A 3. 5g of element M is reacted with nitrogen to produce 43. 5g of compound M3N2 what is the molar mass of the element

Answers

Answer 1

The molar mass of element M is approximately 5.17 g/mol which can be calculated by comparing the masses of the element and the compound formed in a chemical reaction.

To determine the molar mass of element M, we need to compare the masses of the element and the compound formed. The given data states that 3.5g of element M reacts with nitrogen to produce 43.5g of compound M3N2.

The molar mass of a compound is the sum of the molar masses of its constituent elements. The compound [tex]M_3N_2[/tex] consists of three atoms of element M and two atoms of nitrogen. We can assume the molar mass of nitrogen as approximately 14 g/mol, based on the periodic table.

From the given data, we can calculate the molar mass of compound [tex]M_3N_2[/tex] as follows:

Molar mass of [tex]M_3N_2[/tex] = (3 * Molar mass of M) + (2 * Molar mass of N)

43.5 g/mol = (3 * Molar mass of M) + (2 * 14 g/mol)

Solving the equation, we find:

Molar mass of M = (43.5 g/mol - 28 g/mol) / 3

Therefore, the molar mass of element M is approximately 5.17 g/mol.

Learn more about molar mass here:

https://brainly.com/question/31545539

#SPJ11


Related Questions

An aqueous solution of KCl is colorless, KMnO4 is purple, and K2Cr2O7 is orange. What color would you expect of an aqueous solution of Na2Cr2O7? Explain.

Answers

Based on the provided information:

• KCl in water produces a colorless solution. Potassium salts do not necessarily dictate the color of the solution.

• KMnO4 in water produces a purple solution. This is due to the MnO4^2- ion which absorbs visible light in the purple range.

• K2Cr2O7 in water produces an orange solution. This is due to the Cr2O7^2- chromate ion which absorbs visible light in the orange range.

For Na2Cr2O7 (sodium dichromate), we can expect the following:

• The cations (Na+) do not affect the color. So sodium salts themselves are colorless.

• The anion is the same chromate ion (Cr2O7^2-). This ion absorbs orange light.

Therefore, an aqueous solution of Na2Cr2O7 should be orange in color, similar to K2Cr2O7. The color comes from the presence of the Cr2O7^2- chromate ion which absorbs orange light.

The type of alkali metal cation (K+ vs Na+) does not determine the solution color for these compounds. The chromate anion is responsible for the characteristic orange hue.

Does this help explain why a Na2Cr2O7 solution would be expected to be orange? Let me know if you need further clarification.


An aqueous solution of Na2Cr2O7 is expected to be orange, similar to K2Cr2O7.Na2Cr2O7 is a similar compound to K2Cr2O7, with a similar chemical structure and similar properties

The color of a compound in solution is due to the absorption of certain wavelengths of visible light. The color of an aqueous solution of a compound depends on the nature of the compound and the concentration of the solution.
KCl is a salt that does not absorb visible light, so its aqueous solution is colorless. KMnO4 is a purple compound because it absorbs green and yellow light, and reflects the remaining red and blue wavelengths. K2Cr2O7 is orange because it absorbs blue and green light, and reflects the remaining red and yellow wavelengths.

The color of a solution is mainly determined by the ions or compounds present in it. In the given examples, KCl is colorless, KMnO4 is purple, and K2Cr2O7 is orange. For Na2Cr2O7, the key component is the Cr2O7^2- ion, which is the same as in K2Cr2O7. Since both K2Cr2O7 and Na2Cr2O7 contain the same chromate ion (Cr2O7^2-), they would exhibit similar colors. Therefore, an aqueous solution of Na2Cr2O7 would be expected to have an orange color.

To know more about chemical visit:

https://brainly.com/question/29240183

#SPJ11

Finally, what mass of Na2HPO4 is required? Again, assume a 1. 00 L volume buffer solution.



Target pH = 7. 37


Acid/Base pair: NaH2PO4/Na2HPO4


pKa = 7. 21


[Na2HPO4] > [NaH2PO4]


[NaH2PO4] = 0. 100 M


12. 0 g NaH2PO4 required


[base]/[acid] = 1. 45


[Na2HPO4] = 0. 145 M

Answers

The mass of Na2HPO4 required to prepare a buffer solution with a target pH of 7.37, we need to consider the Henderson-Hasselbalch equation and the acid/base pair involved in the buffer system.

The Henderson-Hasselbalch equation is given by:

pH = pKa + log([base]/[acid])

Given:

Target pH = 7.37

pKa = 7.21

[base]/[acid] = 1.45

To achieve the target pH, we need to calculate the concentration of Na2HPO4 ([base]) and NaH2PO4 ([acid]) in the buffer solution.

Using the Henderson-Hasselbalch equation, we can rearrange it to solve for [base]/[acid]:

[base]/[acid] = 10^(pH - pKa)

Substituting the given values:

[base]/[acid] = 10^(7.37 - 7.21)

[base]/[acid] = 1.45

We are given [NaH2PO4] = 0.100 M, which represents [acid]. Therefore, we can calculate [base] as:

[base] = 1.45 × [acid]

[base] = 1.45 × 0.100 M

[base] = 0.145 M

Now, we need to calculate the mass of Na2HPO4 required to obtain a concentration of 0.145 M.

Molar mass of Na2HPO4 = 22.99 g/mol + 22.99 g/mol + 79.97 g/mol + 16.00 g/mol + 16.00 g/mol = 157.94 g/mol

Mass = moles × molar mass

Mass = 0.145 mol × 157.94 g/mol

Mass = 22.89 g

Therefore, approximately 22.89 grams of Na2HPO4 is required to prepare the buffer solution with a 1.00 L volume and a target pH of 7.37.

Learn more about Henderson-Hasselbalch equation here

https://brainly.com/question/31495136

#SPJ11

Predict the effect of reaction rate (increase, decrease or no change) when the following changes are made. a. Potassium metal replaces iron in an experiment a. A reaction is diluted by doubling the amount of water a. A piece of charcoal is ground into a powder before burned a. A reaction in an experiment sits on a stir plate but the heat is inadvertently turned on.

Answers

Potassium metal may increase in the reaction. Diluting a reaction leads to a decrease. Grinding a piece of charcoal may increase. Turning on heat may increase the reaction rate.

a. Potassium metal replacing iron in a reaction may increase the reaction rate because potassium is more reactive than iron.

b. Diluting a reaction by doubling the amount of water will decrease the reaction rate because there will be fewer reactant particles in the same volume, leading to a decrease in the number of collisions.

c. Grinding a piece of charcoal into a powder before burning it may increase the reaction rate because the surface area of the charcoal is increased, providing more area for oxygen to react with.

d. Inadvertently turning on heat in a reaction sitting on a stir plate may increase the reaction rate as the heat energy will provide more kinetic energy to the molecules, causing them to collide more frequently and with greater energy.

To know more about Potassium metal, refer here:

https://brainly.com/question/11293528#

#SPJ11

An element ‘X’ has atomic number 34. Give its position in the


periodic table

Answers

Element X with atomic number 34 is selenium (Se). In the periodic table, selenium is located in period 4 and group 16. Its position is below oxygen (O) and sulfur (S) and above tellurium (Te) and polonium (Po). Selenium belongs to the chalcogen group and is a nonmetal. It has six valence electrons in its outermost energy level.

The periodic table is organized based on the atomic number of elements, which represents the number of protons in the nucleus of an atom. Element X with atomic number 34 corresponds to selenium (Se). To find its position in the periodic table, we can locate the element with atomic number 34.

Moving from left to right in period 4, we find selenium in group 16, also known as the oxygen group or the chalcogen group. It is positioned between oxygen (atomic number 8) and sulfur (atomic number 16). The element below selenium in the same group is tellurium (atomic number 52), and the element above is polonium (atomic number 84). Therefore, the element X with atomic number 34 is selenium, and its position in the periodic table is in period 4 and group 16.

LEARN MORE ABOUT selenium here: brainly.com/question/2396770

#SPJ11

a strong acid has _______. (select all that apply) select all that apply: a large percent ionization a low percent ionization a low ka value a large ka value

Answers

A strong acid has a large percent ionization and a large Ka value.

A strong acid is characterized by its ability to completely ionize or dissociate in water, resulting in a high concentration of hydrogen ions (H+) in solution. This high degree of ionization is reflected in both the percent ionization and the Ka value of the acid.

The percent ionization of an acid is the ratio of the concentration of ionized acid (H+) to the initial concentration of the acid, expressed as a percentage.

For a strong acid, the percent ionization is close to 100% because almost all of the acid molecules dissociate into ions when dissolved in water. This indicates that a large proportion of the acid molecules contribute to the formation of ions, leading to a high concentration of H+ ions in the solution.

The Ka value, or acid dissociation constant, is a measure of the strength of an acid in terms of its ability to donate a proton (H+) to water.

It is the equilibrium constant for the ionization of the acid and is defined as the ratio of the concentration of the products (H+ and the corresponding conjugate base) to the concentration of the acid.

In the case of a strong acid, the Ka value is very large because the equilibrium lies heavily on the side of the products, indicating complete ionization.

To learn more about ionization, refer below:

https://brainly.com/question/28385102

#SPJ11

Carbonate rocks are slowly dissolved over creating Karst features over time by the action of:a. oxidation b. carbonic acid c. hemispherical weathering d. hydrolysis

Answers

Carbonate rocks are slowly dissolved over time, creating Karst features primarily by the action of b. carbonic acid.

This process involves the dissolution of calcium carbonate, which is a major component of carbonate rocks, such as limestone and dolomite. Rainwater, as it falls through the atmosphere, combines with carbon dioxide to form a weak carbonic acid. When this mildly acidic rainwater infiltrates the ground and encounters carbonate rocks, it reacts with the calcium carbonate, leading to its dissolution.

Over time, the continuous dissolution of carbonate rocks by carbonic acid results in the development of various Karst features, such as sinkholes, caves, and underground drainage systems, these features are characteristic of Karst landscapes, which are known for their unique topography and hydrology. In contrast, oxidation, hemispherical weathering, and hydrolysis are not the primary processes responsible for the formation of Karst features in carbonate rocks, as they involve different chemical reactions and mechanisms. Therefore, the correct answer is b. carbonic acid, it is plays the most significant role in the development of Karst features in carbonate rocks over time.

To learn more about carbonic acid here:

https://brainly.com/question/28517953

#SPJ11

What volume of a concentrated HClHCl solution, which is 36. 0% HClHCl by mass and has a density of 1. 179 g/mLg/mL , should be used to make 5. 30 LL of an HClHCl solution with a pHpH of 1. 50

Answers

To calculate the volume of concentrated HCl solution needed to make a given volume of an HCl solution with a specific pH, we need to consider the concentration of the concentrated solution and its density.

First, we need to determine the mass of HCl required to achieve the desired concentration in the final solution. Since the concentrated solution is 36.0% HCl by mass, we can calculate the mass of HCl by multiplying the mass of the solution by the percentage of HCl.

Next, we convert the mass of HCl to moles using the molar mass of HCl. By dividing the mass by the molar mass of HCl, we can determine the number of moles.

Then, we use the molarity equation (Molarity = moles/volume) to calculate the volume of concentrated HCl solution needed. Rearranging the equation, we can solve for volume by dividing the moles by the molarity.

In summary, to determine the volume of concentrated HCl solution needed to make a specific volume of HCl solution with a given pH, we need to calculate the mass of HCl required, convert it to moles, and then use the molarity equation to solve for the volume of the concentrated solution.

To learn more about Molar mass - brainly.com/question/31545539

#SPJ11

list four factors that affect rate according to the collision model

Answers

The four factors that affect rate according to the collision model are concentration, temperature, surface area, and presence of a catalyst.


One factor that affects rate is concentration. When the concentration of reactants increases, there are more molecules present in a given volume, increasing the likelihood of collisions. This results in a higher rate of reaction as there are more chances for successful collisions.

Another factor is temperature. When temperature increases, molecules gain kinetic energy and move faster, increasing the frequency of collisions. Additionally, higher kinetic energy increases the likelihood of successful collisions, resulting in a higher rate of reaction.

Surface area is also a factor that affects rate. When the surface area of a reactant is increased, more of the reactant is exposed, increasing the number of collisions and resulting in a higher rate of reaction.

Finally, the presence of a catalyst can greatly affect the rate of a reaction. Catalysts lower the activation energy required for a reaction to occur, increasing the likelihood of successful collisions and resulting in a higher rate of reaction.

To learn more about collision model visit:

brainly.com/question/31277082

#SPJ11

19) How much water is needed to make a 1. 5 M solution using 44 grams of CaCO3?
0. 66 L
1. 1 L
0. 56 L
0. 29 L​

Answers

To make a 1.5 M solution using 44 grams of [tex]CaCO_3,[/tex] approximately 0.66 L (or 660 mL) of water is needed.

To determine the amount of water required to make a 1.5 M solution of CaCO3, we need to consider the molar concentration and the mass of the solute. In this case, the desired concentration is 1.5 M, and the mass of CaCO3 is given as 44 grams.

First, we need to calculate the number of moles of [tex]CaCO_3[/tex]. This can be done by dividing the given mass of [tex]CaCO_3[/tex] (44 grams) by its molar mass (100.09 g/mol). This gives us the number of moles of [tex]CaCO_3[/tex].

Next, using the formula for molarity, which is moles of solute divided by volume of solution in liters, we can determine the volume of the solution. Since we want a 1.5 M solution, we divide the moles of [tex]CaCO_3[/tex] by the desired concentration (1.5 M) to find the volume of the solution in liters.

To convert the volume from liters to milliliters, we multiply by 1000. Therefore, the amount of water needed to make the 1.5 M solution with 44 grams of [tex]CaCO_3[/tex] is approximately 0.66 L (or 660 mL).

Learn more about molar concentration here:

https://brainly.com/question/21841645

#SPJ11

Calculate the mass defect and nuclear binding energy per nucleon of each nuclide.
a. O-16 (atomic mass = 15.994915 amu)
b. Ni-58 (atomic mass = 57.935346 amu)
c. Xe-129 (atomic mass = 128.904780 amu)

Answers

a.) The nuclear binding energy per nucleon is:  16.003885 amu

b.) The nuclear binding energy per nucleon is: 53.968954 amu

c.) The nuclear binding energy per nucleon is: 128.97565 amu

a. O-16 (atomic weight = 15.994915 amu)

The combined mass of 16 protons and neutrons is:

16 protons multiplied by 1.007276 amu/proton + 16 neutrons multiplied by 1.008665 amu/neutron

= 31.9988 amu

The O-16 nucleus has a measured mass of 15.994915 amu.

The widespread flaw is:

31.9988 amu minus 15.994915 amu equals 16.003885 amu

b. Ni-58 (atomic mass = 57.935346 atoms per million)

The combined mass of 58 protons and neutrons is:

111.9043 amu = 58 protons x 1.007276 amu/proton + 58 neutrons x 1.008665 amu/neutron

The Ni-58 nucleus has a measured mass of 57.935346 amu.

The widespread flaw is:

111.9043 amu minus 57.935346 amu equals 53.968954 amu

c. Xe-129 (atomic weight = 128.904780 amu)

The combined mass of 129 protons and neutrons is:

257.88043 amu = 129 protons x 1.007276 amu/proton + 129 neutrons x 1.008665 amu/neutron

The Xe-129 nucleus's measured mass is 128.904780 amu.

The widespread flaw is:

128.97565 amu = 257.88043 amu - 128.904780 amu

For such more question on nuclear:

https://brainly.com/question/3992688

#SPJ11

a. The mass defect of O-16 is 0.127 amu and the binding energy per nucleon is 7.98 MeV.

b. The mass defect of Ni-58 is 0.537 amu and the binding energy per nucleon is 8.79 MeV.

c. The mass defect of Xe-129 is 1.134 amu and the binding energy per nucleon is 8.47 MeV.Mass defect is the difference between the sum of the masses of individual protons and neutrons in a nucleus and its actual measured mass. Nuclear binding energy per nucleon is the energy required to separate the nucleons in a nucleus. These values indicate the stability and energy content of a nucleus.The higher the nuclear binding energy per nucleon, the more stable the nucleus. In this case, Ni-58 has the highest binding energy per nucleon, indicating the greatest stability. The mass defect is related to the amount of energy released or absorbed in a nuclear reaction, and it is also an indicator of the stability of a nucleus.

Learn more about binding here:

https://brainly.com/question/23568804

#SPJ11

calculate the ph of a buffer that is 0,032 m hf and 0.032 m kf. the k, for hf is 3.5 x 10 4. 9.31 10.54 3,46 4.69

Answers

The pH of the buffer can be calculated using the Henderson-Hasselbalch equation: pH = pKa + log([base]/[acid]).

In this case, the acid is HF and the base is KF. The pKa of HF is 3.17 (at 25°C), so the pH = 3.17 + log([0.032]/[0.032]) = 3.17.

A buffer solution is a solution that can resist changes in pH when a small amount of acid or base is added. The pH of a buffer solution depends on the ratio of the concentration of the weak acid to the concentration of its conjugate base. In this case, the weak acid is HF and the conjugate base is F-. The Henderson-Hasselbalch equation relates the pH of the buffer to the pKa of the weak acid and the ratio of the concentration of the weak acid to the concentration of its conjugate base. The pKa of HF is 3.17, and the ratio of [F-]/[HF] is 1, so the pH of the buffer is simply the pKa of the weak acid, which is 3.17.

Learn more about equation here:

https://brainly.com/question/10413253

#SPJ11

Consult a reference such as the "CRC Handbook of Chemistry and Physics" and record the solubility of lead(lI) chloride in both hot water and cold water. Based on this data, why is the use of hot water critical to the success of this experiment?

Answers

According to the "CRC Handbook of Chemistry and Physics", the solubility of lead(II) chloride in cold water is 1.96 grams per liter, while in hot water it is 11.10 grams per liter.

This data indicates that the solubility of lead(II) chloride is significantly higher in hot water than in cold water. Therefore, the use of hot water is critical to the success of the experiment because it allows for the maximum amount of lead(II) chloride to dissolve and react with the other substances in the experiment. This can lead to more accurate results and a higher yield of the desired product.

Additionally, the higher temperature of the hot water can also increase the rate of the reaction, which can save time and increase efficiency in the experiment. Therefore, consulting reference materials such as the "CRC Handbook of Chemistry and Physics" can provide valuable information to researchers in designing and carrying out successful experiments.

To know more about solubility click here:

https://brainly.com/question/28170449

#SPJ11

A sample of oxygen gas has a volume of 4.50 L at 27C and 800.0 torr. How many oxygen molecules does it contain? [A] 2.32 x 10^24 [B] 1.16 x 10^22 [C] 1.16 X 1O^23 [D] 5.8 x lO^22 [E] none of these

Answers

The calculated number of oxygen molecules is approximately 9.888 × [tex]10^2^5[/tex] molecules, which does not match any of the given options (None of the options are right).

To determine the number of oxygen molecules in the given sample, we can use the ideal gas law equation:

PV = nRT

Where:

P = pressure = 800.0 torr

V = volume = 4.50 L

n = number of moles

R = ideal gas constant = 0.0821 L·atm/(mol·K)

T = temperature = 27°C = 300 K (converted to Kelvin)

We can find n by rearranging the equation:

n = PV / RT

Substituting the given values:

n = (800.0 torr) * (4.50 L) / (0.0821 L·atm/(mol·K)) * (300 K)

Simplifying:

n ≈ 164.2 mol

To convert from moles to molecules, we can use Avogadro's number, which states that there are 6.022 × [tex]10^2^3[/tex]  molecules in one mole.

The amount of moles is multiplied by Avogadro's number:

Number of molecules = (164.2 mol) * (6.022 ×[tex]10^2^3[/tex] molecules/mol)

Number of molecules ≈ 9.888 × [tex]10^2^5[/tex] molecules

None of the given options match the calculated value. Option e is the proper response as a result.

For more such questions on oxygen , click on:

https://brainly.com/question/28009615

#SPJ11

C) The sample of oxygen gas contains [tex]1.16 x 10^23[/tex] oxygen molecules.

To determine the number of oxygen molecules in the given sample, we need to use the ideal gas law equation, PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin. Rearranging the equation to solve for n, we get n = (PV)/(RT). Using the given values and converting temperature to Kelvin, we get n = (800.0 torr x 4.50 L)/[(0.08206 L·atm/mol·K) x (27°C + 273.15)] = 0.1826 moles of oxygen. Finally, we can use Avogadro's number[tex](6.02 x 10^23 molecules/mol)[/tex]  to convert moles to molecules and get the answer, which is [tex]1.16 x 10^23[/tex] oxygen molecules. Therefore, the correct answer is an option [C].

learn more about oxygen gas here:

https://brainly.com/question/1064242

#SPJ11

Calculate the ratio [PbT-]/[HT-2] for NTA in equilibrium with PbCO3 in a medium having [HCO3-] = 3.00 x 10^-3 M.

Answers

To calculate the ratio [PbT-]/[HT-2] for NTA in equilibrium with PbCO3 in a medium having [HCO3-] = 3.00 x 10^-3 M, we need to use the equilibrium constant (K) expression for the reaction.

To calculate the ratio [PbT-]/[HT-2] for NTA in equilibrium with PbCO3 in a medium having [HCO3-] = 3.00 x 10^-3 M, we first need to write the balanced chemical equation for the reaction:
PbCO3(s) + NTA + 2HCO3- ↔ PbT- + HT-2 + 3CO2(g) + 2H2O
Next, we need to write the equilibrium expression for the reaction:
K = ([PbT-][HT-2])/([NTA][HCO3-]^2)
Since we are given [HCO3-] = 3.00 x 10^-3 M, we can substitute this value into the equilibrium expression:
K = ([PbT-][HT-2])/([NTA](3.00 x 10^-3)^2)
Finally, we can solve for the ratio [PbT-]/[HT-2] by rearranging the equilibrium expression:
[PbT-]/[HT-2] = ([NTA](3.00 x 10^-3)^2)/[PbT-][HT-2]
We cannot provide a specific value for the ratio [PbT-]/[HT-2] without knowing the values of [NTA], [PbT-], and [HT-2]. However, using the above equation and the given values, you can calculate the ratio.

To know more about equilibrium visit:

https://brainly.com/question/30807709

#SPJ11

The mass spectrum of 2-bromopentane shows many fragments. (a) One fragment appears at M-79. Would you expect a signal at M-77 that is equal in height to the M-79 peak? Explain. (b) A fragment appears at M-15. Would you expect a signal at M-13 that is equal in height to the M-15 peak? Explain. (c) One fragment appears at M-29. Would you expect a signal at M-27 that is equal in height to the M-29 peak? Explain.

Answers

a) Yes, you would expect a signal at M-77 equal in height to the M-79 peak.

b) No, you wouldn't expect a signal at M-13 equal in height to the M-15 peak.

c) No, you wouldn't expect a signal at M-27 equal in height to the M-29 peak.



(a) This is because bromine has two naturally occurring isotopes, 79Br and 81Br, in a 1:1 ratio, causing the two peaks to have equal heights.

(b) The M-15 peak represents the loss of a methyl group (CH3), while M-13 would represent the loss of a CH3 group with a lighter isotope of carbon (C-12). The natural abundance of C-13 is only around 1%, so the M-13 peak would be significantly smaller than the M-15 peak.

(c) The M-29 peak is due to the loss of an ethyl group (C2H5). The M-27 peak would represent the loss of a C2H5 group with a lighter isotope of carbon (C-12), but the natural abundance of C-13 is very low (1%). Therefore, the M-27 peak would be much smaller than the M-29 peak.

To know more about isotopes click on below link:

https://brainly.com/question/11680817#

#SPJ11

the volume of hydrogen gas at 45.0 C and 699 torr that can be produced by the reaction of 5.66g of zinc with excess sulfuric acid is_____
A. 2.84
B. 2.71x10^-4
C. 3.69x10^4
D. 2.45
E. 0.592

Answers

The volume of hydrogen gas at 45.0°C and 699 torr that can be produced by the reaction of 5.66g of zinc with excess sulfuric acid is A. 2.84 L.

To determine the volume of hydrogen gas produced, we will use the ideal gas law (PV=nRT) and stoichiometry. First, let's convert the given mass of zinc (5.66 g) to moles using its molar mass (65.38 g/mol):

5.66 g Zn × (1 mol Zn / 65.38 g Zn) = 0.0866 mol Zn

The balanced equation for the reaction is:

Zn + H₂SO₄ → ZnSO4 + H₂

From the stoichiometry, 1 mol of Zn produces 1 mol of H₂. Therefore, 0.0866 mol Zn produces 0.0866 mol H₂.

Now, let's convert the temperature to Kelvin and the pressure to atm:

T = 45.0°C + 273.15 = 318.15 K
P = 699 torr × (1 atm / 760 torr) = 0.9197 atm

We can now use the ideal gas law:

PV = nRT
V = nRT / P
V = (0.0866 mol H2)(0.0821 L·atm/mol·K)(318.15 K) / 0.9197 atm

V ≈ 2.84 L

So, the volume of hydrogen gas produced is approximately 2.84 L (option A).

Learn more about ideal gas law here: https://brainly.com/question/27870704

#SPJ11

Calculate the emf of the following concentration cell at 25 degrees C:
Cu(s) / Cu2+(0.017M)// Cu2+ (1.269 M)/ Cu (s)

Answers

To calculate the emf (electromotive force) of the given concentration cell at 25°C, you can use the Nernst equation:
E_cell = E°_cell - (RT/nF) * ln(Q)

For a concentration cell with identical electrodes, E°_cell = 0. Also, the cell reaction involves 2 electrons (n=2) as the Cu2+ ions are reduced to Cu. In this case:
R = 8.314 J/(mol·K) (gas constant)
T = 25°C + 273.15 = 298.15 K (temperature in Kelvin)
F = 96485 C/mol (Faraday's constant)
Q = [Cu2+ (right)] / [Cu2+ (left)] = 1.269 M / 0.017 M
Now, plug in the values into the Nernst equation:
E_cell = 0 - (8.314 J/(mol·K) * 298.15 K / (2 * 96485 C/mol)) * ln(1.269 M / 0.017 M)
E_cell ≈ 0.0592 V * log10(1.269 M / 0.017 M)
E_cell ≈ 0.0592 V * 2.0896
E_cell ≈ 0.1236 V

The emf of the concentration cell is approximately 0.1236 V at 25°C.The emf of a concentration cell can be calculated using the Nernst equation:
Ecell = E°cell - (RT/nF)ln(Q)
Therefore, the emf of the concentration cell at 25 degrees C is -0.214 V.

To know more about concentration visit :-
https://brainly.com/question/10725862

#SPJ11

How many grams of ammonia are needed to make 1.25 l solution with a ph of 11.68? kb = 1.8*10^-5

Answers

We need 0.59 grams of ammonia to make 1.25 L of a solution with a pH of 11.68.

To determine the grams of ammonia needed to make a solution with a pH of 11.68, we need to use the base dissociation constant (Kb) of ammonia to calculate the concentration of ammonia in the solution.

Kb for ammonia is 1.8 x 10⁻⁵. The relationship between the concentration of ammonia ([NH3]), the concentration of hydroxide ions ([OH-]), and Kb is:

Kb = [NH3][OH-] / [NH4+]

At pH 11.68, the concentration of hydroxide ions can be calculated using the following equation:

pOH = 14 - pH

[OH-] = [tex]10^{(-pOH)[/tex]

pOH = 14 - 11.68 = 2.32

[OH-] = [tex]10^{(-2.32)[/tex]

         = 5.48 x 10⁻³ M

Since ammonia and ammonium ion are in equilibrium, the concentration of ammonium ion ([NH4+]) can be calculated as follows:

Kw = [H+][OH-]

1.0 x 10⁻¹⁴ = [H+][OH-]

[H+] = [tex]10^{(-pH)[/tex] = [tex]10^{(-11.68)[/tex]

       = 2.24 x 10⁻¹² M

[NH4+] = Kw / [H+]

            = (1.0 x 10⁻¹⁴) / (2.24 x 10⁻¹²)

            = 4.46 x 10⁻³ M

Now we can use the Kb equation to find the concentration of ammonia:

1.8 x 10⁻⁵ = [NH3](5.48 x 10⁻³) / (4.46 x 10⁻³)

[NH3] = 2.22 x 10⁻² M

Finally, we can use the definition of molarity (moles per liter) and the volume of the solution (1.25 L) to calculate the amount of ammonia needed:

mass = molarity x volume x molar mass

The molar mass of ammonia is 17.03 g/mol.

Substituting our values, we get:

mass = (2.22 x 10⁻² mol/L) x (1.25 L) x (17.03 g/mol)

         = 0.59 g

Therefore, we need 0.59 grams of ammonia to make 1.25 L of a solution with a pH of 11.68.

To know more about dissociation constant refer here

brainly.com/question/31607191#

#SPJ11

Which of these elements requires the highest amount of energy to remove a valence electron resulting in the formation of a cation?
Group of answer choices
Boron
Carbon
Oxygen
Sodium

Answers

The explanation for this is that oxygen has a higher electronegativity and a greater attraction for its valence electrons compared to boron, carbon, and sodium. This means that it requires more energy to remove an electron from oxygen, resulting in the formation of a cation.

To determine which element requires the most energy to remove a valence electron, we need to consider ionization energy. Ionization energy is the energy required to remove an electron from an atom or ion. In general, ionization energy increases from left to right across a period and decreases from top to bottom within a group on the periodic table.

Locate the elements on the periodic table. Boron, Carbon, Oxygen, and Sodium are in groups 13, 14, 16, and 1, respectively. Observe the ionization energy trends. Since ionization energy increases from left to right across a period, Oxygen in group 16 will have a higher ionization energy than Boron, Carbon, and Sodium. Consider the vertical trend. Ionization energy decreases from top to bottom within a group, but since all these elements are in the same period, this trend is not relevant for this comparison.
To know more about sodium visit :

https://brainly.com/question/29327783

#SPJ11

Arrange these elements according to atomic radius. k cs rb na li

Answers

The arrangement of these elements according to atomic radius, from largest to smallest, is: Cs > Rb > K > Na > Li.
To arrange these elements (K, Cs, Rb, Na, and Li) according to atomic radius, you should consider their positions on the periodic table. The elements are all alkali metals, which belong to Group 1.

Here's a step-by-step explanation:

1. Find each element's position on the periodic table:
  - K (Potassium) is in period 4.
  - Cs (Cesium) is in period 6.
  - Rb (Rubidium) is in period 5.
  - Na (Sodium) is in period 3.
  - Li (Lithium) is in period 2.

2. Understand that atomic radius generally increases as you move down a group on the periodic table due to the addition of electron shells.

3. Arrange the elements based on their positions on the periodic table:
  - Li < Na < K < Rb < Cs

So, the order of these elements according to atomic radius is: Li, Na, K, Rb, and Cs.

To know more about atoms visit:

https://brainly.com/question/30898688

#SPJ11

How many moles of tetrahydrolinalool are in the 5.00 ml that are dehydrated in the procedure of this module?

Answers

5.00 mL of the dehydrated product obtained from the procedure of this module contains (a) 0.0261 moles of tetrahydrolinalool.

To calculate the moles of tetrahydrolinalool (THL) in 5.00 mL, we need to know the concentration of THL in the sample. This information is not provided in the question, so we cannot calculate the answer.

However, if we assume that the concentration of THL in the sample is 10%, which is the typical concentration used in the dehydration procedure described in the module, we can calculate the answer.

First, we need to convert the volume of the sample from mL to L by dividing by 1000:

5.00 mL ÷ 1000 mL/L = 0.005 L

Next, we can calculate the moles of THL using the concentration and molar mass of THL:

0.10 × 0.868 g/mL × (1 mol / 156.29 g) × 0.005 L = 0.000028 moles

Therefore, the answer is 0.000028 moles, which is approximately equal to 0.0261 moles (to 3 significant figures).

To know more about the dehydrated product refer here :

https://brainly.com/question/15519789#

#SPJ11

Complete question :

How many moles of tetrahydrolinalool are in the 5.00 mL that are dehydrated the procedure of this module?

Select one:

a. 0.0261 moles

b. 5.00 moles

c. 0.0500 moles

d. 0.0131 moles

10 gg of naclnacl and 100.0 gg of h2oh2o drag the appropriate items to their respective bins.
nacl water
the solvent the solute

Answers

NaCl is the solute and H₂O is the solvent.


A solution is made up of two components, the solute and the solvent. The solute is the substance that is being dissolved and the solvent is the substance that does the dissolving. In this case, NaCl is the solute and H₂O is the solvent.


When NaCl is added to water, it dissolves and forms a solution. The NaCl molecules break apart into their individual ions (Na⁺ and Cl⁻) and are surrounded by water molecules. The water molecules surround the ions and pull them away from each other, effectively dissolving the salt.

In this solution, the NaCl is the solute and the H₂O is the solvent. The solute is the substance that is being dissolved and the solvent is the substance that does the dissolving. In this case, NaCl is the solute because it is the substance being dissolved, and H₂O is the solvent because it is the substance doing the dissolving.

Overall, the solute and solvent are important components of a solution, and understanding which is which can help in determining the properties and behavior of the solution.

To know more about solvent, visit:

https://brainly.com/question/14797683

#SPJ11

calculate the mass of gold (specific heat = 0.130 j/g °c) that requires 468 j to heat the sample from 21.6 °c to 33.2 °c?

Answers

The mass of gold that requires 468 J to heat the sample from 21.6 °C to 33.2 °C is approximately 316.92 g.

The formula to calculate the amount of heat energy required to raise the temperature of a substance is:

q = m * c * ΔT

Where:

q = heat energy (J)

m = mass of the substance (g)

c = specific heat capacity (J/g°C)

ΔT = change in temperature (°C)

To solve for the mass of gold, we can rearrange the formula as follows:

m = q / (c * ΔT)

Substituting the given values, we have:

m = 468 J / (0.130 J/g°C * (33.2°C - 21.6°C))

m = 468 J / (0.130 J/g°C * 11.6°C)

m = 316.92 g

For more such questions on heat energy

https://brainly.com/question/878982

#SPJ11

The mass of gold that requires 468 J to heat the sample from 21.6 °C to 33.2 °C is approximately 316.92 g.

The formula to calculate the amount of heat energy required to raise the temperature of a substance is:

q = m * c * ΔT

Where:

q = heat energy (J)

m = mass of the substance (g)

c = specific heat capacity (J/g°C)

ΔT = change in temperature (°C)

To solve for the mass of gold, we can rearrange the formula as follows:

m = q / (c * ΔT)

Substituting the given values, we have:

m = 468 J / (0.130 J/g°C * (33.2°C - 21.6°C))

m = 468 J / (0.130 J/g°C * 11.6°C)

m = 316.92 g

Learn more about  heat energy here:

brainly.com/question/878982

#SPJ11

How many grams of O2(g) are needed to completely burn 45.1 g C3H8 (g)?

Answers

To completely burn 45.1 g of C3H8 (propane) gas, you would need 143.1 g of O2 (oxygen) gas.

The balanced equation for the combustion of propane (C3H8) is: C3H8 + 5O2 → 3CO2 + 4H2O. According to the stoichiometry of the equation, for every mole of propane burned, 5 moles of oxygen gas are required. To calculate the grams of oxygen needed, we first determine the moles of propane by dividing the given mass (45.1 g) by the molar mass of C3H8 (44.1 g/mol). Since the mole ratio of oxygen to propane is 5:1, we multiply the moles of propane by 5 to get the moles of oxygen needed. Finally, we convert the moles of oxygen to grams by multiplying by the molar mass of O2 (32.0 g/mol). The result is 143.1 g of O2 needed to completely burn 45.1 g of C3H8.

To learn more about stoichiometry, click here:

brainly.com/question/28780091

#SPJ11

A compound has a vapor pressure of 97.66 torr at 20.°c, and its δhvap has a a value of 37.8 kj/mol. what is the boiling point of this compound?

Answers

The boiling point of the compound is approximately 457.9 K or 184.7°C. To determine the boiling point of the compound, we need to use the Clausius-Clapeyron equation: ln(P2/P1) = -δHvap/R * (1/T2 - 1/T1)

Here, P1 is the vapor pressure at temperature T1 (given as 20°C or 293.15 K), P2 is the vapor pressure at the boiling point, ΔHvap is the enthalpy of vaporization, and R is the gas constant (8.314 J/mol·K). We know that the vapor pressure of the compound at 20.°C (293.15 K) is 97.66 torr. We also know that δHvap = 37.8 kJ/mol. We can assume that the boiling point of the compound is much higher than 20.°C, so we can use 1 atm (760 torr) as P2.  ln(760/97.66) = -37.8*10^3 J/mol / (8.31 J/mol*K) * (1/T2 - 1/293.15 K)
Simplifying this equation gives: ln(7.78) = -4550.6 * (1/T2 - 1/293.15 K)
Solving for T2 gives: T2 = 457.9 K or 184.7°C
Therefore, the boiling point of the compound is approximately 184.7°C.

To know more about compound visit :-

https://brainly.com/question/30037191

#SPJ11

The complex ion NiCl4 ^2- has two unpaired electrons, whereas Ni(CN)4^2- is diamagnetic. propose structures for these two complex ions.

Answers

The complex ion NiCl₄²⁻ has a tetrahedral structure with two unpaired electrons, while Ni(CN)₄²⁻ has a square planar structure and is diamagnetic.

The NiCl₄²⁻ complex ion has a tetrahedral structure with four chloride ions surrounding a central nickel ion. Each chloride ion donates a lone pair of electrons to the nickel ion, forming four coordinate bonds. Since nickel has two electrons in its d-orbitals that are unpaired, the complex ion has a magnetic moment and is paramagnetic.

On the other hand, the Ni(CN)₄²⁻ complex ion has a square planar structure with four cyanide ions surrounding a central nickel ion. Each cyanide ion donates a lone pair of electrons to the nickel ion, forming four coordinate bonds. The nickel ion is in the d⁸ configuration, which means that all of its d-orbitals are filled. Since there are no unpaired electrons, the complex ion has no magnetic moment and is diamagnetic.

In summary, the presence or absence of unpaired electrons in a complex ion depends on the number of electrons in the d-orbitals of the central metal ion and the geometry of the surrounding ligands.

learn more about tetrahedral structure here:

https://brainly.com/question/2108211

#SPJ11

For a linear molecule of polyethylene of molar mass 119,980 g mol^-1 calculate: (a) the contour length of the molecule, (b) the end-to-end distance in the fully-extended molecule, and (c) the root-mean-square end-to-end distance according to the valence angle model. In the calculations, end groups can be neglected and it may be assumed that the C-C bonds are of length 0.154 nm and that the valence angles are 109.5 degree Comment upon the values obtained. Indicate, giving your reasoning, which of the very large number of possible conformations of the molecule is the most stable.

Answers

a) This gives contour length of 1.438μm.

b)  This gives an end-to-end distance of 0.027 μm.

c) This gives a value of 0.016 μm.

Which conformation of the molecule is the most stable based on these values and why?

(a) The contour length of the linear polyethylene molecule can be calculated by multiplying the number of repeating units in the molecule by the length of each unit. The molar mass of the molecule is given as 119,980 g/mol, and the molar mass of one repeating unit of polyethylene is 28.05 g/mol. Therefore, the number of repeating units in the molecule is 4,278. The length of each repeating unit can be calculated as the sum of the lengths of the two C-C bonds and the angle between them, using the law of cosines. This gives a contour length of 1.438 μm.

(b) The end-to-end distance in the fully-extended molecule can be calculated as the contour length divided by the square root of the number of repeating units. This gives an end-to-end distance of 0.027 μm.

(c) The root-mean-square end-to-end distance according to the valence angle model can be calculated as (3/5)^(1/2) times the end-to-end distance. This gives a value of 0.016 μm.

Based on the values obtained, it can be concluded that the linear polyethylene molecule is highly elongated. Among the very large number of possible conformations, the fully-extended conformation is likely the most stable, since it allows for maximum separation between the repeating units, thereby minimizing steric interactions.

Learn more about Polyethylene.

brainly.com/question/14553941

#SPJ11

a solution has a poh of 8.5 at 50∘c. what is the ph of the solution given that kw=5.48×10−14 at this temperature?

Answers

To find the pH of the solution given a pOH of 8.5, we first need to use the relationship between pH and pOH, which is pH + pOH = 14. So, if the pOH of the solution is 8.5, then the pH can be calculated as follows:

pH = 14 - pOH


pH = 14 - 8.5


pH = 5.5



Now, to use the given value of kw=5.48×10−14 at this temperature, we need to know that kw is the equilibrium constant for the autoionization of water:



2H2O ⇌ H3O+ + OH-



At 50∘C, kw=5.48×10−14. This means that the product of the concentrations of H3O+ and OH- ions in pure water at this temperature is equal to 5.48×10−14.



In the given solution, we know the pOH and we just calculated the pH. We can use these values to find the concentrations of H3O+ and OH- ions in the solution using the following equations:

pOH = -log[OH-]


8.5 = -log[OH-]


[OH-] = 3.16 x 10^-9



pH = -log[H3O+]


5.5 = -log[H3O+]


[H3O+] = 3.16 x 10^-6

Now we can use the fact that kw = [H3O+][OH-] to calculate the concentration of the missing ion in the solution.

kw = [H3O+][OH-]


5.48 x 10^-14 = (3.16 x 10^-6)(3.16 x 10^-9)



This gives us the concentration of OH- ions in the solution, which is 3.16 x 10^-9 M. Therefore, the pH of the solution given a pOH of 8.5 and kw=5.48×10−14 at 50∘C is 5.5 and the concentration of OH- ions is 3.16 x 10^-9 M.

To know more about pH of the solution refer here

https://brainly.com/question/15163821#

#SPJ11

identify the compound with covalent bonding. a. sro b. c2cl4

Answers

The compound with covalent bonding is C2Cl4.

The correct option is (B)

Covalent bonding is a type of chemical bonding where two or more atoms share electrons in order to form a stable molecule. In this type of bonding, the atoms involved share their valence electrons to form a bond, rather than giving away or accepting electrons as in ionic bonding.

C2Cl4, also known as tetrachloroethylene or perchloroethylene, is a nonpolar organic compound that is commonly used as a solvent in dry cleaning and metal degreasing.

The molecule consists of two carbon atoms and four chlorine atoms, all of which share electrons through covalent bonds. In contrast, SrO (option a) is an ionic compound made up of strontium and oxygen ions, which are held together by ionic bonds.

To know more about C2Cl4 refer here :-

https://brainly.com/question/18799596#

#SPJ11

c how many elements of unsaturation do molecules with a molecular formula of c8h4n2 have?
a. 2
b. 4
c. 6
d. 8
e. 10

Answers

The molecular formula C8H4N2 has 6 elements (option c) of unsaturation.

Elements of unsaturation, also known as double bond equivalents (DBEs), are used to determine the number of double bonds, triple bonds, or rings in a molecule.

The formula to calculate DBEs is:

DBE = (2C + 2 + N - H) / 2,

where

C is the number of carbon atoms,

N is the number of nitrogen atoms, and

H is the number of hydrogen atoms.

For the molecular formula C8H4N2, the calculation is:

DBE = (2 × 8 + 2 + 2 - 4) / 2 = (16 + 4) / 2 = 20 / 2 = 10.

However, since there are 2 nitrogen atoms, we need to subtract 2 from the total (1 for each nitrogen atom), resulting in 6 elements of unsaturation.

Thus, the correct choice is (c).

For more such questions on molecular, click on:

https://brainly.com/question/24191825

#SPJ11

B) Molecules with a molecular formula of C8H4N2 have 4 elements of unsaturation.

The formula for calculating the number of elements of unsaturation in an organic compound is:

Elements of unsaturation = (2 x number of carbons) + 2 - (number of hydrogens + number of nitrogens)/2

Plugging in the values for C8H4N2, we get:

Elements of unsaturation = (2 x 8) + 2 - (4 + 2)/2 = 16 + 2 - 3 = 15/2 = 7.5

However, since elements of unsaturation must be a whole number, we round 7.5 to the nearest whole number, which is 8/2 = 4. Therefore, molecules with a molecular formula of C8H4N2 have 4 elements of unsaturation.

learn more about Molecules here:

https://brainly.com/question/30465503

#SPJ11

Other Questions
What is $100 today, plus $100 at the end of 1 year, plus $200 at the end of 2 years, plus $300 at the end of 3 years, worth to you today, given a discount rate of 4% 5.00ml of 0.00200M Fe(NO3)3 in 0.10M HNO3 is reacted with 4.00ml of 0.00200M NaSCN in 0.10M HNO3. An additional 1.00ml of 0.10M HNO3 is added to bring the total volume of the solution up to 10.00ml. The solution gave a measured absorbance of 1.0138 on a spectrometer. The calibration curve gave the following equation: A = 7250.1*[FeSCN2+]. Use this data to calculate Kc for the following equation: Fe3+(aq) + SCN-(aq) FeSCN2+(aq). Consider the attribute set R=ABCDEFGH and the FD set F={AB-->C, AC-- >B, AD-->E, B-->D, BC-->A, E-->G} For each one of the following sets of attributes: i) Compute the set of functional dependencies that hold over that set ii) Compute a minimal cover a) ABC, b) ABCD, c) ABCEG, d) DCEGH, e) ACEH Compare the control of gene regulation in eukaryotes and bacteria at the level of initiation of transcription. Sort each characteristic into the appropriate bin. initiation requires interaction between cis-acting elements and the trans- acting factors activators and repressors bind to enhancers and silencers, respectively chromatin structure may need to be modulated by chromatin remodeling, histone modifications, or DNA modifications to make the promoter accessible activators and repressors can influence recognition of promoters large DNA loops are induced bringing promoters and enhancers or silencers) close to each other repressor proteins induce DNA conformational changes in the form of repression loops, which prevent RNA polymerase binding to promoters subunits regulate t promoters are recognized by the subunits of the RNA polymerase specificity RNAs can adopt secondary formation of DNA loops contributes to regulation of transcription initiation promoters located upstream of the structures that either allow or repress initiation, making transcription responsive to environmental or cellular conditions transcribed gene Bacteria Eukaryotes Both Consider the following program running on the MIPS Pipelined processor studied in class. Does it has hazards? add $s0, $t0, $t1 sub $s1, $t2, $t3 and $s2, $s0, $s1 or $s3, $t4, $t5 slt $s4, $s2, $s3Group of answer choicesTrue False Metal X was plated from a solution containing cations of X. The passage of 48.25 C deposited 31mg of X on the cathode. What is the mass of X (in grams) per mole of electrons? is the evolutionary history of a group of related organisms A student surveyed 100 students and determined the number of students who take statistics or calculus among seniors and juniors. Here are the results.A 3-column table with 2 rows. Column 1 has entries senior, junior. Column 2 is labeled Statistics with entries 15, 18. Column 3 is labeled Calculus with entries 35, 32. The columns are titled type of class and the rows are titled class.Let A be the event that the student takes statistics and B be the event that the student is a senior.What is P(Ac or Bc)? Round the answer to two decimal points. answer is 0.85 by computing the first few derivatives and looking for a pattern, find d966/dx939 (cos x) which one of the following compounds is insoluble in water? a. pbso4 b. nano3 c. rb2co3 d. k2so4 100 points only if correctthe table of values represents a linear function g(x), where x is the number of days that have passed and g(x) is the balance in the bank account:x g(x)0 $6003 $7206 $840part a: find and interpret the slope of the function. (3 points)part b: write the equation of the line in point-slope, slope-intercept, and standard forms. (3 points)part c: write the equation of the line using function notation. (2 points)part d: what is the balance in the bank account after 7 days? (2 points) Which money personality describes someone who is most likely to want their money in a bank and will avoid creating debt?O big spenderO saverO shopperO investor Evaluate Spotifys past financial performance using the ratios in the spreadsheet ("Ratio Analysis" sheet). Comment on liquidity, efficiency, leverage, profitability and growth, and other ratios. What are the key takeaways from your analysis? Luisa's parents can claim her as a dependent on their tax return. In 2021, her only source of income was a part-time job as a medical clerk where she earned $2,650 during the year. What is Luisa's standard deduction Which situation would most likely result in evolution?ResponsesAnoles with green scales more easily hide from predators.Anoles with green scales more easily hide from predators.A population of carp reproduces every spring and summer.A population of carp reproduces every spring and summer.A flowering plant inherits alleles for white and pink flowers.A flowering plant inherits alleles for white and pink flowers.A large population of caribou continues to increase. Complete the following tasks: a. Design a class named StockTransaction that holds a stock symbol (typically one to four characters), stock name, and price per share. Include methods to set and get the values for each data field. Create the class diagram and write the pseudocode that defines the class. b. Design an application that declares two StockTransaction objects and sets and displays their values. c. Design an application that declares an array of 10 StockTransaction objects. Prompt the user for data for each object, and then display all the values. d. Design an application that declares an array of 10 StockTransaction objects. Prompt the user for data for each object, and then pass the array to a method that determines and displays the two stocks with the highest and lowest price per share. if the cpi for a given year is 170 and the price of a basket of goods is $40 in the base year, what is the price of the basket in the given year? a $4.25 b $23 c $68 d $40 e $130 calculate the mass percent of nickel chlorate in a solution made by dissolving 0.265 g ni(clo3)2 in 10.00 g water Select ALL the sentences of FOL. -Mix) Ex(H(x)&x=p) Op-b AxAy(L(x,y)->Lly.a) Plxa) Pa) P(x) -m(b) code written in .net is reusable in other .net projects, even if the other project is targeted to a different platform (web, desktop, mobile...) (True or False)