
The initial momentum of the system is given by: P(initial) = m1v1 + m2v2
where m1 and v1 are the mass and velocity of car 1, and m2 and v2 are the mass and velocity of car 2. Substituting the given values, we get:
P(initial) = (1520 kg) (15.79 m/s) + (1350 kg) (17.4 m/s)P(initial) = 23969 + 23490P(initial) = 47459 kg m/s
Since the two cars stick together after the collision, they can be considered as a single body. The final momentum of the system is given by:P(final) = (m1 + m2) vf
where m1 and m2 are the masses of the two cars, and vf is the final velocity of the combined cars. Substituting the given values, we get:
P(final) = (1520 kg + 1350 kg) vfP(final) = 2870 kg vf
Since momentum is conserved in the system, we can equate P(initial) to P(final) and solve for vf. So:
P(initial) = P(final)47459 kg m/s = 2870 kg vf vf = 47459 kg m/s ÷ 2870 kg vf = 16.51 m/s
The common speed of the cars after the collision is 16.51 m/s, which when rounded off to one decimal place, is 16.5 m/s.Therefore, the correct option is (none of the above).
Learn more about collision from the given link
https://brainly.com/question/13138178
#SPJ11
1. Equilibrium of forces 2. Moment of a force 3. Supports and support reactions 4. Free body diagrams 5. Concentrated and distributed loads 6. Truss systems (axially loaded members) 7. Moment of inertia 8. Modulus of elasticity 9. Brittleness-ductility 10. Internal force diagrams (M-V diagrams) 11. Bending stress and section modulus 12. Shearing stress The topics listed above are not independent of each other. For stance, to understand brittleness and ductility, you should know about the modulus of elasticity. Or to stood bending stress, you should know the equilibrium of forces. You are asked to link all of them to create a whole picture. Explain each topic briefly. The explanation should be one paragraph. And there should be another paragraph to indicate the relationship between the topic that you explained and the other topics
The equilibrium of forces, moment of a force, supports and support reactions, and free body diagrams are all related concepts that are essential in analyzing and solving problems involving forces. Concentrated and distributed loads, truss systems, moment of inertia, modulus of elasticity, brittleness-ductility, internal force diagrams, and bending stress and section modulus are all related to the behavior of materials and structures under stress.
Equilibrium of forces: The equilibrium of forces states that the sum of all forces acting on an object is zero. This means that the forces on the object are balanced, and there is no acceleration in any direction.
Moment of a force: The moment of a force is the measure of its ability to rotate an object around an axis. It is a cross-product of the force and the perpendicular distance between the axis and the line of action of the force.
Supports and support reactions: Supports are structures used to hold objects in place, and support reactions are the forces generated at the supports in response to loads.
Free body diagrams: Free body diagrams are diagrams used to represent all the forces acting on an object. They are useful in analyzing and solving problems involving forces.
Concentrated and distributed loads: Concentrated loads are forces applied at a single point, while distributed loads are forces applied over a larger area.
Truss systems (axially loaded members): Truss systems are structures consisting of interconnected members that are subjected to axial forces. They are commonly used in bridges and other large structures.
Moment of inertia: The moment of inertia is a measure of an object's resistance to rotational motion.
Modulus of elasticity: The modulus of elasticity is a measure of a material's ability to withstand deformation under stress.
Brittleness-ductility: Brittleness and ductility are two properties of materials. Brittle materials tend to fracture when subjected to stress, while ductile materials tend to deform and bend.
Internal force diagrams (M-V diagrams): Internal force diagrams, also known as M-V diagrams, are diagrams used to represent the internal forces in a structure.
Bending stress and section modulus: Bending stress is a measure of the stress caused by the bending of an object, while the section modulus is a measure of the object's ability to resist bending stress.
Shearing stress: Shearing stress is a measure of the stress caused by forces applied in opposite directions parallel to a surface.
Relationship between topics: The equilibrium of forces, moment of a force, supports and support reactions, and free body diagrams are all related concepts that are essential in analyzing and solving problems involving forces. Concentrated and distributed loads, truss systems, moment of inertia, modulus of elasticity, brittleness-ductility, internal force diagrams, and bending stress and section modulus are all related to the behavior of materials and structures under stress.
#SPJ11
Let us know more about moment of force : https://brainly.com/question/28977824.
Q4: Let's combine our observations on the gravitational force, velocity and path and provide a full explanation on why the velocity and the path of the Earth around the Sun change drastically when we double the mass of the Sun but not when we double the mass of the Earth.
When we double the mass of the Sun, the increased gravitational force leads to a decrease in the Earth's acceleration, resulting in a slower velocity and a larger orbit. On the other hand, when we double the mass of the Earth, the gravitational force does not change significantly,
When considering the gravitational force, velocity, and path of the Earth around the Sun, we need to take into account the fundamental principles of gravitational interactions described by Newton's law of universal gravitation and the laws of motion.
Newton's Law of Universal Gravitation:
According to Newton's law of universal gravitation, the force of gravitational attraction between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers of mass.
F = G × (m1 × m2) / r²
Where:
F is the gravitational force between the two objects,
G is the gravitational constant,
m1 and m2 are the masses of the two objects, and
r is the distance between their centers of mass.
Laws of Motion:
The motion of an object is determined by Newton's laws of motion, which include the concepts of inertia, force, and acceleration.
Newton's First Law (Law of Inertia): An object at rest or in uniform motion will remain in that state unless acted upon by an external force.
Newton's Second Law: The force acting on an object is equal to the mass of the object multiplied by its acceleration.
Newton's Third Law: For every action, there is an equal and opposite reaction.
When we double the mass of the Sun:
By doubling the mass of the Sun, the gravitational force between the Earth and the Sun increases due to the direct proportionality between the force and the masses. The increased gravitational force leads to a higher acceleration experienced by the Earth.
According to Newton's second law (F = m ×a), for a given force, an object with a larger mass will experience a smaller acceleration. Therefore, with the doubled mass of the Sun, the Earth's acceleration decreases compared to the original scenario.
As a result, the Earth's velocity and path around the Sun will change drastically. The decreased acceleration causes the Earth to move at a slower velocity, resulting in a longer orbital period and a larger orbital radius. The Earth will take more time to complete one revolution around the Sun, and its path will be wider due to the decreased curvature of the orbit.
When we double the mass of the Earth:
When we double the mass of the Earth, the gravitational force between the Earth and the Sun does not change significantly. Although the gravitational force is affected by the mass of both objects, doubling the Earth's mass while keeping the Sun's mass constant does not lead to a substantial change in the gravitational force.
According to Newton's second law, the acceleration of an object is directly proportional to the applied force and inversely proportional to the mass. Since the gravitational force remains relatively constant, doubling the mass of the Earth leads to a decrease in the Earth's acceleration.
Consequently, the Earth's velocity and path around the Sun are not drastically affected by doubling its mass. The change in acceleration is relatively small, resulting in a slightly slower velocity and a slightly wider orbit, but these changes are not significant enough to cause a drastic alteration in the Earth's orbital dynamics.
In summary, when we double the mass of the Sun, the increased gravitational force leads to a decrease in the Earth's acceleration, resulting in a slower velocity and a larger orbit. On the other hand, when we double the mass of the Earth, the gravitational force does not change significantly, and the resulting small decrease in acceleration only causes a minor variation in the Earth's velocity and path.
To know more about Newton's law:
https://brainly.com/question/27573481
#SPJ4
A solid sphere is rolling on a surface as shown below. What is the minimum translational velocity v of the sphere at the bottom so that the sphere climbs up height h? Assume rolling without slipping. Rotational inertia of the sphere of mass M and radius R about it's axis of rotation is MR (6 pts) h o - - -
To determine the minimum translational velocity of a solid sphere required for it to climb up a height h, we need to consider the conservation of mechanical energy. Assuming the sphere is rolling without slipping, we can relate the translational and rotational kinetic energies to the potential energy at the bottom and top of the incline. By equating these energies, we can solve for the minimum translational velocity v.
When the solid sphere rolls without slipping, its total mechanical energy is conserved. At the bottom of the incline, the energy consists of the sphere's translational kinetic energy and rotational kinetic energy, given by (1/2)Mv^2 and (1/2)Iω^2, respectively, where M is the mass of the sphere, v is its translational velocity, I is its moment of inertia (MR^2), and ω is its angular velocity.
At the top of the incline, the energy is purely potential energy, given by Mgh, where g is the acceleration due to gravity and h is the height of the incline.
Since the sphere climbs up the incline, the potential energy at the top is greater than the potential energy at the bottom. Therefore, we can equate the energies:
(1/2)Mv^2 + (1/2)Iω^2 = Mgh
Since the sphere is rolling without slipping, the translational velocity v is related to the angular velocity ω by v = Rω, where R is the radius of the sphere.
By substituting the expression for I (MR^2) and rearranging the equation, we can solve for the minimum translational velocity v:
(1/2)Mv^2 + (1/2)(MR^2)(v/R)^2 = Mgh
Simplifying the equation gives:
(1/2)Mv^2 + (1/2)Mv^2 = Mgh
Mv^2 = 2Mgh
v^2 = 2gh
Taking the square root of both sides, we find:
v = √(2gh)
Therefore, the minimum translational velocity v of the sphere at the bottom of the incline is given by v = √(2gh).
To learn more about Translational velocity - brainly.com/question/30288355
#SPJ11
Consider the block-spring-surface system in part (B) of Example 8.6.(a) Using an energy approach, find the position x of the block at which its speed is a maximum.
The position x at which the speed of the block is a maximum is given by [tex]x = sqrt((mv^2) / k)[/tex].
To find the position x at which the speed of the block is a maximum in the block-spring-surface system, we can use the principle of conservation of mechanical energy. The total mechanical energy of the system is the sum of the kinetic energy (KE) and the potential energy (PE). At any position x, the kinetic energy is given by KE = [tex](1/2)mv^2[/tex], where m is the mass of the block and v is its velocity.
The potential energy is given by PE = (1/2[tex])kx^2[/tex], where k is the spring constant and x is the displacement of the block. Since mechanical energy is conserved, the sum of the initial kinetic energy and the initial potential energy is equal to the sum of the final kinetic energy and the final potential energy.
We can assume that at the equilibrium position, the block is momentarily at rest. Therefore, the initial kinetic energy is zero. Setting the initial mechanical energy to zero, we have:
[tex]0 + (1/2)kx^2 = (1/2)mv^2 + (1/2)kx^2[/tex]
Simplifying the equation, we have:
[tex](1/2)kx^2 = (1/2)mv^2[/tex]
Dividing both sides of the equation by (1/2)m, we get:
kx^2 = mv^2
Simplifying further, we have:
[tex]x^2 = (mv^2) / k[/tex]
Taking the square root of both sides of the equation, we find: x = sqrt[tex]((mv^2) / k)[/tex]
For more question speed
https://brainly.com/question/13943409
#SPJ8
using the data given, plus your pschyometric tables, determine the relative humidity (rh) and dew point (dp) at san
The relative humidity (RH) and dew point (DP) at San can be determined using the given data and psychometric tables.
To determine the relative humidity (RH) and dew point (DP), we need to analyze the temperature and the amount of moisture in the air. Relative humidity is a measure of how much moisture the air holds compared to the maximum amount it can hold at a given temperature, expressed as a percentage. Dew point is the temperature at which the air becomes saturated and condensation occurs.
To calculate RH, we compare the actual vapor pressure (e) to the saturation vapor pressure (es) at a specific temperature. The formula for RH is: RH = (e / es) * 100.
The dew point (DP) can be found by locating the intersection point of the temperature and relative humidity values on a psychometric chart or by using equations that involve the saturation vapor pressure and temperature.
Learn more about dew point
brainly.com/question/15313810
#SPJ11
A 3-kilogram mass hangs from a spring with a constant of 4 newtons per meter. The mass is set into motion by giving it a downward velocity of 3 meters per second. Damping in newtons equal to five times the velocity in meters per second acts on the mass during its motion. At time t = 6 seconds, it is struck upwards with a hammer imparting a unit impulse force. Set up the initial-value problem to compute the displacement of the mass as a function of time. Do not solve the equation.
The initial value problem to compute the displacement of the mass as a function of time is described in this question. Given, A 3-kilogram mass hangs from a spring with a constant of 4 newtons per meter. The mass is set into motion by giving it a downward velocity of 3 meters per second.
Damping in newtons equal to five times the velocity in meters per second acts on the mass during its motion. At time t = 6 seconds, it is struck upwards with a hammer imparting a unit impulse force. This can be stated mathematically as the following differential equation:ma + cv + ks = f(t)where m, c, k, and s represent the mass, damping, spring constant, and displacement, respectively. f(t) is the unit impulse force acting on the mass at time t = 6 seconds.
answer can be derived as, the displacement function of the mass as a function of time is:The differential equation of motion for the mass can be written as,ma + cv + ks = f(t)Here, m = 3 kg, c = 5v, k = 4 N/m.The unit impulse force acting on the mass at t = 6 seconds can be written as,f(t) = δ(t - 6) (unit impulse function)So, the differential equation of motion becomes,3(d²s/dt²) + 5(d/dt)s + 4s = δ(t - 6)
To know more about motion visit:
brainly.com/question/26083484
#SPJ11
Calculate the repulsion force between the two Arkon nuclei when the distance between them is 1x10-3μm (note that the Arkon nucleus contains 18 protons) (The electric charge of one electron is 1.6x10-19C) a. 7.4x10-8N
b. 2.7X10-30N c. 7.4X10-20N d. 7.4x10-14N
The repulsion force between the two Arkon nuclei when the distance between them is 1x10⁻³μm is approximately 7.4x10⁻¹⁴N. The correct option is d. 7.4x10⁻¹⁴N.
The formula for repulsion force between two Arkon nuclei when the distance between them is given by Coulomb's law. Coulomb's law states that the force between two point charges is directly proportional to the product of the charges and inversely proportional to the square of the distance between them. Mathematically, the law can be expressed as F=kq1q2/r²,
Where F is the force, q1 and q2 are the charges, r is the distance between the charges, and k is the Coulomb's constant.The electric charge of one electron is 1.6x10⁻¹⁹C.
Therefore, the charge of the Arkon nucleus with 18 protons = 18(1.6x10⁻¹⁹) C = 2.88x10⁻₈⁸ CThe force between the two Arkon nuclei can be calculated using the formula above.
F=kq1q2/r²
Substituting the values we have;F = (9x10⁹)(2.88x10⁻¹⁸ C)2/(1x10⁻³ m)2F ≈ 7.4x10⁻¹⁴ N. Therefore, the repulsion force between the two Arkon nuclei when the distance between them is 1x10-3μm is approximately 7.4x10⁻¹⁴N. The correct option is d. 7.4x10⁻¹⁴N.
Learn more about repulsion force:
https://brainly.com/question/28439369
#SPJ11
3. In a spring block system, a box is stretched on a horizontal, frictionless surface 20cm from equilibrium while the spring constant= 300N/m. The block is released at 0s. What is the KE (J) of the system when velocity of block is 1/3 of max value. Answer in J and in the hundredth place.Spring mass is small and bock mass unknown.
The kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.
In a spring-block system with a spring constant of 300 N/m, a box is initially stretched 20 cm from equilibrium on a horizontal, frictionless surface.
The box is released at t = 0 s. We are asked to find the kinetic energy (KE) of the system when the velocity of the block is one-third of its maximum value. The answer will be provided in joules (J) rounded to the hundredth place.
The potential energy stored in a spring-block system is given by the equation PE = (1/2)kx², where k is the spring constant and x is the displacement from equilibrium. In this case, the box is initially stretched 20 cm from equilibrium, so the potential energy at that point is PE = (1/2)(300 N/m)(0.20 m)² = 6 J.
When the block is released, the potential energy is converted into kinetic energy as the block moves towards equilibrium. At maximum displacement, all the potential energy is converted into kinetic energy. Therefore, the maximum potential energy of 6 J is equal to the maximum kinetic energy of the system.
The velocity of the block can be related to the kinetic energy using the equation KE = (1/2)mv², where m is the mass of the block and v is the velocity. Since the mass of the block is unknown, we cannot directly calculate the kinetic energy at one-third of the maximum velocity.
However, we can use the fact that the kinetic energy is proportional to the square of the velocity. When the velocity is one-third of the maximum value, the kinetic energy will be (1/9) of the maximum kinetic energy. Therefore, the kinetic energy at one-third of the maximum velocity is KE = (1/9)(6 J) = 0.67 J, rounded to the hundredth place.
Learn more about spring constant here: brainly.com/question/29975736
#SPJ11
A piece of aluminum is dropped vertically downward between the poles of an electromagnet. Does the magnetic field affect the velocity of the aluminum?
The magnetic field does not directly affect the velocity of the aluminum. When a piece of aluminum is dropped vertically downward between the poles of an electromagnet, the force of gravity is primarily responsible for its motion.
The magnetic field generated by the electromagnet exerts a force on the aluminum, but this force acts perpendicular to the direction of motion.
As a result, the magnetic force does not change the speed of the aluminum. However, it does cause the aluminum to experience a sideways deflection due to the interaction between the magnetic field and the induced currents in the aluminum. This phenomenon is known as magnetic induction or the Eddy current effect.
The deflection caused by the magnetic field depends on factors such as the strength of the magnetic field, the mass and shape of the aluminum, and the speed at which it is falling. The higher the strength of the magnetic field, the greater the deflection. Similarly, the larger the mass or shape of the aluminum, the smaller the deflection.
In summary, the magnetic field generated by the electromagnet does not directly affect the velocity of the aluminum, but it does cause a sideways deflection known as the Eddy current effect.
To know more about electromagnet visit:
https://brainly.com/question/31038220
#SPJ11
Following equation shows the wave traveling to the right. What would be the speed of the wave? y = 3.8 cm cos(( 16.9 rad/s) t - ( 34.2 m )) Express your answer in m/s
The speed of the wave described by the equation is approximately 0.494 m/s.
The equation for the wave y = 3.8 cm cos((16.9 rad/s) t - (34.2 m)) describes a wave in the form of y = A cos(kx - ωt), where A represents the amplitude, k is the wave number, x is the position, ω is the angular frequency, and t is the time.
Comparing the given equation to the standard form, we can determine that the angular frequency (ω) is equal to 16.9 rad/s.
The speed of the wave can be calculated using the relationship between the speed (v), wavelength (λ), and frequency (f), given by v = λf or v = ω/k.
In this case, we have the angular frequency (ω), but we need to determine the wave number (k). The wave number is related to the wavelength (λ) by the equation k = 2π/λ.
To find the wave number, we need to determine the wavelength. The wavelength (λ) is given by λ = 2π/k. From the given equation, we can see that the coefficient in front of "m" represents the wave number.
Therefore, k = 34.2 m⁻¹.
Now we can calculate the speed of the wave:
v = ω/k = (16.9 rad/s) / (34.2 m⁻¹)
v ≈ 0.494 m/s
Hence, the speed of the wave is approximately 0.494 m/s.
learn more about "wave ":- https://brainly.com/question/19036728
#SPJ11
Ohm's Law states that V=IR Which is the typical equation that we have in engineering However, in Drude's Model of electrical conductivity Ohm's law j = ne²T me E Derive Ohm's Law from the Drude's theory of electrical conductivity
In Drude's model of electrical conductivity, Ohm's Law is derived by considering the behavior of electrons in a conductor.
The equation j = ne²T me E represents the current density (j) in terms of various parameters.
Let's break down the equation and derive Ohm's Law:
j = ne²T me E
Where:
j = Current density
n = Electron number density
e = Electron charge
T = Relaxation time of electrons
me = Electron mass
E = Electric field
In Drude's model, the current density (j) is defined as the product of the electron charge (e), electron number density (n), relaxation time (T), electron mass (me), and the electric field (E).
To derive Ohm's Law, we need to relate current density (j) to the electric field (E) in a conductor. In the model, the current density is defined as the rate of flow of charge, given by:
j = -n e v
Where:
v = Average velocity of electrons
The average velocity of electrons can be related to the electric field (E) using the equation:
v = -eEτ / me
Substituting the expression for velocity (v) into the current density equation:
j = -n e (-eEτ / me)
Simplifying:
j = ne²τE / me
Comparing this equation with Ohm's Law (V = IR), we can equate the current density (j) to the current (I), the electric field (E) to the voltage (V), and the ratio ne²τ / me to the resistance (R):
I = j
V = E
R = me / (ne²τ)
Therefore, in Drude's model of electrical conductivity, Ohm's Law is derived as:
V = IR
Where the resistance (R) is given by R = me / (ne²τ).
To know more about conductor, refer here:
https://brainly.com/question/30047010#
#SPJ11
5
kg of liquid sulfer at 200°C is cooled down becoming a solid.
200,000 J were transferred from the sulfer to the environment
during this process. what is the final temp of sulfur?
To determine the final temperature of sulfur after it cools down from 200°C to a solid state, we need to consider the amount of energy transferred and the specific heat capacity of sulfur. Let's calculate the final temperature step by step:
Determine the heat transferred:
The amount of energy transferred from the sulfur to the environment is given as 200,000 J.
Calculate the specific heat capacity:
The specific heat capacity of solid sulfur is approximately 0.74 J/g°C.
Convert the mass of sulfur to grams:
Given that we have 5 kg of sulfur, we convert it to grams by multiplying by 1000. So, we have 5,000 grams of sulfur.
Calculate the heat absorbed by sulfur:
The heat absorbed by sulfur can be calculated using the formula: Q = m × c × ΔT, where Q is the heat, m is the mass, c is the specific heat capacity, and ΔT is the change in temperature.
Rearranging the formula, we have ΔT = Q / (m × c).
Substituting the values, we have: ΔT = 200,000 J / (5,000 g × 0.74 J/g°C).
Calculate the final temperature:
Using the value obtained for ΔT, we can calculate the final temperature by subtracting it from the initial temperature of 200°C.
Final temperature = 200°C - ΔT
By calculating the value of ΔT, we find that it is approximately 54.05°C.
Therefore, the final temperature of sulfur after cooling down and becoming a solid is approximately 200°C - 54.05°C = 145.95°C.
Learn more about heat capacity here,
https://brainly.com/question/27991746
#SPJ11
What is the smallest equivalent resistance when three resistors
(1.11 Ω, 2.47 Ω, and 4.03 Ω) are connected together?
The smallest equivalent resistance when three resistors (1.11 Ω, 2.47 Ω, and 4.03 Ω) are connected together is 1.11 Ω.
The equivalent resistance of a series circuit is the sum of the individual resistances. In this case, the equivalent resistance is:
R_equivalent = R_1 + R_2 + R_3 = 1.11 Ω + 2.47 Ω + 4.03 Ω = 7.61 Ω
However, the smallest equivalent resistance can be achieved by connecting the resistors in parallel. In parallel, the equivalent resistance is:
R_equivalent = 1 / (1/R_1 + 1/R_2 + 1/R_3) = 1 / (1/1.11 Ω + 1/2.47 Ω + 1/4.03 Ω) = 1.11 Ω
Therefore, the smallest equivalent resistance when three resistors (1.11 Ω, 2.47 Ω, and 4.03 Ω) are connected together is 1.11 Ω.
Learn more about resistance with the given link,
https://brainly.com/question/17563681
#SPJ11
An electron is located 2.5 m from the +ve plate of a giant capacitor, and is initially moving parallel to the plate at a speed of 3x106 m/s. The electric field strength between the plates is 40 N/C. Determine, after a time interval of 0.5 us: a. The distance of the electron from the +ve plate b. The distance along the plate that the electron has moved. The electron's speed c.
After a time interval of 0.5 μs, the electron's speed is approximately 3.35 × 10^6 m/s., To solve this problem, we can use the equations of motion for a charged particle in an electric field. Let's go step by step to find the required values:
Distance of electron from the +ve plate (initial) = 2.5 m
Initial speed of the electron = 3 × 10^6 m/s
Electric field strength between the plates = 40 N/C
Time interval = 0.5 μs (microseconds)
a. The distance of the electron from the +ve plate after a time interval of 0.5 μs:
To find this, we can use the equation of motion:
Δx = v₀t + 0.5at²
Where:
Δx is the displacement (change in distance)
v₀ is the initial velocity
t is the time interval
a is the acceleration
The acceleration of the electron due to the electric field can be found using the formula:
a = qE / m
Where:
q is the charge of the electron (1.6 × 10^(-19) C)
E is the electric field strength
m is the mass of the electron (9.11 × 10^(-31) kg)
Plugging in the values, we can calculate the acceleration:
a = (1.6 × 10^(-19) C * 40 N/C) / (9.11 × 10^(-31) kg) ≈ 7.01 × 10^11 m/s²
Now, substituting the values in the equation of motion:
Δx = (3 × 10^6 m/s * 0.5 μs) + 0.5 * (7.01 × 10^11 m/s²) * (0.5 μs)²
Calculating the above expression:
Δx ≈ 0.75 m
Therefore, after a time interval of 0.5 μs, the distance of the electron from the +ve plate is approximately 0.75 m.
b. The distance along the plate that the electron has moved:
Since the electron is initially moving parallel to the plate, the distance it moves along the plate is the same as the displacement Δx we just calculated. Therefore, the distance along the plate that the electron has moved is approximately 0.75 m.
c. The electron's speed after a time interval of 0.5 μs:
The speed of the electron can be found using the equation:
v = v₀ + at
Substituting the values:
v = (3 × 10^6 m/s) + (7.01 × 10^11 m/s²) * (0.5 μs)
Calculating the above expression:
v ≈ 3 × 10^6 m/s + 3.51 × 10^5 m/s ≈ 3.35 × 10^6 m/s
Therefore, after a time interval of 0.5 μs, the electron's speed is approximately 3.35 × 10^6 m/s.
Learn more about acceleration
https://brainly.com/question/2303856
#SPJ11
An electron that has a velocity with x component 2.4 x 10^6 m/s and y component 3.5 × 10^6 m/s moves through a uniform magnetic field with x component 0.040 T and y component -0.14 T. (a) Find the magnitude
of the magnetic force on the electron. (b) Repeat your calculation for a proton having
the same velocity.
The magnitude of the magnetic force on both the electron and the proton is approximately 1.07 × 10^(-14) N.
(a) To find the magnitude of the magnetic force on the electron, we can use the formula for the magnetic force:
F = |q| * |v| * |B| * sin(theta)
where
|q| is the charge of the particle,|v| is the magnitude of the velocity of the particle,|B| is the magnitude of the magnetic field,and theta is the angle between the velocity vector and the magnetic field vector.For an electron, the charge (|q|) is -1.6 × 10⁻¹⁹ C.
Given:
x component of velocity (v_x) = 2.4 × 10⁶ m/sy component of velocity (v_y) = 3.5 × 10⁶ m/sx component of magnetic field (B_x) = 0.040 Ty component of magnetic field (B_y) = -0.14 TTo find the angle theta, we can use the tangent inverse function:
theta = atan(v_y / v_x)
Substituting the given values:
theta = atan(3.5 × 10⁶ m/s / 2.4 × 10⁶m/s)
Now we can calculate the magnitude of the magnetic force:
F = |-1.6 × 10⁻¹⁹ C| × sqrt((2.4 × 10⁶ m/s)² + (3.5 × 10⁶ m/s)²) × sqrt((0.040 T)² + (-0.14 T)²) × sin(theta)
After performing the calculations, you will obtain the magnitude of the magnetic force on the electron.
(b) To repeat the calculation for a proton, the only difference is the charge of the particle. For a proton, the charge (|q|) is +1.6 × 10⁻¹⁹ C. Using the same formula as above, you can calculate the magnitude of the magnetic force on the proton.
To learn more about magnetic force, Visit:
https://brainly.com/question/2279150
#SPJ11
A resistance heater of 0.5 kg mass and specific heat capacity 0.74 kJ/kg K, is immersed in a mass of oil of 2.5 kg mass and specific heat capacity 2.0 kJ/kg K. Both the heater and the oil are initially at 20 C. For 1 min an electric current of 2.0 A provided by a 220 V source flows through the heater. Assuming that thermal equilibrium is reached quickly, the reading of a thermometer placed in the oil bath reads 22 C. Electrical work in watts, Welectric = V*I, with V in volts and I in ampere. Determine:
(a) The heat transferred from the heater to the oil, in kJ.
b) The heat transferred from the oil to the environment, in kJ
a) the heat transferred from the heater to the oil is 10 kJ.
b) the heat transferred from the oil to the environment is 10 kJ.
a) The heat transferred from the heater to the oil, in kJ:
Since the heater is in thermal equilibrium with the oil, the heat transferred from the heater is equal to the heat gained by the oil.
Let's start by calculating the electrical energy input to the heater.
Electrical work done, W
electric = V * I = 220 V * 2.0 A = 440 W
Power input into the heater, P = W
electric = 440 W
Time, t = 1 minute = 60 seconds
Energy input into the heater, E = P * t = 440 W * 60 s = 26400 J = 26.4 kJ
The heat gained by the oil is given by:Q = mcΔT
where m is the mass of oil, c is the specific heat capacity of oil, and ΔT is the change in temperature of oil.
Substituting the given values, we get:Q = (2.5 kg) * (2.0 kJ/kg K) * (22 - 20) K = 10 kJ
b) The heat transferred from the oil to the environment, in kJ:
Since the heater and the oil are in thermal equilibrium with each other, their temperatures are equal. Therefore, the final temperature of the heater is 22°C
.The heat lost by the oil is given by:
Q = mcΔT
where m is the mass of oil, c is the specific heat capacity of oil, and ΔT is the change in temperature of oil.
Substituting the given values, we get:
Q = (2.5 kg) * (2.0 kJ/kg K) * (22 - 20) K = 10 kJ
Learn more about electric heater at
https://brainly.com/question/14821267
#SPJ11