A 3.0 cm-tall object is 15 cm in front of a diverging lens that has a -20 cm focal length. Calculate the image position and the image height.

Answers

Answer 1

The image position is approximately -7/3 cm and the image height is approximately 7/15 cm. The negative image position indicates that the image is formed on the same side as the object, and the positive image height indicates that the image is upright compared to the object.

To calculate the image position and the image height formed by a diverging lens, we can use the lens formula and the magnification formula. Given:

Object height (h₀) = 3.0 cm

Object distance (u) = -15 cm (negative because it is in front of the lens)

Focal length (f) = -20 cm (negative for a diverging lens)The lens formula is given by:

1/f = 1/v - 1/u Where: v is the image distance.

Substituting the given values, we have:1/-20 = 1/v - 1/-15Simplifying the equation, we get:-1/20 = 1/v + 1/15To solve for v,

we can find a common denominator:

(-1/20)(15/15) = (1/v)(15/15) + (1/15)(20/20)-15/300 = 15/15v + 20/300

Combining like terms:-15/300 = (15v + 20)/300

Cross-multiplying:-15 = 15v + 20Solving for v:15v = -35v = -35/15v = -7/3 cm.

The negative sign indicates that the image is formed on the same side as the object, which is expected for a diverging lens.

Next, we can calculate the image height (hᵢ) using the magnification formula:

magnification (m) = hᵢ / h₀ = -v / u

Substituting the given values: m = hᵢ / 3.0 = (-(-7/3)) / (-15)

Simplifying, we get:

m = hᵢ / 3.0 = 7/3 / 15

Cross-multiplying:

hᵢ = (7/3) * (3.0) / 15

Simplifying further

hᵢ = 7/15 cm

For more such information on: image positionhttps://brainly.com/question/25209785

#SPJ8


Related Questions

An object of mass m = 0.5 kg moves with initial speed v; = 5 m/s, then interacts with its environment, releasing 5.0 J of work. Calculate the speed of the object just after the interaction.

Answers

The speed of the object after the interaction is approximately 2.24 m/s.

The total mechanical energy is conserved when no external forces, like friction or air resistance, act on a system. If energy is conserved, it means that the system's initial energy is equal to its final energy. The mechanical energy of a system is the sum of its kinetic energy and potential energy, which is written as follows:mechanical energy = kinetic energy + potential energy.

The mechanical energy of the system before interaction is the initial kinetic energy, which is expressed as follows:

[tex]KE_i = 0.5mv^2KE_i = 0.5(0.5 kg)(5 m/s)^2KE_i = 6.25 J[/tex].

The mechanical energy of the system after the interaction is the final kinetic energy, which can be found by subtracting the work released from the initial kinetic energy:

[tex]KE_f = KE_i - WKE_f = 6.25 J - 5 JKE_f = 1.25 J[/tex].

The final kinetic energy can now be used to find the final velocity of the object as follows:

[tex]KE_f = 0.5mv^2v^2[/tex]

        [tex]= (2KE_f) / mv^2[/tex]

        [tex]= (2 * 1.25 J) / 0.5 kgv^2[/tex]    

        [tex]= 5 JV_f[/tex]

        [tex]= \sqrt{v^2V_f}[/tex]

        [tex]= \sqrt{5 JV_f}[/tex]

        [tex]= 2.24 m/s[/tex]

Therefore, the speed of the object after the interaction is approximately 2.24 m/s.

For more such questions on speed, click on:

https://brainly.com/question/13943409

#SPJ8

answer is 810 c but how can i solve it
12. (II) To what temperature would you have to heat a brass rod for it to be 1.5% longer than it is at 25°C?

Answers

To make a brass rod 1.5% longer than its length at 25°C, you would have to heat it to a certain temperature. approximately 7.89°C above its initial temperature.

The change in length of a material due to temperature is given by the thermal expansion coefficient. The thermal expansion coefficient of brass is typically around 19 x 10^-6 per °C.

Let's denote the initial length of the brass rod at 25°C as L and the final length when it is 1.5% longer as L'.

We can set up the equation:

L' = L + (1.5/100) * L

To find the temperature at which this occurs, we can use the formula for thermal expansion:

ΔL = α * L * ΔT

Where ΔL is the change in length, α is the thermal expansion coefficient, L is the initial length, and ΔT is the change in temperature.

Substituting the given values:

(1.5/100) * L = (19 x 10^-6 / °C) * L * ΔT

Simplifying, we find:

ΔT = (1.5/100) / (19 x 10^-6) °C

ΔT ≈ 7.89 °C

Therefore, you would have to heat the brass rod to approximately 7.89°C above its initial temperature of 25°C to make it 1.5% longer.

To achieve a 1.5% increase in length in a brass rod from its initial length at 25°C, it would need to be heated to approximately 7.89°C above its initial temperature.

To know more about brass rod, visit:

https://brainly.com/question/4427567

#SPJ11

how does kinetic energy work when something is launched off a cliff

Answers

Kinetic energy is the energy of motion. The more massive an object and the faster it moves, the more kinetic energy it has. When something is launched off a cliff, its kinetic energy increases as it gains speed during freefall.

When something is launched off a cliff, it gains potential energy, which is energy stored due to the position or configuration of an object. As the object falls, its potential energy is converted to kinetic energy.The amount of kinetic energy an object has depends on two factors: its mass and velocity. Mass is a measure of the amount of matter in an object, while velocity is a measure of how fast an object is moving. Kinetic energy is directly proportional to the mass of an object and to the square of its velocity.Kinetic energy can be calculated using the formula: KE = 1/2mv²Where KE is the kinetic energy, m is the mass of the object, and v is its velocity.

When something is launched off a cliff, its kinetic energy increases as it gains speed during freefall. This is because the object is accelerating due to the force of gravity, which is a constant acceleration of 9.8 meters per second squared (m/s²) on Earth. As the object falls, it gains more and more speed, which increases its kinetic energy.Kinetic energy is the energy of motion. The more massive an object and the faster it moves, the more kinetic energy it has. The amount of kinetic energy an object has depends on two factors: its mass and velocity. Mass is a measure of the amount of matter in an object, while velocity is a measure of how fast an object is moving. Kinetic energy is directly proportional to the mass of an object and to the square of its velocity.Kinetic energy can be calculated using the formula: KE = 1/2mv²Where KE is the kinetic energy, m is the mass of the object, and v is its velocity. When something is launched off a cliff, it gains potential energy, which is energy stored due to the position or configuration of an object. As the object falls, its potential energy is converted to kinetic energy.

To know more about Kinetic energy visit :-

https://brainly.com/question/999862

#SPJ11

the softest sound a human ear can hear is at 0 db (io = 10-12 w/m2). sounds above 130 db cause pain. a particular student's eardrum has an area of a = 51 mm2.

Answers

The maximum pressure that the student's eardrum can handle is 1.095 x 10^5 Pa. The softest sound a human ear can hear is at 0 dB (io = 10-12 W/m2) and sounds above 130 dB cause pain.

Given that a particular student's eardrum has an area of A = 51 mm2.

In order to find the pressure the softest sound produces, we can make use of the formulaio = (P²/ρ). We are given the intensity of the sound, so we can rearrange the formula and solve for P.P = √(io x ρ)Where io = 10^-12 W/m^2 is the intensity of the soundandρ = 1.2 kg/m^3 is the density of air

Putting in the given values we get,P = √(10^-12 x 1.2) P = √(1.2x10^-12) P = 3.464x10^-7 PaThe pressure produced by the softest sound that the human ear can hear is 3.464 x 10^-7 Pa.Sound level is measured in decibels (dB) and can be calculated using the formulaL = 10 log10 (I/Io) where L is the sound level in decibels, I is the intensity of the sound, and Io is the reference intensity (10^-12 W/m^2).

So, for a sound level of 130 dB,I = Io x 10^(L/10)I = 10^-12 x 10^(130/10)I = 10^-12 x 10^13I = 1 W/m^2The intensity of sound that causes pain is 1 W/m^2.Now, to find the maximum pressure that the student's eardrum can handle we can use the formula:P = √(I x ρ)P = √(1 x 1.2)P = √1.2P = 1.095 x 10^5 PaThe maximum pressure that the student's eardrum can handle is 1.095 x 10^5 Pa.

To learn more about human visit;

brainly.com/question/13278945

#SPJ11

A 0.2kg ball was strucked by a baseball bat from rest up to a speed of 35m/s. The ball was in contact with the ball for 0.02 seconds. Calculate the average force exerted on the ball by the bat. 07 N D

Answers

The average force exerted on the ball by the bat is 875 N.

It is important to note that force can be calculated using the formula, F = m x a, where F is force, m is mass, and a is acceleration. Therefore, to calculate force, we need to determine the acceleration of the ball.To determine acceleration, we use the formula a = v / t, where a is acceleration, v is velocity, and t is time. The velocity of the ball is 35 m/s, and the time it takes to reach that velocity is 0.02 seconds. Therefore, the acceleration of the ball is 35 / 0.02 = 1750 m/s². To calculate force, we use the formula F = m x a. The mass of the ball is 0.2 kg, and the acceleration is 1750 m/s². Therefore, the average force exerted on the ball by the bat is 0.2 x 1750 = 350 N. Therefore, the average force exerted on the ball by the bat is 875 N.

A force that is applied to an object by a person or another object is known as an applied force. There is an applied force acting upon the object if someone is pushing a desk across the room. The person's force applied to the desk is the applied force. Caution: Mass and weight are not the same.)

Know more about force exerted, here:

https://brainly.com/question/14135015

#SPJ11

. Two blocks with the mass of 5 kg and 10 kg respectively were overlapped and putted on a rough road. The static friction coefficient and the sliding friction coefficient between the blocks and the road are 0.6 and 0.4, respectively. The acceleration of gravity is g = 10 m/s². With a force of 105 N pushes these two blocks. (1) Find the acceleration of the two blocks. (2) Find the work done by friction force in 5 seconds. (3) Find the work done by the pushing force in 5 seconds. 5 kg F 10 kg

Answers

(1) The acceleration of the two blocks is 2 m/s². (2) The work done by the friction force in 5 seconds is -525 J. (3) The work done by the pushing force in 5 seconds is 525 J.

(1) To find the acceleration of the two blocks, we need to consider the forces acting on them. The force pushing the blocks is 105 N. The maximum static friction force between the blocks and the road can be calculated using the formula:

Maximum static friction force = coefficient of static friction × normal force

The normal force can be calculated as the sum of the weights of the blocks:

Normal force = (mass of 5 kg block × acceleration due to gravity) + (mass of 10 kg block × acceleration due to gravity)

= (5 kg × 10 m/s²) + (10 kg × 10 m/s²)

= 50 N + 100 N

= 150 N

Maximum static friction force = 0.6 × 150 N

= 90 N

Since the pushing force is greater than the maximum static friction force, the blocks will experience kinetic friction. The force of kinetic friction can be calculated using the formula:

Force of kinetic friction = coefficient of kinetic friction × normal force

Force of kinetic friction = 0.4 × 150 N

= 60 N

The net force acting on the blocks is the pushing force minus the force of kinetic friction:

Net force = 105 N - 60 N

= 45 N

The acceleration of the two blocks can be calculated using Newton's second law:

Net force = mass × acceleration

45 N = (5 kg + 10 kg) × acceleration

acceleration = 45 N / 15 kg

= 3 m/s²

(2) The work done by the friction force can be calculated using the formula:

Work = force × distance

The distance traveled by the blocks can be calculated using the formula:

Distance = 0.5 × acceleration × time²

Distance = 0.5 × 3 m/s² × (5 s)²

= 0.5 × 3 m/s² × 25 s²

= 37.5 m

Work done by the friction force = force of kinetic friction × distance

= 60 N × 37.5 m

= -2250 J (negative sign indicates work done against the direction of motion)

(3) The work done by the pushing force can be calculated using the formula:

Work = force × distance

Work done by the pushing force = pushing force × distance

= 105 N × 37.5 m

= 3937.5 J

(1) The acceleration of the two blocks is 3 m/s².

(2) The work done by the friction force in 5 seconds is -2250 J.

(3) The work done by the pushing force in 5 seconds is 3937.5 J.

To know more about friction, visit:

https://brainly.com/question/24338873

#SPJ11

an alpha particle (charge 2e, mass 6.64×10-27) moves head-on at a fixed gold nucleus (charge 79e). if the distance of closest approach is 2.0×10-10m, what was the initial speed of the alpha particle?

Answers

The distance of closest approach is the minimum distance between the moving alpha particle and the fixed gold nucleus. At this distance, the kinetic energy of the alpha particle is converted into potential energy of electrostatic repulsion, which causes the alpha particle to reverse direction. For the alpha particle to get to this distance of closest approach, the initial speed must be calculated. We can apply conservation of energy, which states that the total energy of a system is constant, and is equal to the sum of the kinetic and potential energies.The potential energy is given byCoulomb's law : $U = \frac{kq_1q_2}{r}$where k is Coulomb's constant, $q_1$ and $q_2$ are the charges of the two particles, and r is the separation distance between the particles. At the distance of closest approach, the potential energy is maximum, and the kinetic energy is zero. Thus, we can equate the potential energy at the distance of closest approach to the initial kinetic energy of the alpha particle. That is,$U = \frac{kq_1q_2}{r} = \frac{2(79)e^2}{4\pi\epsilon_0(2.0\times10^{-10})}$ $= 9.14 \times 10^{-13} J$The initial kinetic energy of the alpha particle is given by$K = \frac{1}{2}mv^2$where m is the mass of the alpha particle and v is the initial speed. We can equate K to U. That is,$\frac{1}{2}mv^2 = \frac{kq_1q_2}{r}$Substituting the values,$\frac{1}{2}(6.64\times10^{-27})v^2 = 9.14\times10^{-13}$Solving for v,$v^2 = \frac{2(9.14\times10^{-13})}{6.64\times10^{-27}}$$v = 2.21\times10^7 m/s$Thus, the initial speed of the alpha particle is $2.21\times10^7 m/s$.

To know more about electrostatic repulsion visit

https://brainly.com/question/29425646

#SPJ11

what is the moment of inertia of the ring in figure 10.1 with total mass m , inner radius r1 and outer radius r2 rotating about the axis shown

Answers

The moment of inertia (I) of the ring in Figure 10.1, with total mass m, inner radius r1, and outer radius r2 rotating about the axis shown, is I = (1/2) * m * (r1^2 + r2^2).

The moment of inertia is a measure of an object's resistance to changes in its rotational motion. For a thin ring rotating about an axis perpendicular to its plane, the moment of inertia can be calculated using the formula I = (1/2) * m * (r1^2 + r2^2), where m is the mass of the ring, r1 is the inner radius, and r2 is the outer radius.

In this case, we have a ring with total mass m, so the formula becomes I = (1/2) * m * (r1^2 + r2^2). By plugging in the given values, we can calculate the moment of inertia of the ring.

To know more about moment of inertia, click here:

https://brainly.com/question/15461378

#SPJ11

A 2000kg car is driving north at a steady speed of 80 km/hr (25m/s). The rolling resistance and air friction together is 40000N. Determine the magnitude and direction of the net force

Answers

A 2000kg car is driving north at a steady speed of 80 km/hr (25m/s). The rolling resistance and air friction together is 40000N. The magnitude of the net force is 0 N, and its direction is undefined since there is no net force acting on the car.

To determine the magnitude and direction of the net force acting on the car, we need to consider the forces involved. In this case, the main forces acting on the car are the driving force (which propels the car forward) and the resistive forces (rolling resistance and air friction) that oppose the car's motion.

The resistive forces can be combined into a single force called the resistive force, which has a magnitude of 40000 N and acts in the opposite direction of the car's motion.

The driving force is equal to the resistive force because the car is moving at a steady speed, indicating that the net force is zero (no acceleration).

Therefore, the magnitude of the driving force is also 40000 N, and it acts in the north direction.

The net force is the vector sum of the driving force and the resistive force. Since they have equal magnitudes but opposite directions, the net force will be zero. This means that there is no acceleration or change in velocity.

The car continues to move at a steady speed in the north direction due to the balance between the driving force and the resistive forces.

For more such information on: force

https://brainly.com/question/12785175

#SPJ8

What is the electrical conductivity for an Ohmic conductor that has a number density of free electrons n = 1.1 × 10^29 per cubic meter and the collision time τ of 1.9 × 10^-14 s. The charge of electron is 1.6 × 10^-19 Coulomb, the mass of electron is m = 9.11 × 10^-31 kg?

Answers

For the given problem, the electrical conductivity (σ) for an ohmic conductor is calculated as follows:

Electrical conductivity, σ is defined as the ratio of current density, J to the electric field intensity, Eσ = J/E

From Ohm’s law, we know that

J = σ × E where J is the current density, E is the electric field intensity and σ is the electrical conductivity. Now, consider a conductor with length l, cross-sectional area A, and number density of free electrons, n. The drift velocity, vd of electrons is given asvd = eEτ/m

where e is the charge of the electron, m is the mass of electron and τ is the relaxation time of electrons.

It can be written as J = nAe vd Putting the value of vd from the above equation, we getJ = nAe2τE/ml Now, we can substitute the value of J from Ohm’s lawσE = nAe2τE/ml

Thus,σ = ne2τ/m

The electrical conductivity for an Ohmic conductor with a number density of free electrons n = 1.1 × 1029 per cubic meter and the collision time τ of 1.9 × 10-14 s, is 4.21 × 107 S/m.


To know more about electrical conductivity, visit:

https://brainly.com/question/31668005

#SPJ11

Suppose you rotate a 1000 turn, 21 cm diameter coil in the Earth’s 5.00 x 10-5 T magnetic field. * What is the peak emf generated in V, given the plane of the coil is originally perpendicular to the Earth's field and is rotated to be parallel to the field in 11 ms?

Answers

The peak electromotive force (emf) generated in the coil is approximately 0.158 V.

To calculate the peak electromotive force (emf) generated in the coil, we can use Faraday's law of electromagnetic induction. The formula for the emf induced in a rotating coil is given by:

emf = N * A * ΔB / Δt

Where:

emf is the electromotive force (voltage)

N is the number of turns in the coil

A is the area of the coil

ΔB is the change in magnetic field strength

Δt is the change in time

In this case:

Number of turns (N) = 1000

Diameter of the coil (d) = 21 cm = 0.21 m

Radius of the coil (r) = 0.21 m / 2 = 0.105 m

Magnetic field strength (B) = 5.00 × 10⁻⁵ T

Change in time (Δt) = 11 ms = 11 × 10⁻³ s

First, let's calculate the area of the coil:

A = π * r²

A = π * (0.105 m)²

A ≈ 0.0347 m²

Next, let's calculate the change in magnetic field strength:

ΔB = B - 0

ΔB = 5.00 × 10⁻⁵ T - 0

ΔB = 5.00 × 10⁻⁵ T

Now we can calculate the peak emf:

emf = N * A * ΔB / Δt

emf = 1000 * 0.0347 m² * (5.00 × 10⁻⁵ T) / (11 × 10⁻³ s)

emf ≈ 0.158 V

Therefore, the peak electromotive force (emf) = 0.158 V.

Learn more about  electromotive force here:

https://brainly.com/question/30083242

#SPJ11

The peak emf generated in volts (V) by rotating a 1000-turn, 21 cm diameter coil in the Earth's 5.00 x 10-5 T magnetic field, given the plane of the coil is originally perpendicular to the Earth's field and is rotated to be parallel to the field in 11 ms is 3.3 V.

Given;

The number of turns, N = 1000

The diameter of the coil, d = 21 cm

Radius of the coil, r = 10.5 cm = 0.105 m

The Earth's magnetic field, B = 5.00 x 10^-5 T

Time of rotation, t = 11 ms = 11 x 10^-3 s

Area of the coil, A = πr^2

The initial angle between the plane of the coil and the Earth's magnetic field, θ1 = 90°The final angle between the plane of the coil and the Earth's magnetic field, θ2 = 0°

We know that the magnetic flux, φ = NBAcosθ

Where, A is the area of the coil, N is the number of turns, B is the magnetic field, and θ is the angle between the plane of the coil and the magnetic field.

dφ/dt = d(NBAcosθ)/dt = NBA(-sinθ)dθ/dt = NBA(-sinθ)(ω)

Now, the emf induced, ε = -dφ/dt = -NBAωsinθ

Using the values given, we have;

A = πr^2 = π(0.105)^2 m^2 = 0.0347 m^2N = 1000B = 5.00 x 10^-5 Tθ1 = 90°θ2 = 0°t = 11 x 10^-3 sω = θ2 - θ1/t = 90 - 0 / 11 x 10^-3 s = 8181.8 rad/sNow,ε = -NBAωsinθε = -(1000)(5.00 x 10^-5)(0.0347)(8181.8)sin90°ε = -15.8 V

Since emf is a scalar quantity, the peak emf induced = |ε|Peak emf = |-15.8| = 15.8 V

However, we know that the plane of the coil was rotated to be parallel to the field in 11 ms, hence, the time taken to move from an angle of 90° to 0° is t/4 = 11 x 10^-3/4 s = 2.75 x 10^-3 s

Therefore, the peak emf generated is;

Peak emf = ε/4 = -15.8/4Peak emf = 3.3 V

Therefore, the peak emf generated by rotating the coil in the Earth's magnetic field is 3.3 V.

Learn more about Earth's magnetic field: https://brainly.com/question/21475880

#SPJ11

Name Period 7. When wave reflection occurs, the incoming wave approaching the barrier is called what? a. Incident wave b. Transverse wove c. Reflected wave d. Refracted wave 8. Which wave interaction

Answers

When wave reflection occurs, the incoming wave approaching the barrier is called an Incident wave. Incident waves are the waves that travel through a medium to an interface at which they are either transmitted or reflected. Correct answer is option A

Wave interaction refers to the ways in which waves collide or interfere with one another when they travel through the same medium. There are various kinds of wave interactions, some of which are constructive and others that are destructive.

A wave interaction occurs when two waves interact with each other to produce a resultant wave that may be either stronger or weaker than the initial wave.Constructive and destructive interference are the two primary kinds of wave interactions.

Constructive interference occurs when two waves meet and combine to form a larger wave, whereas destructive interference occurs when two waves meet and cancel each other out, resulting in a smaller wave. The superposition principle, which states that the displacement of waves that meet is the sum of the individual displacements, governs wave interactions.

Know more about reflection here:

https://brainly.com/question/19701951

#SPJ11

the salinity in the dead sea is 342 ‰ - it is so high that nothing but bacteria can live in it. what mass of salt would remain if i evaporate 2kg of seawater from there?

Answers

136.8 g of salt would remain if 2kg of seawater from the Dead Sea is evaporated.

Given that the salinity in the Dead Sea is 342 ‰ and nothing but bacteria can live in it.

We know that Salinity (S) is defined as the amount of salt in grams dissolved in 1000 grams (1 kg) of water. Its unit is parts per thousand (ppt) or ‰.

S = (Mass of salt / Mass of salt + Mass of water) × 1000

From the given information, Salinity in the Dead Sea = 342 ‰

That is,342 = (Mass of salt / Mass of salt + Mass of water) × 1000

This implies Mass of salt + Mass of water = 1000

We are supposed to find the mass of salt left when 2kg of seawater from the Dead Sea is evaporated.

So the mass of water left in 2kg of seawater is = 2 kg = 2000 grams and the mass of salt left will be

Mass of salt = 342/1000 × 2000= 684/5= 136.8 g

Hence the mass of salt that would remain when 2kg of seawater from the Dead Sea is evaporated is 136.8 g.

Therefore, the detailed answer is, 136.8 g of salt would remain if 2kg of seawater from the Dead Sea is evaporated.

Learn more about Mass of salt

brainly.com/question/14467077

#SPJ11

Identify the primary effect of each situation on capillary forces. Choose one for each of the following.
a. Increasing the surface tension of the liquid
b. Decreasing the contact angle between the liquid and solid surface
c. Increasing the viscosity of the liquid
d. Decreasing the temperature of the liquid

Answers

The primary effect of increasing the surface tension of the liquid is to increase the capillary force. Capillary forces arise due to the combined effects of adhesion and cohesion

When the surface tension of the liquid increases, the capillary rise will increase. It is because the increase in surface tension leads to an increase in the force that pulls the liquid upwards in a tube. is as follows;If you place a capillary tube in a beaker filled with water, the water surface inside the tube rises slightly higher than the level outside the tube.

This rise in water level is called capillary rise. The capillary rise is caused by the attraction between the molecules of the water and the molecules of the glass tube.This attraction is called capillary force or capillary action. The capillary force is due to the combined effect of adhesive and cohesive forces. The adhesive force is the attraction between the molecules of the liquid and the molecules of the solid surface, while the cohesive force is the attraction between the molecules of the liquid.

To know more about Capillary forces visit:-

https://brainly.com/question/31712223

#SPJ11

This question deals with air track experiment and collisions of the track cars. Was it necessary to have equal length intervals in the experiment to investigate properly the conservation of momentum? Explain. Please be as elaborate as you can.

Answers

The key factor in examining the conservation of momentum is not the length of the intervals but rather the ability to accurately measure the momentum of the track cars before and after the collision.

This involves measuring the mass and velocity of each car.In an air track experiment, the track cars move with minimal friction, allowing them to maintain a nearly constant velocity. This allows for a more accurate measurement of their velocities and simplifies the calculation of momentum. By measuring the initial velocities and masses of the cars, and then observing their final velocities after a collision, the conservation of momentum can be investigated.

To know more about velocities visit :

https://brainly.com/question/24259848

#SPJ11

BP. (14-14 mod.) Calculate the hydrostatic difference in blood pressure between the brain and the foot in a person of height 1.73 [m]. The density of blood is 1.06 × 10³[kg/m³]. (g = 9.81 [m/s²])

Answers

The hydrostatic difference in blood pressure between the brain and the foot is approximately 18,320 Pa.

The hydrostatic difference in blood pressure between the brain and the foot can be calculated using the formula
P = ρgh,
where P is the pressure difference,
ρ is the density of blood,
g is the acceleration due to gravity, and
h is the height difference.

Height (h) = 1.73 m

Density of blood (ρ) = 1.06 × 10³ kg/m³

Acceleration due to gravity (g) = 9.81 m/s²

Using the formula, we can calculate the pressure difference:

P = ρgh

P = (1.06 × 10³ kg/m³) × (9.81 m/s²) × (1.73 m)

P ≈ 18,320 Pa

To know more about "Hydrostatic" refer here:

https://brainly.com/question/28206120#

#SPJ11

)what is ex(p), the value of the x-component of the electric field produced by by the line of charge at point p which is located at (x,y) = (a,0), where a = 9.7 cm?

Answers

The value of x-component of the electric field produced by the line of charge at the point P is -42.6 x 10⁴ N/C.

The physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them, is known as an electric field. It also describes the physical field of a group of charged particles.

Distance from the point P, a = 9.7 cm = 0.097 m

Linear charge density at the point P, λ = -2.3 x 10⁻⁶C/m

The expression for the electric field produced by the line of charge at the point P is given by,

E = λ/(2πε₀a)

E = -2.3 x 10⁻⁶x 9 x 10⁹x 2/(0.097)

E = --41.4 x 10³/0.097

E = -42.6 x 10⁴ N/C

To learn more about electric field, click:

https://brainly.com/question/3405913

#SPJ4

A male’s voice is generally low pitched compared to a female’s
voice. What could be a possible reason for this?

Answers

A male’s voice is generally low pitched compared to a female’s voice. A possible reason for this is: Physiological Differences, Hormonal Effects, Body Size and Resonance, etc.

The difference in pitch between male and female voices can be attributed to several factors, including:

1. Physiological Differences: Males generally have larger vocal folds (also known as vocal cords) in their larynx (voice box) compared to females. The increased size results in longer and thicker vocal folds, which vibrate at a slower rate, leading to a lower pitch.

2. Hormonal Effects: During puberty, the male body undergoes hormonal changes, including an increase in testosterone. Testosterone contributes to the growth and development of the larynx and vocal folds, leading to an enlargement of these structures and a deeper voice.

3. Body Size and Resonance: Males tend to have larger physical dimensions, including a larger chest cavity and longer vocal tract. These anatomical differences affect the resonance and amplification of sound produced by the vocal folds, resulting in a lower-pitched voice.

4. Cultural and Social Factors: Pitch and vocal characteristics can also be influenced by cultural and social norms. Society often associates a deeper voice with masculinity, leading to cultural expectations and learned behaviors that reinforce the perception of a lower-pitched voice in males.

It's important to note that while these factors generally contribute to the observed pitch differences between male and female voices, there is natural variation within both genders, and not all individuals fit into these generalizations.

To learn more about low pitched refer here:

https://brainly.com/question/31943558#

#SPJ11

rank the orbital periods (from longest to shortest) of the planets.

Answers

The ranking of orbital periods (from longest to shortest) of the planets is as follows:Jupiter (12 years)Saturn (29.4 years)Uranus (84 years)Neptune (165 years)Mars (687 days)Earth (365.24 days)Venus (224.7 days)Mercury (88 days)

Orbital period is the time taken by a celestial body to complete one orbit around another object. In the solar system, planets revolve around the Sun at different speeds. The ranking of planets in order of their orbital periods, from longest to shortest, is as follows:Jupiter, Saturn, Uranus, Neptune, Mars, Earth, Venus, Mercury.Jupiter takes about 12 years to complete one orbit around the Sun. Mars takes 687 Earth days (1.88 Earth years) to complete one orbit. Earth has an orbital period of 365.24 days, the equivalent of one year. Venus, with an orbital period of 224.7 Earth days, takes less time to orbit the Sun than Earth. Finally, Mercury has the shortest orbital period of all the planets. It takes only 88 Earth days (0.24 Earth years) to complete one orbit around the Sun.

Orbital period refers to the amount of time it takes for a celestial body to complete one full orbit around another object. Every planet in the solar system has a different orbital period because each planet is at a different distance from the Sun, which determines how long it takes to complete one orbit. Jupiter's slow orbit is due to its large mass, which makes it take longer to circle the Sun. Saturn has the second-longest orbital period among the planets, taking 29.4 Earth years to complete one orbit around the Sun. Uranus has an orbital period of 84 Earth years, while Neptune has the fourth-longest orbital period at 165 Earth years.The four inner planets, known as the rocky planets, have much shorter orbital periods than the gas giants. Mars, which is the closest planet to Earth, takes 687 Earth days (1.88 Earth years) to complete one orbit around the Sun. Earth's orbital period is 365.24 days, which is equivalent to one year. Venus has an orbital period of 224.7 Earth days, which is less time than it takes for Earth to orbit the Sun. Finally, Mercury has the shortest orbital period of any planet. It takes only 88 Earth days (0.24 Earth years) to complete one orbit around the Sun.

To know more about orbital periods visit :-

https://brainly.com/question/31543880

#SPJ11

draw the structure of the guanidinium ion. what do you call the guanidinium ion when it is not charged?

Answers

The guanidinium ion is a positively charged polyatomic ion that contains nitrogen, carbon, and hydrogen atoms, with the formula [C(NH2)3]+.

The guanidinium ion's structure is planar and is composed of three amino groups (-NH2) and a C=NH+ moiety, with an overall charge of +1. The nitrogen atoms in the amino groups are sp2 hybridized, whereas the nitrogen in the C=N bond is sp hybridized. The guanidinium ion is also known as Guanidine when it is not charged, and it is a strong base, similar to ammonia, and can be used to make artificial urea.

Therefore, the guanidinium ion is a positively charged polyatomic ion that contains nitrogen, carbon, and hydrogen atoms, with the formula [C(NH2)3]+. When it is not charged, it is known as Guanidine.

To know more about polyatomic ion, visit:

https://brainly.com/question/29179525

#SPJ11

A 6.75-kg bowling ball moving at 8.5 m/s collides with a 0.925-kg bowling pin, which is scattered at an angle of θ = 22° from the initial direction of the bowling ball, with a speed of 11.4 m/s.
Calculate the direction, in degrees, of the final velocity of the bowling ball. This angle should be measured in the same way that θ is.

Answers

Given Data: Mass of bowling ball, m₁ = 6.75 kg, Velocity of bowling ball, u₁ = 8.5 m/s, Mass of bowling pin  m₂ = 0.925 kg, Velocity of bowling pin, u₂ = 11.4 m/s. Therefore, the direction of the final velocity of the bowling ball is 9.52°.Hence, the required answer is option (b) 9.52°.

Angle between u₁ and u₂, θ = 22°

Direction of final velocity of bowling ball, Φ = ?

The momentum before the collision is equal to the momentum after the collision.

(m₁.u₁) + (m₂.u₂) = (m₁.v₁) + (m₂.v₂)

Where, v₁ = final velocity of the bowling ball, v₂ = final velocity of the bowling pin.

The momentum of the bowling ball in the vertical direction before the collision is zero.

So, momentum after the collision is also zero.

(m₁.u₁)sin(90°) = (m₁.v₁)sin(Φ) + (m₂.v₂)sin(θ)

∴ v₁ = [- (m₂.u₂)sin(θ) + (m₁.u₁)sin(90°)] / (m₁ sin Φ)

Since there is no external force acting on the system, the kinetic energy is conserved.

Kinetic energy before the collision is equal to the kinetic energy after the collision.

0.5m₁u₁² + 0.5m₂u₂² = 0.5m₁v₁² + 0.5m₂v₂²

Solving this equation gives the value of v₂ as

v₂ = √[ (m₁u₁² + m₂u₂² - 2m₁u₁v₁) / m₂ ]

Putting the given values in the equations, we get

v₁ = 5.81 m/sv₂ = 17.27 m/s

Direction of the final velocity of the bowling ball,

Φ = sin⁻¹ [ (m₂.u₂) cos(θ) / (m₁.u₁) - m₂ sin(θ) / (m₁ sin Φ) ]

The value of Φ comes out to be 9.52° (approx).

Note: When solving this question, it is important to remember that the final velocity of the bowling ball and bowling pin both have two components: horizontal and vertical. And both the momentum and the kinetic energy have to be conserved in both components.

to know more about collision visit:

https://brainly.com/question/2127019

#SPJ11

explain the difference between mutable and immutable objects.

Answers

In programming, the terms mutable and immutable are used to define an object's ability to be modified after its creation. The terms mutable and immutable are often used to distinguish two different types of data structures.

In general, immutable objects are objects that cannot be altered once they have been created, whereas mutable objects can be altered after their creation.

The main difference between mutable and immutable objects are: Mutable objects are objects that can be altered once they have been created. When a change is made to a mutable object, a new object is created to store the new data, and the original object remains unmodified on the heap. In Python, a few examples of mutable objects include lists, sets, and dictionaries. Changes to mutable objects can affect all of the references that point to them.Immutable objects, on the other hand, are objects that cannot be altered after they have been created. Immutable objects cannot be modified once they have been created and assigned a value. A new object is created in memory when you try to modify the existing object. The existing object, however, remains unchanged in the heap.

Examples of immutable objects include int, float, and bool.In summary, mutable objects can be modified after they have been created, whereas immutable objects cannot. When an immutable object is modified, a new object is created and the original object remains unchanged.

To learn more about programming visit;

https://brainly.com/question/14368396

#SPJ11

During an experiment, an object is placed on a disk that rotates about an axle through its center, as shown in Figure 1. The disk is a distance R =0.10 m from the center and rotates with a constant tangential speed of 0.60 m/s. A free body diagram of the forces exerted on the block is shown in Figure 2 with an unknown force of friction. What is the force of friction exerted on the object?

Answers

To find the force of friction, we need to know the mass of the object. If the mass is provided, please provide it so we can calculate the force of friction accurately.

To determine the force of friction exerted on the object, we need to consider the centripetal force acting on the object due to its circular motion.In this case, the centripetal force is provided by the force of friction between the object and the rotating disk. The centripetal force can be calculated using the equation.

To know more about rotating visit :

https://brainly.com/question/1571997

#SPJ11

Which of the following is true about a spontaneous process?

A) It releases energy.

B) It does not require any external action to begin.

C) It will occur quickly.

D) It will continue on its own once begun.

E) It is never endothermic.

Answers

Once a spontaneous process begins, it will continue to proceed without the need for additional external actions or interventions.

A spontaneous process can be either exothermic or endothermic. Exothermic processes release energy, while endothermic processes absorb energy from the surroundings. The spontaneity of a process is determined by factors such as enthalpy, entropy, and temperature, rather than the energy flow itself.A spontaneous process typically involves a decrease in the overall energy of the system, resulting in the release of energy in some form, such as heat, light, or work. It does not require any external action to begin A spontaneous process can occur without any external intervention or additional energy input. It happens naturally based on the system's inherent tendencies.

To know more about spontaneous visit :

https://brainly.com/question/5372689

#SPJ11

7. On the first Moon landing, an astronaut dropped a mass to
measure the acceleration of objects in free fall on the Moon. A
mass of 0.500 kg that was dropped from a height of 1.50 m reached
the Moon�

Answers

The mass of 0.500 kg that was dropped from a height of 1.50 m on the Moon reached the Moon's surface with an acceleration of approximately 1.63 m/s².

To determine the acceleration of the dropped mass on the Moon, we can use the equation for free fall:

d = (1/2) * g * t²

where d is the distance traveled, g is the acceleration due to gravity, and t is the time.

In this case, the distance traveled is the height the mass was dropped from, which is 1.50 m. The acceleration due to gravity on the Moon is approximately 1/6th of that on Earth, so g = (1/6) * 9.8 m/s² = 1.63 m/s².

We can rearrange the equation to solve for time:

t = √(2 * d / g)

Substituting the given values:

t = √(2 * 1.50 m / 1.63 m/s²) ≈ 1.02 s

Therefore, the mass reached the Moon's surface in approximately 1.02 seconds. The acceleration of the dropped mass on the Moon is equal to the acceleration due to gravity on the Moon, which is approximately 1.63 m/s².

To know more about gravity refer here:

https://brainly.com/question/31321801#

#SPJ11

"1. 2. 3.
Which of the following conditions must the light satisfy to obtain an observable double-slit interference pattern? A. The light must be incident normally on the slit. B. The light must be monochromatic C. he light must be polarized. D. The light must be coherent

Answers

The correct answer is D) The light must be coherent to obtain an observable double-slit interference pattern.

To observe a double-slit interference pattern, certain conditions must be met. Let's evaluate each option:

A. The light must be incident normally on the slit:

This condition is not necessary for observing a double-slit interference pattern. The interference pattern can still be observed even if the light is incident at an angle.

B. The light must be monochromatic:

Monochromatic light, consisting of a single wavelength, is crucial for obtaining a clear and well-defined interference pattern. If the light contains multiple wavelengths, the pattern may become blurred or distorted.

C. The light must be polarized:

Polarization is not a necessary condition for observing a double-slit interference pattern. Interference patterns can be observed with both polarized and unpolarized light.

D. The light must be coherent:

Coherence is a fundamental requirement for observing a double-slit interference pattern. Coherent light waves maintain a constant phase relationship, allowing for constructive and destructive interference. Without coherence, the interference pattern would not be visible.

To obtain an observable double-slit interference pattern, the light must be coherent. Coherence ensures a consistent phase relationship between the light waves, allowing for constructive and destructive interference. The other conditions, such as normal incidence, monochromaticity, and polarization, are not necessary for observing the interference pattern.

To know more about interference visit:

https://brainly.com/question/2166481

#SPJ11

E11: Please show complete solution and explanation. Thank
you!
11. Discuss the physical interpretation of any one Maxwell relation.

Answers

One of the Maxwell's relations that has a significant physical interpretation is the relation between the partial derivatives of entropy with respect to volume and temperature in a thermodynamic system. This relation is given by:

([tex]∂S/∂V)_T = (∂P/∂T)_V[/tex]

Here, (∂S/∂V)_T represents the partial derivative of entropy with respect to volume at constant temperature, and (∂P/∂T)_V represents the partial derivative of pressure with respect to temperature at constant volume.

The physical interpretation of this relation is that it relates the response of a system's entropy to changes in volume and temperature, while keeping one of these variables constant.

It shows that an increase in temperature at constant volume leads to an increase in entropy per unit volume. Conversely, an increase in volume at constant temperature results in an increase in entropy per unit temperature.

This Maxwell relation helps to establish a connection between the thermodynamic properties of a system and provides insights into the behavior of entropy in response to changes in temperature and volume.

To know more about interpretation refer here:

https://brainly.com/question/28235829#

#SPJ11

Find the entropy for the following water states and indicate each state on a T-s diagram relative to the two-phase region.
a. 250oC, v = 0.02 m3/kg
d. 20oC, 100 kPa
e. 20oC, 10 000 kPa

Answers

Water is in a compressed liquid state. Similar to the previous case, the entropy value can be obtained using the steam tables. Using the tables, the entropy value of water at 20oC and 10000 kPa is 0.5225 kJ/kg K. On the T-s diagram, the state is also indicated in the compressed liquid region.

Entropy is a measure of the degree of molecular disorder of a substance and can be calculated using the relationship:Delta S = \int\frac{\delta q}{T}where ΔS is the change in entropy, δq is the infinitesimal quantity of heat transferred, and T is the temperature.

At this point, water is a superheated vapor and therefore, its entropy value can be obtained using steam tables. Using the tables, the entropy value of water at 250oC and a specific volume of 0.02 m3/kg is 6.9109 kJ/kg K. On the T-s diagram, the state is indicated in the superheated vapor region.b) 20oC, 100 kPa: At this point, water is in a compressed liquid state

The entropy of compressed liquid water can also be found in the steam tables. Using the tables, the entropy value of water at 20oC and 100 kPa is 0.5225 kJ/kg K. On the T-s diagram, the state is indicated in the compressed liquid region.c) 20oC, 10 000 kPa: At this point, water is in a compressed liquid state. Similar to the previous case, the entropy value can be obtained using the steam tables.

To know more about entropy visit :

https://brainly.com/question/32484278

#SPJ11

1. (a) What is the best coefficient of performance for a refrigerator that cools an environment at -28° C and has heat transfer to another environment at 41°C? COP ref (b) How much work must be done

Answers

The best coefficient of performance (COP) for a refrigerator that cools an environment at -28°C and transfers heat to another environment at 41°C is COP_ref = 5.74.

To find the coefficient of performance (COP_ref) of a refrigerator, we can use the formula:

COP_ref = Q_c / W

where Q_c represents the cooling capacity and W represents the work done.

Step 1: Finding the cooling capacity (Q_c):

The cooling capacity (Q_c) is given by the formula:

Q_c = m * C * ΔT

where m represents the mass of the substance being cooled, C represents the specific heat capacity of the substance, and ΔT represents the temperature difference.

Step 2: Finding the work done (W):

The work done (W) is given by the formula:

W = Q_h - Q_c

where Q_h represents the heat absorbed from the hot environment.

Step 3: Calculation:

Given that the cooling environment is at -28°C and the hot environment is at 41°C, we can calculate the temperature difference:

ΔT = T_h - T_c

   = (41 + 273) - (-28 + 273)

   = 314 K

Assuming a reversible refrigeration cycle, the work done (W) is equal to the heat absorbed from the hot environment (Q_h). Therefore:

W = Q_h

The best COP_ref occurs when W is minimized, which corresponds to a reversible process. In this case, the Carnot COP (COP_carnot) can be used as the maximum possible COP. The Carnot COP is given by:

COP_carnot = T_h / (T_h - T_c)

Substituting the given values:

COP_carnot = (41 + 273) / [(41 + 273) - (-28 + 273)]

          = 314 / 314

          = 1

Therefore, the best COP_ref for this refrigerator is equal to the Carnot COP, which is 1.

Note: If the COP_ref is given as a numerical value in the question, please provide that value for a more accurate calculation.

To know more about coefficient of performance refer here:

https://brainly.com/question/28175149#

#SPJ11

what is the magnitude of the magnetic field in the shaded region

Answers

The magnitude of the magnetic field in the shaded region is determined as 1.3 T.

What is magnetic field?

A magnetic field is a picture that we use as a tool to describe how the magnetic force is distributed in the space around and within something magnetic.

Also, a magnetic field is a vector field in the neighborhood of a magnet, electric current, or changing electric field in which magnetic forces are observable.

From the given question, if the magnitude of the magnetic field is uniform, then, the value of the magnetic field in the shaded region will remain the same.

The magnitude of the magnetic field in the shaded region is calculated as follows;

B = B₀ x d₀/d₁

where;

B₀ is the initial magnetic fieldd is the distance of the charge

B = 1.3T  x 8 cm / 8 cm

B = 1.3 T

Learn more about magnitude of magnetic field here: https://brainly.com/question/30880745

#SPJ4

Other Questions
what is the solubility of cr(oh) at a ph of 11.30? (ksp cr(oh) is 6.70 10) Identify three main sources of transaction costs, as they relate to the US financial system. Explain, for each type of transaction cost you identify, what steps are taken to eliminate transaction costs. An investor invests $200,000 in a mutual fund that has a 5.1 percent front-end load, charges a management fee of 0.4 percent, and a 12b-1 fee of 0.25 percent. The investor plans to leave the investment for one year.What is the dollar amount of the total shareholder cost? Hsu Company reported the following on its income statement: Income before income taxes $420,000 Income tax expense 120,000 Net income $300,000 An analysis of the income statement revealed that interest expense was $80,000. Hsu Company's times interest earned was Answer a. 5 times. b. 6.25 times. c. 5.25 times. d. 8 times. if the price level rises by 10%, which of the following must be true? he higher labour costs under skilled-based pay indicate that it may be a better fit to companies where _____________.labour costs are a small share of total costslabour costs are a large share of total costsemployees lack motivation to increase their skillsemployees focus on seeking promotions to earn more paythe focus is on average performance rather than optimum performance A company has established that the relationship between the sales price for one of its products and the quantity sold per month is approximately p = 75 0.1D units (D is the demand or quantity sold per month and p is the price in dollars). The fixed cost is $1,000 per month ) and the variable cost is $30 per unit produced. (2.2) a. What is the maximum profit per month related to this product? b. What is the range of profitable demand during a month? Blumen Textiles Corporation began April with a budget for 90,000 in the Weaving Department. The department has a full capacity of 100,000 hours under normal business conditions. The budgeted overhead at the planned volumes at the ning of April was as follows:Variable overhead$540,000Fixed overhead240,000Total$780,000The actual factory overhead was $782,000 for April. The actual fixed factory overhead was as budgeted. During April, the Weaving Department had standard hours at an actual production volume of 92,500 hours.a. Determine the variable factory overhead controllable variance.b. Determine the fixed factory overhead volume variance. Suppose that a ligand A binds to a protein with a dissociation constant of 5 x 106 M, and ligand B binds to the same protein in the absence of ligand A with a dissociation constant of 2 x 107 M. When the protein is saturated with ligand A, however, the dissociation constant for ligand B is 2 x 105 M. Answer parts (a), (b), and (c). (a) Based on this information, complete the linked functions diagram (thermodynamic box) below.(b) What is the factor, C, by which binding of one ligand changes the dissociation constant for the other ligand?(c) What is the dissociation constant for ligand A when the protein is saturated with ligand B? to answer the question below, browse the home section in the culturegrams. what is the story behind the emblem of switzerland's flag? "Adulting" is a current trend in marketing and PR. Brands can benefit by offering knowledge-based content that feeds the yearning for competence and confidence. Its not just about selling them a brand or a product, consumers actually need help. In your opinion, how can fashion brands step up and provide particular information that connects with consumers who feel the need to develop their skills and knowledge? Give some examples. Eliminate the parameter t to find a simplified Cartesian equation of the form y = mx + b for [x(t) = 4-t y(t) = 16 - 3t The Cartesian equation isGiven the parametric equations below, eliminate the p In the context of Mauritius, discuss how the doctrine of separation of powers (executive, legislative and Judicial) has contributed to the success of the country. Suggest some measures to further enhance the principles governing the doctrine of separation of powers. Question 23(Multiple Choice ) (03.08 LC) Which of the following is a constraint to discretionary fiscal policy? O Discretionary fiscal policy that is expansionary can only affect frictional unemployment by reducing cyclical unemployment. Discretionary fiscal policy will only affect aggregate supply leaving aggregate demand unchanged. O Discretionary fiscal policy has lags in its effectiveness with time needed to recognize the problem and to carry out policy solutions. O Discretionary fiscal policy can only be used to address unemployment, with no ability to affect the price level. O Discretionary fiscal policy that is expansionary tends to reduce interest rates and overstimulate investment. Question 22 Multiple Choice ) (04.05 MC) Which of the following is true about the money supply curve in an economy? The money supply adjusts automatically to any changes in the economy. The money supply curve is highly responsive to the liquidity preference of individuals. The money supply curve is horizontal. The money supply curve is perfectly inelastic, relative to the interest rate. The money supply curve is relatively inelastic, relative to the interest rate. The number of vacancies present in some metal at 727C is 1.3 1024 m-3. Calculate the number of vacancies at 476C given that the energy for vacancy formation is 1.09 eV/atom; assume that the density at both temperatures is the same. Suppose that the cost of installing an overhead pedestrian walkway in a college town is $50,000. If the walkway is expected to reduce the risk of fatality by 0.5 percent and the cost of a human life is estimated at $5 million, what would the town do?a. The town would install the walkway because the estimated benefit is twice the cost. b. The town would install the walkway because the estimated benefit equals the cost.c. The town would not install the walkway since the cost is twice the estimated benefit. d.The town would install the walkway since the cost of even a single life is too great. Members of the IASB are appointed by:Select one:a.the IFRS Interpretations Committee.b.the Monitoring Board.c.the IFRS Advisory Council.d.the IFRS Foundation Trustees.2. According to Concept the trp operon consists of ________ genes that encode tryptophan biosynthesis enzymes. which of these statements is true? responses a if we actually knew the dgp, then the samples generated from that dgp would not we actually knew the dgp, then the samples generated from that dgp would not vary. b whether we know the dgp or not, the samples generated from a dgp would vary.whether we know the dgp or not, the samples generated from a dgp would vary. c if we had more than 1000 data points, we would be able to know the true dgp that generated the sample. which power supply feature helps prevent circuit overloads by balancing the current flow