A 2 kg ball is thrown upward with an initial speed of 12 m/s. After rising 3.0 meters, it is moving upwards at 5 m/s. The average force of air resistance on the ball is 32.3 N.
When an object is thrown upward, it experiences air resistance that opposes its motion. In this scenario, a 2 kg ball is thrown upward with an initial velocity of 12 m/s.
After rising a vertical distance of 3.0 meters, its velocity reduces to 5 m/s. We need to find the average force the ball experiences due to air resistance during this time.
To solve this problem, we can use the work-energy principle which states that the net work done on an object is equal to its change in kinetic energy. Since the ball is moving upward, the net work done on the ball is the work done by gravity and air resistance.
We can assume that the work done by gravity is negligible because the vertical displacement of the ball is small. Therefore, the work done by air resistance is equal to the change in the ball's kinetic energy.
The change in kinetic energy of the ball can be calculated using the equation: [tex]\Delta KE = 1/2 \times m \times (vf^2 - vi^2)[/tex], where m is the mass of the ball, vi is the initial velocity, and vf is the final velocity. Substituting the given values, we get [tex]\Delta KE = 1/2 \times 2 kg \times (5 \;m/s)^2 - (12 \;m/s)^2) = -97 J[/tex].
Since the change in kinetic energy is negative, the work done by air resistance is negative. Therefore, the average force the ball experiences due to air resistance is [tex]F = -\Delta KE/d = -(-97 J)/3 m = 32.3 N[/tex].
In summary, we can calculate the average force the ball experiences from air resistance during its upward journey using the work-energy principle. The force is negative as it opposes the motion of the ball, and its magnitude is 32.3 N.
To know more about force refer here:
https://brainly.com/question/26115859#
#SPJ11
A box is suspended by a rope. when a horizontal force of 100 n acts on the box, it moves to the side until the rope is at an angle of 20 degree with the vertical. the weight of the box is.
The weight of the box is approximately 273.45 N.
To determine the weight of the box, we will consider the equilibrium of forces acting on the box when it is displaced to its final position. At this point, there are three forces acting on the box: the weight (W), tension in the rope (T), and the horizontal force (F = 100 N). These forces can be represented using vectors and trigonometry.
Since the box is in equilibrium, the net force acting on it is zero. Therefore, the horizontal and vertical components of the tension in the rope must balance the horizontal force and the weight of the box, respectively. Using the angle provided (20 degrees), we can calculate the components of the tension in the rope as follows:
Horizontal component: T_horizontal = T * sin(20°)
Vertical component: T_vertical = T * cos(20°)
To balance the forces, we have:
T_horizontal = F => T * sin(20°) = 100 N
T_vertical = W => T * cos(20°) = W
Now, divide the first equation by the second equation:
(T * sin(20°)) / (T * cos(20°)) = (100 N) / W
Simplify the equation using the trigonometric identity tan(θ) = sin(θ) / cos(θ):
tan(20°) = (100 N) / W
Now, solve for W:
W = (100 N) / tan(20°)
W ≈ 273.45 N
The weight of the box is approximately 273.45 N.
For more about weight:
https://brainly.com/question/23312072
#SPJ11
A ball is rolling along the ground. The instantaneous velocity at this moment is 4. 81 m/s and it has 788. 1J of kinetic energy. What is the mass of the ball?
The mass of the ball is approximately 68.1 kg. To find this, we used the kinetic energy formula, substituted the given values, and solved for the mass.
We are given the instantaneous velocity (v) of the ball as 4.81 m/s and its kinetic energy (KE) as 788.1 J. Our goal is to find the mass (m) of the ball.
1. We'll use the formula for kinetic energy: KE = 0.5 * m * v^2.
2. Substitute the given values: 788.1 J = 0.5 * m * (4.81 m/s)^2.
3. Calculate the square of the velocity: (4.81 m/s)^2 = 23.1361 m^2/s^2.
4. Substitute the square of the velocity into the equation: 788.1 J = 0.5 * m * 23.1361 m^2/s^2.
5. Multiply both sides of the equation by 2 to eliminate the 0.5: 1576.2 J = m * 23.1361 m^2/s^2.
6. Divide both sides of the equation by 23.1361 m^2/s^2 to isolate the mass (m): m = 1576.2 J / 23.1361 m^2/s^2.
7. Perform the division to get the mass: m ≈ 68.1 kg.
For more about mass:
https://brainly.com/question/19694949
#SPJ11
What type of radioactive decay is this process? An example of? 14 6c 1417n +0 negative one negative plus the v
The type of radioactive decay of carbon to nitrogen is beta-minus decay.
A kind of radioactive decay called beta-minus involves the emission of electrons and antineutrinos from the nucleus as well as the transformation of neutrons into protons, which raises the atomic number of the atom..
This increases the atomic number of the nucleus by one and leaves the mass number unchanged. The question mentions the decay of carbon-14 (C) to nitrogen-14 (N) as an example of beta-minus decay in the given reaction.
To know more about beta-minus decay, visit,
https://brainly.com/question/12534359
SPJ1
Complete question - What type of radioactive decay is this process? An example of?
¹⁴C → ¹⁴N + e⁻ + v
If all of the gravitation potential energy of the apple on the tree is transferred to the spring when it is compressed. What is the spring constant of this spring?
Answer:
360 N/m
Explanation:
You have just lifted up a 10 lb weight by abducting your arm out to the side at your shoulder. You continue to hold the weight in that position for a few seconds. During this time the length of your muscle remains the same, while the muscle continues to vary the amount of tension or force needed to keep the weight from falling down. What type of contraction is going on while you are holding this weight in this position
The type of muscle contraction that occurs when holding a weight in a static position is called an isometric contraction. In an isometric contraction, the muscle generates force without changing length.
This is different from concentric and eccentric contractions, which involve muscle shortening and lengthening, respectively. During an isometric contraction, the muscle fibers generate tension, but the force generated is equal and opposite to the external force, resulting in no net movement.
In the case of holding a weight, the force generated by the muscle is equal to the force of gravity pulling the weight downwards. By varying the tension generated by the muscle, the individual can hold the weight in a static position against the force of gravity.
Isometric contractions can be useful for building strength and endurance, and are often used in exercises such as planks and wall sits. However, they can also lead to increased blood pressure and should be avoided in individuals with hypertension.
In summary, holding a weight in a static position involves an isometric contraction, in which the muscle generates tension without changing length. This type of contraction can be useful for building strength and endurance, but may also have health considerations.
To know more about isometric contraction refer here:
https://brainly.com/question/31416732#
#SPJ11
The pressure in the cylinder of amotor cycle engine is 600000Pa. This acts on apiston with an area of o. Oo3m2. What is the force on the piston in newton?
The pressure in the cylinder of amotor cycle engine is 600000Pa. This acts on apiston with an area of o. Oo3m2. The force on the piston in newtons is 1800N
To find the force on the piston in newtons, we need to use the formula F = PA, where F is the force, P is the pressure, and A is the area.
Given that the pressure in the cylinder of the motor cycle engine is 600000Pa and the piston has an area of 0.003m2, we can plug these values into the formula:
F = 600000Pa x 0.003m2
F = 1800N
. This means that the pressure in the cylinder is able to exert a force of 1800N on the piston, which in turn helps to move the engine and generate power for the motor cycle.
It is important to note that the pressure and force involved in the functioning of a motor cycle engine are critical to its performance and efficiency. Proper maintenance and tuning of the engine are essential to ensure that the pressure and force are optimized for maximum power and durability.
To learn more about : force
https://brainly.com/question/12785175
#SPJ11
A 3. 2-kg point-mass travels around a 0. 45-m radius circle with an angular velocity of 11. 0 rad/s. What is the magnitude of its angular momentum about the center of the circle?
The magnitude of the angular momentum of the point mass about the center of the circle is [tex]$7.1676\ \text{kg}\ \text{m}^2/\text{s}$[/tex].
The angular momentum of a rotating object is defined as the product of its moment of inertia and its angular velocity with respect to an axis of rotation. In this case, we have a point mass of 3.2 kg traveling around a circle of radius 0.45 m with an angular velocity of 11.0 rad/s.
To calculate the angular momentum of the point mass about the center of the circle, we first need to find its moment of inertia. For a point-mass rotating around an axis passing through its center of mass, the moment of inertia is simply the mass times the square of the radius, i.e., [tex]I = mr^2[/tex]. Thus, the moment of inertia of our point mass is:
[tex]I = (3.2 kg) \times (0.45 m)^2 = 0.6516 kg m^2[/tex]
Now, we can calculate the angular momentum L of the point-mass about the center of the circle using the formula:
L = I x w
where w is the angular velocity of the point mass. Plugging in the values we have:
[tex]$L = (0.6516 \text{ kg m}^2) \times (11.0 \text{ rad/s}) = 7.1676 \text{ kg m}^2/\text{s}$[/tex]
This value indicates the amount of rotational motion the point mass possesses, and it is conserved as long as there are no external torques acting on the system.
To learn more about magnitude
https://brainly.com/question/14452091
#SPJ4
The orbit of the moon about the earth is approximately circular, with mean radius of 3,84. 108m. It takes 27,3 days for the moon to complete one revolution about the earth. Find: a) the mean orbital speed of the moon; b) its centripetal acceleration
The centripetal acceleration of the moon is approximately 0.0027 m/s².
To find the mean orbital speed of the moon and its centripetal acceleration, we'll use the given information of the moon's orbit radius and revolution time.
a) To find the mean orbital speed (v) of the moon, we'll use the formula v = 2 * π * r / T, where r is the orbit radius (3.84 x 10^8 m) and T is the revolution time (27.3 days, converted to seconds).
v = 2 * π * (3.84 x 10^8 m) / (27.3 days * 24 hours/day * 3600 s/hour) ≈ 1022 m/s
The mean orbital speed of the moon is approximately 1022 m/s.
b) To find the centripetal acceleration (a_c) of the moon, we'll use the formula a_c = v² / r.
a_c = (1022 m/s)² / (3.84 x 10⁸ m) ≈ 0.0027 m/s²
The centripetal acceleration of the moon is approximately 0.0027 m/s².
To know more about centripetal acceleration, refer here:
https://brainly.com/question/79801#
#SPJ11
a guitar string of length 30 cm and stretched under a tension of 78 n has a certain fundamental frequency. how long would a pipe, open at both ends, need to be to play the same fundamental frequency? a 15-cm long piece of the guitar string has a mass of 0.4 g. the speed of sound in air is 340 m/s.
The length of the pipe needed to play the same fundamental frequency as the guitar string is 86.7 cm.
To find the length of the pipe needed to play the same fundamental frequency as the guitar string, we need to use the formula:
f = (n/2L) * v
Where f is the fundamental frequency, L is the length of the pipe, n is the harmonic number (for the fundamental frequency, n=1), and v is the speed of sound in air.
First, we need to find the fundamental frequency of the guitar string. We can use the formula:
f = (1/2L) * √(T/m)
Where T is the tension in the string, m is the mass per unit length of the string, and L is the length of the string.
Using the given values, we can calculate the fundamental frequency of the guitar string as:
f = (1/2*0.3) * √(78/0.004) = 196.14 Hz
Now we can use this frequency and the speed of sound in air to find the length of the pipe needed to play the same frequency:
196.14 = (1/2L) * 340
Solving for L, we get:
L = (1/2) * 340 / 196.14 = 0.867 meters or 86.7 cm
To learn more about string click on,
https://brainly.com/question/29360985
#SPJ4
state types reflection of light
Answer: Specular and Diffuse reflection
Explanation: I'm assuming this is what you need. Specular is light reflected from a smooth surface at an angle. Diffuse is related to rough surfaces, generally, light is reflected in all directions with diffuse reflection
Electrons got ejected out as if they were ping pong balls by the light particle (photon). Electrons were not moving initially. Then, it was moving later because of the light.
a. What is the momentum of the electron initially (p=mv) Hint: Is it moving initially?
b. Does the electron have momentum after being hit by the light particle? Hint: is it moving after being hit?
c. What can you infer about light particles in momentum? Hint: where is the electron getting its velocity from?
Electron initially had zero momentum. After colliding with a photon, it gained momentum due to the transfer of momentum. This demonstrates the wave-particle duality of light.
a. Yes, the electron has momentum after being hit by the light particle. This is because momentum is defined as the product of mass and velocity, and even though electrons are very small in mass, they still have mass and can therefore have momentum. In this case, the photon (light particle) transferred some of its momentum to the electron, causing it to move.
b. Yes, the electron has momentum and is moving after being hit by the light particle. As mentioned in the previous paragraph, the photon transferred some of its momentum to the electron, causing it to move.
c. Based on the fact that the electron received its velocity from the photon, we can infer that light particles also have momentum. In fact, it was later discovered that photons have both momentum and energy, even though they have no mass. This is because photons are made up of electromagnetic waves, which have both electric and magnetic fields that can transfer energy and momentum.
So, when a photon hits an electron, it can transfer some of its momentum to the electron and cause it to move. This concept is known as the wave-particle duality of light, where light can behave as both a wave and a particle.
Know more about momentum click here:
https://brainly.com/question/24030570
#SPJ11
The maximum number of tension forces that can act on an object is
a) there is no limit
b) 2
c) more than 2
d) 1
The correct answer is d) 1.
An object can only have one maximum tension force acting on it at a given time. Tension is a force that occurs when a material is pulled in opposite directions, creating a stretching or elongating effect. If there were multiple tension forces acting on an object, it would create a net force and cause the object to move in different directions, which is not physically possible. Therefore, an object can only have one maximum tension force acting on it.
Visit https://brainly.com/question/30470948 to learn more about Tension
#SPJ11
Which force acts on falling objects to oppose gravity?
The force that acts on falling objects to oppose gravity is air resistance, also known as drag.
Air resistance is a type of frictional force that occurs when an object moves through a fluid, such as air or water. As a falling object accelerates due to gravity, it also encounters resistance from the air molecules it pushes against. This resistance increases with the object's speed, making it harder for the object to continue accelerating at the same rate.
Air resistance plays a crucial role in determining the terminal velocity of a falling object. Terminal velocity is the constant speed that an object reaches when the downward force of gravity is exactly balanced by the upward force of air resistance. At this point, the object no longer accelerates and maintains a steady speed until it comes into contact with the ground or another surface.
Various factors affect the air resistance acting on a falling object, including the object's size, shape, and surface area. Objects with larger surface areas and irregular shapes experience more air resistance, slowing their descent compared to smaller, more streamlined objects. In some cases, air resistance can be minimized by designing objects with specific shapes, such as the aerodynamic design of airplanes, cars, and sports equipment.
In summary, air resistance is the force that opposes gravity on falling objects, influencing their terminal velocity and overall motion through the air. This force is affected by factors such as the object's size, shape, and surface area, and plays a critical role in various applications, including engineering and sports.
To know more about drag, refer here:
https://brainly.com/question/12774964#
#SPJ11
Ferris wheel has a diameter of 76 m and completed one revolution every 20 min.
a)Calculate the tangential speed the car
b) Calculate the magnitude to the centripetal acceleration of one of the car
The tangential speed of a point on the Ferris wheel is approximately 2.01 m/s. the magnitude of the centripetal acceleration of a point on the Ferris wheel is approximately 0.106 m/s².
The tangential speed of a point on the Ferris wheel is given by the formula:
v = (2πr) / T
where v is the tangential speed, r is the radius of the Ferris wheel (half the diameter), and T is the time taken to complete one revolution.
In this case, the diameter of the Ferris wheel is 76 m, so its radius is 38 m. It completes one revolution every 20 min, so the time taken is T = 20 min = 1200 s. Substituting these values in the formula, we get:
v = (2π × 38 m) / 1200 s
≈ 2.01 m/s
The centripetal acceleration of a point on the Ferris wheel is given by the formula:
a = v² / r
where a is the magnitude of the centripetal acceleration, v is the tangential speed, and r is the radius of the Ferris wheel.
In this case, we have already calculated the tangential speed to be approximately 2.01 m/s, and the radius of the Ferris wheel is 38 m. Substituting these values in the formula, we get:
a = (2.01 m/s)² / 38 m
≈ 0.106 m/s²
To know more about Ferris wheel, here
https://brainly.com/question/16396069
#SPJ4
6 →
If an object goes from 30 to 25 degrees Celcius, what is the change in Temperature?
7
How much energy is needed to heat 35 g of gold from 10 to 50 Degrees celcius?
129
40
1806
0. 35
8
Specific heat is.
a
6. The change in temperature is -5°C, which indicates a decrease of 5°C. and 7. The energy needed is 180.6 Joules.
6. To find the change in temperature, you need to subtract the final temperature from the initial temperature:
Change in temperature = Final temperature - Initial temperature
Change in temperature = 25°C - 30°C
Change in temperature = -5°C
The change in temperature is -5°C, which indicates a decrease of 5°C.
7. To calculate the energy needed to heat 35g of gold from 10 to 50°C, you need to use the formula:
Energy = mass × specific heat × change in temperature
The specific heat of gold is 0.129 J/(g·°C). First, find the change in temperature:
Change in temperature = Final temperature - Initial temperature
Change in temperature = 50°C - 10°C
Change in temperature = 40°C
Now, plug in the values into the formula:
Energy = (35g) × (0.129 J/(g·°C)) × (40°C)
Energy = 180.6 J
The energy needed is 180.6 Joules.
For more about energy:
https://brainly.com/question/1932868
#SPJ11
The shortest plane mirror in which you can see your entire image is:.
The shortest plane mirror in which you can see your entire image is typically half your body's height, assuming that the mirror is positioned vertically and you are standing in front of it.
When you stand in front of a plane mirror, the mirror reflects the light rays that hit it, creating a virtual image. The virtual image appears to be behind the mirror and is the same size as the object being reflected.
To see your entire image in the mirror, you need to position yourself in such a way that the top of your head and the bottom of your feet are both within the field of view of the mirror. Therefore, the height of the mirror should be at least equal to your body height.
However, if you position the mirror at an angle or tilt it, you may be able to see your entire image in a mirror that is shorter than half your body height. The angle and orientation of the mirror will affect the field of view and the visibility of your image.
It's important to note that this measurement assumes an average human body height and a mirror that is positioned vertically. Individual variations in height and the specific arrangement of the mirror can affect the minimum height of the mirror needed to see your entire image.
To know more about virtual image refer here
https://brainly.com/question/13197137#
#SPJ11
A vertical spring with a force constant of 5.2
N/m has a relaxed length of 2.58 m. When
a mass is attached to the end of the spring
and allowed to come to rest, the length of the
spring is 3.50 m.
Calculate the elastic potential energy
stored in the spring.
Answer:To calculate the elastic potential energy stored in the spring, we can use the formula:
Elastic potential energy = (1/2) * k * Δx^2
where k is the force constant of the spring and Δx is the change in length from the relaxed length.
First, we need to calculate Δx:
Δx = 3.50 m - 2.58 m
Δx = 0.92 m
Now, we can calculate the elastic potential energy:
Elastic potential energy = (1/2) * k * Δx^2
Elastic potential energy = (1/2) * 5.2 N/m * (0.92 m)^2
Elastic potential energy = 2.17 J
Therefore, the elastic potential energy stored in the spring is 2.17 J.
Explanation:
A 0. 050kg metal bolt is heated to an unknown initial temperature. It is then dropped into a calorimeter containing 0. 15kg of water with an initial temperature of 21C. The bolt and the water then reach a final temperature of 25C. If the metal has a specific heat capcity of 899J/kgxC, find the initial temperature of the metal
The initial temperature of the metal bolt was 29.8°C.
To find the initial temperature of the metal bolt, we can use the principle of conservation of energy, which states that the total energy of a closed system remains constant.
The energy lost by the metal bolt when it cools down to its final temperature is gained by the water in the calorimeter.
First, let's find the heat gained by the water in the calorimeter:
Qwater = mwater * cwater * ΔTwater
where mwater is the mass of water, cwater is the specific heat capacity of water (which is 4186 J/kg°C), and ΔTwater is the change in temperature of water (final temperature - initial temperature):
Qwater = 0.15 kg * 4186 J/kg°C * (25°C - 21°C)
Qwater = 2511.6 J
Next, let's find the heat lost by the metal bolt:
Qmetal = mm * cmetal * ΔTmetal
where mm is the mass of the metal bolt, cmetal is the specific heat capacity of the metal (which is given as 899 J/kg°C), and ΔTmetal is the change in temperature of the metal (initial temperature - final temperature):
Qmetal = 0.050 kg * 899 J/kg°C * (Ti - 25°C)
where Ti is the initial temperature of the metal bolt.
Since the system is closed, the heat lost by the metal bolt (Qmetal) is equal to the heat gained by the water (Qwater):
Qmetal = Qwater
0.050 kg * 899 J/kg°C * (Ti - 25°C) = 2511.6 J
Solving for Ti, we get:
Ti = (2511.6 J / (0.050 kg * 899 J/kg°C)) + 25°C
Ti = 29.8°C
To know more about conservation of energy refer here
https://brainly.com/question/13949051#
#SPJ11
a car goes from 16 m/s to 2m/s in 3.5s. what is the cars acceleration
Ans. 4 m/s2
we know that,
acceleration = change in velocity/ total time
putting values we get,
16-2/3.5
= 14/3.5
=4
thus, the car's acceleration = 4 m/s2
There are good bacteria that live in our gut. they benefit from us because they feed on what we eat, and we benefit from them because they keep harmful bacteria away. in one or two sentences, define this relationship and describe what could happen if we took too many bacteria- killing antibotics without the advice of a physician.
help please
The relationship between good bacteria and humans is symbiotic, where both the bacteria and humans benefit from each other.
The relationship between our gut and the good bacteria living in it is called a mutualistic relationship. This means that both parties benefit from the relationship. The good bacteria feed on what we eat and keep harmful bacteria away, while we benefit from their presence in our gut by having a healthy digestive system.
If we took too many bacteria-killing antibiotics without the advice of a physician, it could disrupt the balance of good bacteria in our gut, leading to an overgrowth of harmful bacteria, causing various digestive problems such as diarrhea, abdominal pain, and inflammation. It is essential to take antibiotics only when prescribed by a physician and follow the recommended dose to avoid such adverse effects on our gut microbiota.
To know more about the Bacteria, here
https://brainly.com/question/7989160
#SPJ4
there are three identical lamps, a1, a2, and a3. in a circuit, a1 and a2 are connected in parallel, and a3 is connected in series to the parallel combination (a1 and a2). if lamp a1 turns off, what happens to the brightness of a2 and a3?
If lamp A1 turns off, the brightness of A2 will not be affected, as it is still connected in parallel to the power source.
The brightness of A3 will decrease, since it is connected in series to the parallel combination of A1 and A2. In a series circuit, the current flowing through each element is the same, so if one element fails, the current through the remaining elements will decrease, causing a decrease in brightness.
Consider the analogy of a water pipe. The parallel connection of A1 and A2 is like two pipes connected to the same source, allowing the water (or current) to flow equally through both. The series connection of A3 to A1 and A2 is like a pipe connected in series to two others. If one of the pipes fails, the water flow through the other two will decrease, resulting in less water coming out of the end of the series pipe. Similarly, the brightness of A3 will decrease if A1 turns off, as the current flowing through it will decrease.
To know more about the Identical lamps, here
https://brainly.com/question/29018302
#SPJ4
If this metal is replaced with a metal having a higher work function, which light would have the best chance of releasing electrons from the metal?.
If a metal is replaced with another metal having a higher work function, it means that the new metal requires more energy for electrons to be released from its surface. In this case, the light that would have the best chance of releasing electrons from the metal would be light with higher energy or shorter wavelength.
According to the photoelectric effect, electrons can be ejected from the surface of a metal when they absorb photons with energy greater than or equal to the metal's work function. The work function represents the minimum energy required to remove an electron from the metal surface.
Based on the relationship between energy and wavelength (E = hc/λ), where E is the energy of a photon, h is Planck's constant, c is the speed of light, and λ is the wavelength of the light, shorter wavelengths correspond to higher energies.
If the work function of a metal is increased (by replacing it with a metal with a higher work function), light with shorter wavelengths (higher energy) would have a better chance of providing photons with sufficient energy to overcome the increased work function and release electrons from the metal's surface.
To know more about work function refer here
https://brainly.com/question/32911255#
#SPJ11
A kettle is made from metal. If the live wire inside this kettle were to come loose and touch the metal casing, you could get an __________ __________ if you then touched the kettle. What two words complete this sentence?
Answer: electric shock
Explanation: cuz metal is conductor of electricity
what latitude would you have to travel to see the noontime sun at your zenith on october 3rd (practice with other dates)? could you explain your answer? earth's axis of rotation is titled by 23.5 degrees.
You would have to travel to a latitude of approximately 80.5 degrees north of the equator (or south, depending on your hemisphere) to see the noontime sun at your zenith on October 3rd.
To see the noontime sun at your zenith on October 3rd (or any other date), you would have to be located at a latitude equal to the complement of the Sun's declination on that date. The declination is the angle between the plane of the Earth's equator and the line connecting the Earth to the Sun, and it varies throughout the year due to the tilt of the Earth's axis of rotation.
On October 3rd, the Sun's declination is approximately 9.5 degrees south of the equator. To find the latitude at which the noontime Sun would be directly overhead, we take the complement of this declination, which is:
90 degrees - 9.5 degrees = 80.5 degrees
To know more about latitude, here
brainly.com/question/28543947
#SPJ4
It is best to say that efficient plumbing _______.
Efficient plumbing encompasses various features, technologies, and practices that contribute to water conservation, cost savings, environmental sustainability, and overall system performance.
Certainly! Here are some additional ways to describe efficient plumbing:
1. Saves water and energy: Efficient plumbing systems are designed to minimize water wastage and reduce energy consumption, leading to cost savings and environmental benefits.
2. Enhances water conservation: Efficient plumbing promotes water conservation by utilizing technologies such as low-flow fixtures, dual-flush toilets, and water-efficient appliances.
3. Reduces water bills: By reducing water consumption, efficient plumbing can lead to lower water bills for homeowners and businesses.
4. Prevents leaks and water damage: Properly installed and maintained efficient plumbing systems help prevent leaks and water damage, preserving the integrity of the building and reducing the risk of costly repairs.
5. Improves overall system performance: Efficient plumbing systems are designed to optimize water distribution and drainage, ensuring reliable and consistent performance throughout the building.
6. Supports sustainable practices: Efficient plumbing aligns with sustainable practices by reducing water usage and minimizing the environmental impact associated with water supply and wastewater treatment.
7. Enhances occupant comfort and convenience: Efficient plumbing provides reliable and consistent water supply, temperature control, and proper drainage, enhancing the comfort and convenience of occupants.
8. Meets regulatory requirements: Many building codes and regulations require the installation of efficient plumbing systems to meet water efficiency standards and promote sustainable practices.
To know more about energy refer here
https://brainly.com/question/1932868#
#SPJ11
Artificial satellites are put into space for scientific research.
The satellites are carried into space by rockets.
(a) A rocket accelerates steadily from rest and reaches 8000 m/s after travelling 1680 000 m.
Calculate the time, in minutes, it takes the rocket to reach this speed.
It takes the rocket approximately 28,011.2 minutes, or about 19.4 days, to reach the speed of 8000 m/s.
The time it takes for the rocket to reach 8000 m/s can be found using the equation:
v = at
where v is the final velocity, a is the acceleration, and t is the time taken. We can rearrange the equation to solve for t:
t = v / a
The acceleration of the rocket can be found by dividing the change in velocity by the distance traveled:
a = (8000 m/s - 0 m/s) / 1680000 m
a = 0.00476 m/s²
Substituting this into the equation for time, we get:
t = 8000 m/s / 0.00476 m/s²
t = 1,680,672 seconds
Converting this to minutes, we get:
t = 28,011.2 minutes
As a result, it takes the rocket roughly 28,011.2 minutes, or nearly 19.4 days, to achieve 8000 m/s.
To know more about the Rocket, here
https://brainly.com/question/13992346
#SPJ4
An airplane and a freight train have the same momentum. The airplane has a mass of 21,700 kg and is traveling at 1,200 km/h. The train has a mass of 9,600,000 kg. What is the speed of the train?
Select one:
A: 2. 7 km/h
B:19. 0 km/h
C:25. 0 km/h
D: 5. 3 km/h
An airplane and a freight train have the same momentum, but the train's speed is much slower due to its much larger mass. The train's speed is approximately 9.8 km/h. The correct option is B.
The momentum of an object is the product of its mass and velocity. If two objects have the same momentum, their product of mass and velocity will be equal. We can use this principle to determine the speed of the freight train, given the momentum of the airplane.
The momentum of the airplane is:
[tex]p = m \times v[/tex]
[tex]p = 21,700\;kg \times (1,200\;km/h \times 1000\;m/km)[/tex]
p = 26,040,000 kg m/s
Since the momentum of the airplane and the train are equal, we can set their momentum equations equal to each other:
[tex]p = m \times v[/tex]
[tex]26,040,000\;kg\;m/s = 9,600,000\;kg \times v[/tex]
Solving for v, we get:
v = 26,040,000 kg m/s / 9,600,000 kg
v = 2.71 m/s
To convert the velocity from meters per second to kilometers per hour, we multiply by 3.6:
[tex]v = 2.71 m/s \times 3.6\;km/h/m[/tex]
v = 9.8 km/h
Therefore, the speed of the freight train is approximately 9.8 km/h, which is option B.
In summary, the momentum of the airplane is used to determine the velocity of the freight train, which can be calculated using the momentum equation. The velocity of the freight train is found to be approximately 9.8 km/h.
To know more about speed refer here:
https://brainly.com/question/28060745#
#SPJ11
Two charges are separated by 1. 68 cm. Object A has a charge of 5. 0 μ C , while object B has a charge of 7. 0 μ C. What is the force on Object A?
0.174 N of force is acting on object A. The force on object A due to object B can be found using Coulomb's law:
F = k * (q1 * q2) / r^2
where F is the force, k is Coulomb's constant, q1 and q2 are the charges of the objects, and r is the distance between them.
Plugging in the values given:
F = (9 x 10^9 N*m^2/C^2) * ((5.0 x 10^-6 C) * (7.0 x 10^-6 C)) / (0.0168 m)^2
F = 0.174 N
Therefore, the force on object A is 0.174 N.
Know more about Coulomb's Law here:
https://brainly.com/question/31827766
#SPJ11
What evidence supports the idea that the universe is expanding in all directions?
A. Cosmic background radiation
B. Nucleosynthesis
C. Nuclear fusion in stars
D. Redshift
The evidence that supports the idea that the universe is expanding in all directions is option D which is redshift.
Redshift explained.
Redshift is a phenomena where light waves from an observer from an object moving from an observer are stretched, causing a shift toward longer wavelength( toward the red of the electromagnetic spectrum). This is commonly refereed to as doppler effect.
Redshift was first observed by Edwin Hubble in the 1920s, who noticed the spectra galaxies showed a systematic shift toward longer wavelengths. This redshift in the light from galaxies indicated that they were moving from us, and the degree of redshift was directly related to their distance.
Learn more about redshift below.
https://brainly.com/question/25197584
#SPJ1
Two charged spheres placed 43 cm apart exert a force of 1. 40 10-14 N on
each other. If one of the spheres has a charge of 1. 68 x 10-17 C, what is the
charge of the other sphere?
The charge of the other sphere is approximately 5.70 x 10^-17 C.)
To find the charge of the other sphere, we can use Coulomb's law, which states that the force between two charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. In this case, we have:
F = k * (q1 * q2) / r^2
where F is the force between the spheres, k is Coulomb's constant, q1 is the charge of one sphere, q2 is the charge of the other sphere, and r is the distance between the spheres.
We are given F, q1, and r, and we can look up the value of k (which is approximately 9 x 10^9 N m^2/C^2). Rearranging the equation, we get:
q2 = (F * r^2) / (k * q1)
Plugging in the values, we get:
q2 = (1.40 x 10^-14 N * (0.43 m)^2) / (9 x 10^9 N m^2/C^2 * 1.68 x 10^-17 C)
q2 = 5.70 x 10^-17 C
To know more about Coulomb's law refer here
https://brainly.com/question/28040775#
#SPJ11