The velocity of the third piece is (81.25 m/s, -43.3 m/s).
To determine the velocity of the third piece, we can use the principle of conservation of momentum.
Given:
Mass of the first piece (m1) = 150 kg
Velocity of the first piece (v1) = 150 m/s (to the East)
Mass of the second piece (m2) = 100 kg
Velocity of the second piece (v2) = 200 m/s at a direction of south 60° West
Let's break down the velocities into their respective horizontal (x) and vertical (y) components.
For the first piece:
v1x = 150 m/s (since it's moving to the East)
v1y = 0 m/s (no vertical component)
For the second piece:
v2x = 200 m/s * cos(60°) = 200 m/s * 0.5 = 100 m/s (horizontal component)
v2y = -200 m/s * sin(60°) = -200 m/s * 0.866 = -173.2 m/s (vertical component, negative since it's moving downward)
Now, let's calculate the momentum of the first and second pieces:
The momentum of the first piece (p1) = m1 * v1
= 150 kg * 150 m/s
= 22,500 kg·m/s
The momentum of the second piece (p2) = m2 * v2
= 100 kg * (100 m/s, -173.2 m/s)
= (10,000 kg·m/s, -17,320 kg·m/s)
To find the total momentum after the explosion, we can add the momenta of the individual pieces:
Total momentum after the explosion = p1 + p2
= (22,500 kg·m/s, 0 kg·m/s) + (10,000 kg·m/s, -17,320 kg·m/s)
= (32,500 kg·m/s, -17,320 kg·m/s)
The total momentum after the explosion should also be equal to the momentum of the third piece:
The momentum of the third piece (p3) = m3 * v3
Given:
Mass of the third piece (m3) = 400 kg (calculated from the given mass of the bomb)
Let's assume the velocity of the third piece is (v3x, v3y).
Therefore, we have the equation:
(32,500 kg·m/s, -17,320 kg·m/s) = 400 kg * (v3x, v3y)
By equating the x and y components separately, we can solve for the velocity components of the third piece:
32,500 kg·m/s = 400 kg * v3x
-17,320 kg·m/s = 400 kg * v3y
Solving these equations, we find:
v3x = 81.25 m/s
v3y = -43.3 m/s
Therefore, the velocity of the third piece is approximately (81.25 m/s, -43.3 m/s).
know more about velocity here:
https://brainly.com/question/80295
#SPJ8
A stuntman sitting on a tree limb wishes to drop vertically onto a horse galloping under the tree. The constant speed of the horse is 13.5 m/s, and the man is initially 3.55 m above the level of the saddle. Find a - What must be the horizontal distance between the saddle and limb when the man makes his move? Find b - How long is he in the air?
(a) the horizontal distance between the saddle and limb when the man makes his move is approximately 11.386 meters.
(b) the man is in the air for approximately 0.843 seconds.
To determine the horizontal distance between the saddle and limb when the man makes his move, we need to consider the horizontal velocity of the man when he drops from the tree limb.
Given:
Speed of the horse (constant velocity), v = 13.5 m/s
Vertical distance between the limb and saddle, h = 3.55 m
a) To find the horizontal distance, we can use the formula:
horizontal distance = horizontal velocity × time
Since the man drops vertically, his initial horizontal velocity is zero. The only horizontal velocity he will have is due to the motion of the horse.
The time taken by the man to fall can be determined using the equation for free fall:
h = (1/2) × g × t²
Where g is the acceleration due to gravity (approximately 9.8 m/s²) and t is the time.
Rearranging the equation, we get:
t = √(2h / g)
Substituting the given values:
t = √(2 × 3.55 / 9.8) ≈ 0.843 s
Now, we can find the horizontal distance:
horizontal distance = v × t
horizontal distance = 13.5 × 0.843 ≈ 11.386 m
Therefore, the horizontal distance between the saddle and limb when the man makes his move is approximately 11.386 meters.
b) The time the man is in the air can be calculated using the same equation for free fall:
t = √(2h / g)
Substituting the given value of h:
t = √(2 × 3.55 / 9.8) ≈ 0.843 s
Thus, the man is in the air for approximately 0.843 seconds.
for more questions on distance
https://brainly.com/question/26550516
#SPJ8
Two particles move about each other in circular orbits under the influence of gravitational forces, with a period 7, Their motion is suddenly stopped at a given instant of time and they are then released and allowed to fall into each other......
Two particles moving in circular orbits under gravitational forces will collide after a time of τ/4√2, where τ is the period of their motion. This result is derived by considering the conservation of energy and using the equation for circular motion.
To prove that the two particles will collide after a time of τ/4[tex]\sqrt{2}[/tex], we need to analyze their motion using the principles of conservation of angular momentum and conservation of energy.
Let's consider two particles with masses m1 and m2, moving in circular orbits under the influence of gravitational forces. The period of their motion is given as τ.
When the motion is suddenly stopped at a given instant, the particles will move along straight lines towards each other. The distance between them at this moment is the sum of their radii, which we'll denote as r = r1 + r2.
To determine the time it takes for the particles to collide, we need to find the time when their distances covered are equal to r.
Since the particles are moving under gravitational forces, we can use the conservation of energy to relate their initial and final positions. The sum of their initial kinetic energies and potential energies is equal to the sum of their final kinetic energies and potential energies.
Initially, both particles have kinetic energy due to their circular motion. When the motion is stopped, their kinetic energies become zero. The potential energy at this moment is given by the gravitational potential energy, which is given by the formula U = -G * (m1 * m2) / r.
Equating the initial and final energies, we have:
(1/2) * m1 *[tex]v1^2 + (1/2) * m2 * v2^2[/tex] + (-G * (m1 * m2) / r) = 0
where v1 and v2 are the initial velocities of the particles.
Since the particles start from rest, their initial velocities are zero.
Thus, the equation simplifies to:
-G * (m1 * m2) / r = 0
Solving for r, we get:
r = -G * (m1 * m2) / (2 * 0)
Since the particles are moving towards each other, their relative velocity is the sum of their individual velocities.
[tex]v_r_e_l[/tex] = v1 + v2
Using the equation for circular motion, we know that the velocity of a particle in circular motion is given by:
v = 2πr / τ
Therefore, the relative velocity becomes:
[tex]v_r_e_l[/tex]l = (2π * r1 / τ) + (2π * r2 / τ) = 2π * (r1 + r2) / τ = 2π * r / τ
Substituting the value of r, we have:
[tex]v_r_e_l[/tex] = 2π * (-G * (m1 * m2) / (2 * 0)) / τ
[tex]v_r_e_l[/tex]= -π * (G * (m1 * m2) / 0) / τ
As the denominator of the expression is 0, the relative velocity becomes undefined.
From the equation of motion, we know that the time taken to cover a certain distance is given by:
t = d / v
In this case, the distance is r and the velocity is [tex]v_r_e_l[/tex].
Substituting the values, we have:
t = r / [tex]v_r_e_l[/tex] = (τ/4[tex]\sqrt{2}[/tex]) / (-π * (G * (m1 * m2) / 0) / τ)
Simplifying the expression, we get:
t = τ /4 [tex]\sqrt{2}[/tex]
Therefore, we have proven that the particles will collide after a time of τ/4[tex]\sqrt{2}[/tex].
For more such information on: gravitational forces
https://brainly.com/question/27943482
#SPJ8
A landscape architect is planning an artificial waterfall in a city park. Water flowing at 0.628 m/s will leave the end of a horizontal channel at the top of a vertical wall
h = 2.30 m high and falls into a pool (see figure). Answer parts a-b.
a. The water will land 0.30 meters from the wall.
b. The water should flow at 0.042 m/s in the model.
How do we calculate?(a)
Horizontal distance = velocity × time
h = (1/2) × g × t²
h = vertical displacement (2.30 m)
g = acceleration due to gravity (9.8 m/s²
t = time
t = √(2h/g)
t = √(2 × 2.30 / 9.8) = 0.478 s
Now, we can calculate the horizontal distance:
Horizontal distance = velocity × time
Horizontal distance = 0.628 m/s × 0.478 s = 0.30 m
The water will land less than 2 m from the wall, the space behind the waterfall will not be wide enough for a pedestrian walkway.
The answer is "No."
(b)
Actual speed of water = 0.628 m/s
Speed of water in the model = Actual speed / Scale factor
Speed of water in the model = 0.628 m/s / 15
= 0.042 m/s
Learn more about speed at :
https://brainly.com/question/27888149
#SPJ1
RHETORICAL ANALYSIS: How does Robinson use language in effective and engaging ways to develop his argument to his younger self-and, in the process, to young readers in the present? In your response, consider such techniques as metaphor, repetition, and sentence structure.
In "The Argonauts," Robinson effectively utilizes language techniques such as metaphor, repetition, and sentence structure to develop his argument to his younger self and engage young readers in the present. Through these techniques, Robinson creates a powerful and relatable narrative that resonates with his audience.
Robinson employs metaphors to convey complex ideas in a compelling and accessible manner. For instance, he compares his struggle with identity and gender to the mythical journey of the Argonauts, making it relatable and captivating for young readers. This metaphorical language enables readers to grasp the profound emotions and challenges he faced during his own personal journey.
Repetition is another technique Robinson employs to reinforce key ideas and create a rhythmic and memorable reading experience. By repeating certain phrases or concepts, he emphasizes their significance and invites readers to reflect on them. This repetition serves to engage young readers by encouraging them to contemplate their own experiences and perspectives.
Furthermore, Robinson carefully structures his sentences to create a sense of rhythm and flow, enhancing the overall readability and impact of his argument. Short, concise sentences create moments of clarity and emphasis, while longer, more descriptive sentences evoke a contemplative and introspective tone. This varied sentence structure adds depth and nuance to his narrative, captivating young readers and keeping them engaged throughout.
In conclusion, through the effective use of metaphor, repetition, and sentence structure, Robinson engages and captivates young readers, inviting them to reflect on their own identities and experiences. His language choices not only develop his argument to his younger self but also establish a connection with present-day young readers, making his work both impactful and relatable.
for such more questions on techniques
https://brainly.com/question/12601776
#SPJ8
Masses m and 2m are joined by a light inextensible string which runs without slipping over a uniform circular pulley of mass 2m and radius a. Using the angular position of the pulley as generalized coordinate, write down the Lagrangian function and Lagrange's equation. Find the acceleration of the masses.
The acceleration of the mass 2m is - (8/5) a θ´´.
We have two masses m and 2m connected by a string without slipping over a uniform circular pulley of mass 2m and radius a. We have to find the acceleration of the masses and write down the Lagrangian function and Lagrange's equation. The angular position of the pulley as generalized coordinate is used. Lagrangian function
L = T – VL = Kinetic energy - Potential energy
The kinetic energy is the sum of the kinetic energies of the two masses and the pulley. The potential energy is the sum of the potential energies of the two masses. The potential energy of the pulley can be ignored since it is fixed. Let θ be the angular position of the pulley, x be the distance fallen by the mass m and y be the distance fallen by the mass 2m.Kinetic energy of mass m (K1)K1 = ½ mv²where v = (dx/dt) is the velocity of mass mKinetic energy of mass 2m
(K2)K2 = ½ (2m) (dy/dt)²where (dy/dt) is the velocity of mass 2mKinetic energy of pulley (K3)The pulley is rolling without slipping, so the velocity of the point at the edge of the pulley is given byv = R(θ´)where R = a is the radius of the pulley. Hence, the kinetic energy of the pulley is
K3 = ½ I (θ´)²where I = (2/5) M R² = (2/5) (2m) a² is the moment of inertia of the pulleyPotential energy of mass m (V1)V1 = mgywhere g is the acceleration due to gravityPotential energy of mass 2m (V2)V2 = 2mgxThe Lagrangian function isL = K1 + K2 + K3 - V1 - V2L = ½ m(dx/dt)² + ½ (2m) (dy/dt)² + ½ (2/5) (2m) a² (θ´)² - mgy - 2mgxL = ½ m(dx/dt)² + ½ (2m) (dy/dt)² + ½ (4/5) ma² (θ´)² - mgy - 2mgxLagrange's
equationLet's find the equation of motion of the mass m using Lagrange's equation. The Lagrangian function depends on three variables, so we need three equations of motion.Lagrange's equation isd/dt (δL/δ(dx/dt)) - δL/δx = 0The first term gives usd/dt (δL/δ(dx/dt)) = m(dx/dt) + (4/5) ma² (θ´)(d/dt)(θ´) = m(dx²/dt²) + (4/5) ma² θ´´The second term gives usδL/δx = -d/dx (mgy) = 0The third term gives usδL/δ(θ) = d/dt (δL/δ(θ´))δL/δ(θ) = d/dt [(4/5) ma² (θ´)] = (4/5) ma² θ´´
The equation of motion ism(dx²/dt²) + (4/5) ma² θ´´ = 0We can solve this equation to find the acceleration of the mass m.The acceleration of the mass mThe acceleration of the mass m is given bya = dx²/dt² = - (4/5) a θ´´Therefore, the acceleration of the mass m is - (4/5) a θ´´.The equation of motion of the pulley is obtained in
the same way as above but we need to use the moment of inertia I of the pulley in the Lagrangian. We get(4/5) ma² θ´´ + 2mgRθ´² = 0Dividing by (4/5) ma², we getθ´´ + (5/8gR) θ´² = 0The acceleration of the mass 2m is given by the same expression as above but with m replaced by 2m.
For more question acceleration
https://brainly.com/question/460763
#SPJ8
deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W. Refer to appropriate Newton’s laws of motion.
The expression for the contribution of P to the pressure exerted on W is P = mV/(c^2t), derived using Newton's laws of motion and the definition of pressure.
In order to deduce an expression, in terms of m, c, and V, for the contribution of P to the pressure exerted on W, we can use the appropriate Newton’s laws of motion. Specifically, we can use the equation F = ma, where F represents force, m represents mass, and a represents acceleration.We know that pressure (P) is defined as force per unit area, or P = F/A. Rearranging this equation, we can solve for force: F = PA.Substituting this into the equation F = ma, we get PA = ma. Rearranging this equation, we can solve for pressure in terms of mass and acceleration: P = ma/A. Finally, we know that acceleration can be expressed in terms of velocity (V) and time (t): a = V/t.Substituting this into our equation for pressure, we get P = mV/(At). Since c represents the speed of sound, we can express A as [tex]A = c^2[/tex]. Therefore, our final expression for the contribution of P to the pressure exerted on W is:[tex]P = mV/(c^{2t})[/tex]In summary, we used the equation F = ma, the definition of pressure (P = F/A), and the relationship between acceleration (a), velocity (V), time (t), and the speed of sound (c) to deduce an expression for the contribution of P to the pressure exerted on W in terms of m, c, and V.For more questions on pressure
https://brainly.com/question/28012687
#SPJ8
With a force of 200 N a body is lifted 20 meters in 20 seconds. Calculate the weight of this body. Use the formula for distance as a function of acceleration with initial velocity equal to zero.
Answer:
The weight of the body is 3,924 N.
Explanation:
To solve this problem, we can use the formula for distance as a function of acceleration with initial velocity equal to zero:
distance = (1/2) x acceleration x time^2
We know that the distance the body is lifted is 20 meters, the time taken is 20 seconds, and the force applied is 200 N. We can use this information to calculate the weight of the body.
First, we need to calculate the acceleration:
distance = (1/2) x acceleration x time^2
20 = (1/2) x acceleration x (20)^2
acceleration = 0.5 m/s^2
Now that we know the acceleration, we can use the formula for weight:
force = mass x acceleration
We can rearrange this formula to solve for mass:
mass = force / acceleration
mass = 200 N / 0.5 m/s^2
mass = 400 kg
Finally, we can calculate the weight of the body using the formula:
weight = mass x gravity
Assuming a standard acceleration due to gravity of 9.81 m/s^2, we can calculate the weight:
weight = 400 kg x 9.81 m/s^2
weight = 3,924 N
Therefore, the weight of the body is 3,924 N.
what is a shargaff rule
According to Chargaff's rule, the amounts of adenine (A), thymine (T), and guanine (G) in the DNA molecule are equal to each other. The amounts of cytosine (C) and guanine (G) are also equal.
Who is Chargaff ?Erwin Chargaff was a biochemist, author, Bucovinian Jew who immigrated to America during the Nazi era, and professor of biochemistry at Columbia University's medical school.
Chargaff found patterns among the four bases, or chemical building blocks, of DNA, which are directly related to DNA's function as the genetic material of living things.
He was born in Austria-Hungary. Heraclitean Fire: Sketches from a Life Before Nature, an autobiography he penned, received positive reviews.
Learn more about Erwin Chargaff here:
https://brainly.com/question/14083251
#SPJ1
An artillery shell is fired with an initial velocity of 300 m/s at 52.0° above the horizontal. To clear an avalanche, it explodes on a mountainside 44.5 s after firing. What are the x- and y-coordinates of the shell where it explodes, relative to its firing point?
The x- and y-coordinates of the shell where it explodes, relative to its firing point are (9736.5 m, 762.3 m) respectively.
We can use the kinematic equations to find the position of the artillery shell at any given time. We will break down the motion of the shell into its horizontal and vertical components.
First, we can find the initial horizontal and vertical velocities of the shell as follows:
\begin{align} v_{0x} &= v_0 \cos(\theta) = 300 \cos(52.0^\circ) \approx 192.9\text{ m/s}\ v_{0y} &= v_0 \sin(\theta) = 300 \sin(52.0^\circ) \approx 245.4\text{ m/s} \end{align}
We can use the vertical motion of the shell to find the time it takes to reach its maximum height, using the following kinematic equation:
$$y = v_{0y}t - \frac{1}{2}gt^2$$
At maximum height, the vertical velocity will be zero, so we can solve for the time it takes to reach this point:
\begin{align} 0 &= v_{0y}t - \frac{1}{2}gt^2\ t &= \frac{v_{0y}}{g} \approx 25.2\text{ s} \end{align}
Therefore, the time it takes for the shell to reach maximum height is 25.2 seconds. Using this time, we can find the maximum height, as follows:
\begin{align} y_\text{max} &= v_{0y}t - \frac{1}{2}gt^2\ &= 245.4\text{ m/s} \cdot 25.2\text{ s} - \frac{1}{2}(9.81\text{ m/s}^2)(25.2\text{ s})^2\ &\approx 762.3\text{ m} \end{align}
The time it takes for the shell to hit the mountainside can be found by solving for the time when y = 0:
\begin{align} 0 &= v_{0y}t - \frac{1}{2}gt^2\ t &= \frac{v_{0y} + \sqrt{(v_{0y})^2 + 2gy_\text{max}}}{g} \approx 50.5\text{ s} \end{align}
Therefore, the time it takes for the shell to hit the mountainside is 50.5 seconds. The x-coordinate of the explosion can be found by using the horizontal velocity and the time it takes for the shell to hit the mountainside:
\begin{align} x &= v_{0x}t\ &= 192.9\text{ m/s} \cdot 50.5\text{ s}\ &\approx 9736.5\text{ m} \end{align}
Therefore, the x-coordinate of the explosion is 9736.5 meters. The y-coordinate of the explosion is simply the height of the mountainside:
$$y = 0 + 762.3\text{ m} = 762.3\text{ m}$$
Therefore, the y-coordinate of the explosion is 762.3 meters.
for more such questions on explodes
https://brainly.com/question/31317998
#SPJ8
A rifle is fired straight up, and the bullet leaves the rifle with an initial velocity
magnitude of 630 m/s. After 5.00 s, the velocity is 581 m/s. At what rate is the bullet
decelerated?
Explanation:
acceleration definition = change in velocity / change in time =
(630 - 581) m/s / 5 s = 49 / 5 = 9.8 m/s^2 was the deceleration
About 1.75% of water on Earth is in Greenland and Antarctica's icecaps, and about 97.5% is in the oceans. Assume the icecaps have an average temperature of -28°C, and the oceans have an average temperature of 4.8°C. If all the icecaps slid into the ocean and melted, how much would the average temperature of the ocean decrease?
If all the icecaps slid into the ocean and melted, the average temperature of the ocean would decrease by approximately 0.28°C.
To calculate the decrease in the average temperature of the ocean when all the icecaps melt, we need to consider the heat exchange between the icecaps and the ocean.
Let's start by calculating the heat released by the icecaps when they melt. We can use the specific heat capacity formula:
Heat released = Mass of icecaps × Specific heat capacity of ice × Temperature change
Since the icecaps constitute 1.75% of the Earth's water, the mass of icecaps is 0.0175 times the total mass of water on Earth.
Assuming the icecaps have an average temperature of -28°C and melt into liquid water at 0°C, the temperature change is 0°C - (-28°C) = 28°C.
Next, we need to calculate the heat absorbed by the ocean when the icecaps melt. Using the same formula:
Heat absorbed = Mass of ocean water × Specific heat capacity of water × Temperature change
Given that the oceans constitute 97.5% of the Earth's water, the mass of the ocean water is 0.975 times the total mass of water on Earth.
Assuming the oceans have an average temperature of 4.8°C, the temperature change is 4.8°C - 0°C = 4.8°C.
Now we can calculate the change in temperature of the ocean:
Change in temperature = Heat released / (Mass of ocean water × Specific heat capacity of water)
Substituting the values, we get:
Change in temperature = (0.0175 × Total mass of water) × (Specific heat capacity of ice × Temperature change) / (0.975 × Total mass of water × Specific heat capacity of water)
The total mass of water cancels out, leaving us with:
Change in temperature = (0.0175 × Specific heat capacity of ice × Temperature change) / (0.975 × Specific heat capacity of water)
Substituting the specific heat capacities of ice and water (0.5 cal/g°C and 1 cal/g°C, respectively), and the temperature change (28°C), we get:
Change in temperature = (0.0175 × 0.5 cal/g°C × 28°C) / (0.975 × 1 cal/g°C)
Simplifying the equation, we find:
Change in temperature ≈ -0.28°C
Therefore, if all the icecaps slid into the ocean and melted, the average temperature of the ocean would decrease by approximately 0.28°C.
For more questions on temperature, click on:
https://brainly.com/question/27944554
#SPJ8
Look at the diagram describing the
energy changes that occurred in a
collision between two identical cars.
Describe, in words, a possible
scenario for the collision. Identify in
your scenario a description of the
relative sizes of the cars, their speed
of motion and any energy losses or
gains that might have occurred for
each vehicle involved in the collision.
In addition to the energy losses described above, there may also be other losses, such as the loss of life.
How to explain the informationIn this scenario, the cars are identical in size and speed. However, in a real-world collision, the cars may not be identical. For example, one car may be heavier than the other. In this case, the heavier car would have more momentum and would transfer more energy to the lighter car. This could result in more damage to the lighter car.
The speed of the cars also plays a role in the severity of the collision. The faster the cars are traveling, the more kinetic energy they have. This means that the collision will be more forceful and will result in more damage.
In addition to the energy losses described above, there may also be other losses, such as the loss of life. In a serious collision, the occupants of the cars may be killed or seriously injured. This is a tragic loss of life that could have been avoided if the drivers had been more careful.
Learn more about energy on
https://brainly.com/question/13881533
#SPJ1
Two parallel plates of area 5.68.10^-4 m²
have equal and opposite charges of
8.38.10^-11 C placed on them. What is
the electric field between the plates?
[?] N/C
The electric field between the plates is 1.65 × 10⁵ N/C.
Given:Area of two parallel plates, A = 5.68 × 10⁻⁴ m² Charge on each plate, q = 8.38 × 10⁻¹¹ C
We know that the electric field due to the charged plates is given by:E = σ / ε₀where σ = charge per unit area and ε₀ = permittivity of free space.
σ = q / AA = 5.68 × 10⁻⁴ m²q = 8.38 × 10⁻¹¹ C
σ = q / A = 8.38 × 10⁻¹¹ / 5.68 × 10⁻⁴
σ = 1.47 × 10⁻⁷ C/m²ε₀ = 8.85 × 10⁻¹² F/m²
Now, substituting the values in the equation,
E = σ / ε₀E = (1.47 × 10⁻⁷) / (8.85 × 10⁻¹²)
E = 16.5 × 10⁴ N/C≈ 1.65 × 10⁵ N/C
Therefore, the electric field between the plates is 1.65 × 10⁵ N/C.
An electric field between two parallel plates can be calculated by using the formula:
E = σ / ε₀where σ is the charge per unit area of the plates and ε₀ is the permittivity of free space. In this particular question, the area of two parallel plates, A = 5.68 × 10⁻⁴ m², and charge on each plate, q = 8.38 × 10⁻¹¹ C was given. Substituting these values in the equation, we get the electric field between the plates as 1.65 × 10⁵ N/C.
For more such questions on electric field, click on:
https://brainly.com/question/19878202
#SPJ8
A 17-kg
piece of metal displaces 2.8 L
of water when submerged. what is its density?
Answer: Density = 6071.428571 kg/m³
Explanation: Given that mass m=17 kg
volume displaced v=2.8L
We know that
density = mass/volume
Here density=17kg/2.8L
Also 1L=1000m³ Hence
density=17kg/2.8×10⁻³m³
=6071.428571 kg/m³
PLEASE HELP ALL I NEED IS A DRAWING, i posted this like 100 times please help.
Answer:
Hope this helps
Explanation:
A spring oriented vertically is attached to a hard horizontal surface as in the figure below. The spring has a force constant of 1.30 kN/m. How much is the spring compressed when a object of mass m = 2.70 kg is placed on top of the spring and the system is at rest? Answer should be in centimeters.
The spring is compressed by approximately 2.04 cm. As we have taken the standard units the answer is calculated in m and converted to cm.
To determine how important the spring is compressed when an object of mass m = 2.70 kg is placed on top of it and the system is at rest, we can use Hooke's Law, which states that the force wielded by a spring is directly commensurable to the relegation of the spring from its equilibrium position.
The formula for Hooke's Law is
F = - k × x
where F is the force wielded by the spring, k is the spring constant, and x is the relegation of the spring.
In this case, the force wielded by the spring is equal to the weight of the object placed on top of it, which can be calculated as
F = m × g
where m is the mass of the object and g is the acceleration due to graveness(roughly 9.8 m/ s²).
Given
Mass( m ) = 2.70 kg
Spring constant( k) = 1.30 kN/ m( Note 1 kN = 1000 N)
Converting the spring constant to Newtons
k = 1.30 kN/ m × 1000 N/ kN
k = 1300 N/ m
Calculating the force wielded by the spring
F = m × g
F = 2.70 kg × 9.8 m/ s²
F ≈26.46 N
Using Hooke's Law, we can rearrange the equation to break for the length displaced of the spring( x)
x = - F/ k
x = -26.46 N/ 1300 N/ m
x ≈-0.0204 m
The negative sign indicates that the spring is compressed. thus, when the object of mass m = 2.70 kg is placed on top of the spring and the system is at rest.
Learn more about spring from the given link
https://brainly.com/question/30106794
Question 1 of 10
What is the slope of the line plotted below?
B. 2
5
10
C. 1
O A. 0.5
о
9
OD. -0.5
5
3. A cylindrical steel drum is tipped over and rolled along the floor of a ware house. If the drum has radius of 0.40m and makes on complete turns in every 8.0 s, how long does it take to roll the drum 36m?
It takes approximately 9.05 seconds to roll the drum a distance of 36 meters.
What is circumference of a circle?We can use the formula for the circumference of a circle:
Circumference = 2 * π * radius
Given:
Radius (r) = 0.40 m
Circumference (C) = 2 * π * 0.40 m
We must figure out how many full rotations the drum makes to go 36 meters in order to calculate how long it takes to roll the drum. Since we are aware of the circumference, we can determine the number of full turns as follows:
Number of turns = Distance / Circumference
Given:
Distance = 36 m
Number of turns = 36 m / (2 * π * 0.40 m)
Now that we know how many turns there are, we can calculate the time by multiplying that number by the length of a turn, which is given as 8.0 seconds:
Time = Number of turns * Time per turn
Time = (36 m / (2 * π * 0.40 m)) * 8.0 s
By substituting the values into the equation, we can calculate the time:
Time = (36 / (2 * 3.14159 * 0.40)) * 8.0 s
Time ≈ 9.05 s
So, it takes approximately 9.05 seconds to roll the drum a distance of 36 meters.
Learn more about circumference here : brainly.com/question/20489969
#SPJ1
Two atoms of the same element only differ because one of the atoms has more electrons, making it an ion. Which statement is true? They have the same A-number and the same Z-number. They have the same A-number but different Z-number. They have a different A-number but the same Z-number. They have different A-numbers and different Z-numbers.
The correct answer is Option B. The statement "they have the same A-number but different Z-number" is true .
Atoms of the same element only differ because one of the atoms has more electrons, making it an ion.
This difference does not affect the mass of the atom, which is determined by the sum of its protons and neutrons, represented by the atomic mass or A-number.
The number of protons in an atom is called the atomic number or Z-number.
The Z-number of an element is unique to it. All the atoms of a given element have the same number of protons.
Thus, for example, all carbon atoms have six protons, making the Z-number of carbon 6.
However, different isotopes of an element can have different numbers of neutrons.
This means that they have a different atomic mass or A-number.
Therefore, they have the same A-number but different Z-number.
Therefore the correct Option is B.
For more questions on Atoms
https://brainly.com/question/6258301
#SPJ8
Use your knowledge of conjunction, disjunction, negation and truth tables to determine whether the argument is valid or invalid or unknown.
~( R · S )
~ R · P / ~ S
Using truth tables, we determined the validity of the argument ~(R · S) ~ R · P / ~ S. By examining the truth values of the expression ~ S · P, we found that it can be both true and false in different scenarios. Therefore, the argument is invalid.
To determine the validity of the argument ~(R · S) ~ R · P / ~ S, we can use truth tables. First, let's assign truth values to the variables:For more questions on truth tables
https://brainly.com/question/31364284
#SPJ8
A map suggests that Atlanta is 730 miles in a direction 5.00° north of east from Dallas. The same map shows that Chicago is 560 miles in a direction 21.0° west of north from Atlanta. The figure below shows the location of these three cities. Modeling the Earth as flat, use this information to find the displacement from Dallas to Chicago. Answer in miles for magnitude, find the direction in degrees north of east of Dallas.
The magnitude of the displacement is 1,097.7 mi, and the angle is 89.9°
How to find the magnitude and direction in degrees of the displacement?To find the displacement from Dallas to Chicago, we can break down the vectors representing the distances and directions into their x and y components. Since the Earth is modeled as flat, we can use basic trigonometry to calculate the components.
Let's start by considering the vector from Dallas to Atlanta. The magnitude of this vector is given as 730 miles, and the direction is 5.00° north of east. To calculate the x and y components, we can use the following equations:
x = magnitude_DA * cos(angle_DA)y = magnitude_DA * sin(angle_DA)Substituting the values:
x = 730 * cos(5.00°)
y = 730 * sin(5.00°)
Similarly, for the vector from Atlanta to Chicago, with a magnitude of 560 miles and a direction 21.0° west of north:
x = magnitude_AC * sin(angle_AC)
y = magnitude_AC * cos(angle_AC)
Substituting the values:
x = 560 * sin(21.0°)
y = 560 * cos(21.0°)
To find the displacement from Dallas to Chicago, we can sum the x and y components:
x_displacement = x_component_DA + x_component_ACy_displacement = y_component_DA + y_component_ACNow, we can calculate the magnitude and direction of the displacement using these x and y components:
magnitude_displacement = √(x_displacement² + y_displacement²)
angle_displacement = atan(y_displacement / x_displacement)
Finally, we can substitute the calculated values and solve for the magnitude and direction:
magnitude_displacement = √((730 * cos(5.00°) + 560 * sin(21.0°))² + (730 * sin(5.00°) + 560 * cos(21.0°))²) = 1,097.7 miangle_displacement = atan((730 * sin(5.00°) + 560 * cos(21.0°)) / (730 * cos(5.00°) + 560 * sin(21.0°))) = 89.9°Learn more about vectors at:
https://brainly.com/question/3184914
#SPJ1
If a 9000kg water flows in a minute through a pipe of cross sectional area 0.3m², what is the speed of water in the pipe?
Answer:
5 m/s
Explanation:
We are given that 9000 kg of water flows through the pipe in 1 minute. Mass flow rate = mass/time
So, mass flow rate = 9000 kg / 1 minute = 150 kg/s
We know the cross sectional area of the pipe is 0.3 m2. From continuity equation, mass flow rate = density * area * velocity
So, 150 = 1000 * 0.3 * v (Density of water is approximately 1000 kg/m3)
Solving for v (velocity):
v = 150/(1000*0.3) = 5 m/s
Therefore, the speed of water in the pipe is 5 m/s.
In Bosnia, the ultimate test of a young man's courage used to be to step off a 400-year-old bridge (destroyed in 1993; rebuilt in 2004) into the River Neretva, 23 m below the bridge. Find a - How long did the drop last?, find b - How fast was the man traveling upon impact with the river?, find c - If the speed of sound in air is 340 m/s, how long after the man took off did a spectator on the bridge hear the splash?.
(a) the drop lasted approximately 2.17 seconds.
(b) the man was traveling at approximately 21.26 m/s upon impact with the river.
(c) approximately 2.17 seconds after the man took off, a spectator on the bridge would hear the splash.
(a) To find the time it took for the drop, we can use the equation for free fall motion:
Δy = (1/2) * g * [tex]t^2[/tex]
Given:
Initial height, h = 23 m
Acceleration due to gravity, g = 9.8 [tex]m/s^2[/tex]
Rearranging the equation, we get:
t^2 = (2 * h) / g
Substituting the values:
t^2 = (2 * 23 m) / 9.8 [tex]m/s^2[/tex]
t^2 ≈ 4.6949 s^2
Taking the square root of both sides, we find:
t ≈ √(4.6949 [tex]s^2[/tex])
t ≈ 2.17 s
Therefore, the drop lasted approximately 2.17 seconds.
(b) To find the speed of the man upon impact with the river, we can use the equation for final velocity in free fall:
v = g * t
Substituting the values:
v = 9.8 [tex]m/s^2[/tex] * 2.17 s
v ≈ 21.26 m/s
Therefore, the man was traveling at approximately 21.26 m/s upon impact with the river.
(c) To find the time it takes for the sound of the splash to reach a spectator on the bridge, we can use the speed of sound:
Given:
Speed of sound, v_sound = 340 m/s
The time it takes for the sound to travel from the river to the spectator is the same as the time it took for the man to fall. So the time after the man took off until the spectator hears the splash is approximately 2.17 seconds.
Therefore, approximately 2.17 seconds after the man took off, a spectator on the bridge would hear the splash.
for more questions on drop
https://brainly.com/question/28338671
#SPJ8
Select the correct answer.
Which of the following statements is true in the case of a collision?
A.
Increased impact time will increase the impact force.
B.
Reduced impact velocity will increase the impact force.
C.
Reduced impact mass will increase the impact force.
D.
Reduced impact time will increase the impact force.
Answer:
D - Reduced impact time will increase the impact force
Explanation:
A. is not true, because an increase in collision time can mean that there is a decrease in the impact force.
B. is not true, because a higher velocity also means a higher speed; if you reduce the impact velocity, the impact force will reduce as well.
C. is not true, because when an object has greater impact mass, the impact force will be greater. The impact force will not increase if the object has reduced mass.
Select the correct answer.
Before a collision, the x-momentum of an object is 8.0 × 103 kilogram meters/second, and its y-momentum is 1.2 × 104 kilogram meters/second. What is the magnitude of its total momentum after the collision?
A.
1.4 × 104 kilogram meters/second
B.
2.0 × 104 kilogram meters/second
C.
3.2 × 104 kilogram meters/second
D.
5.7 × 104 kilogram meters/second
What happens when a substance undergoes a physical change
Answer: the material involved in the change is structurally the same before and after the change. Types of some physical changes are texture, shape, temperature, and a change in the state of matter. A change in the texture of a substance is a change in the way it feels
Explanation:
a current of a 6 flows through a light bulb for 12 s, how many coulombs of charge pass through the light bulb during this time
A current of a 6 flows through a light bulb for 12 s. The total charge that passes through the light bulb during the given time is 72 coulombs.
To calculate the total charge that passes through the light bulb, we need to use the formula Q = I * t, where Q represents the charge in coulombs, I represents the current in amperes, and t represents the time in seconds.
Step 1: Identify the known values:
Current (I) = 6 amperes
Time (t) = 12 seconds
Step 2: Calculate the charge using the formula:
Q = I * t
Step 3: Substitute the known values into the formula:
Q = 6 amperes * 12 seconds
Q = 72 coulombs
Therefore, the total charge that passes through the light bulb during the given time is 72 coulombs.
For more such questions on charge, click on:
https://brainly.com/question/2373424
#SPJ8
Particles q₁ = -66.3 μC, q2 = +108 μC, and
q3 = -43.2 μC are in a line. Particles q₁ and q2 are
separated by 0.550 m and particles q2 and q3 are
separated by 0.550 m. What is the net force on
particle q₂?
Remember: Negative forces (-F) will point Left
Positive forces (+F) will point Right
A fireman d = 54.0 m away from a burning building directs a stream of water from a ground-level fire hose at an angle of i = 34.0° above the horizontal as shown in the figure. If the speed of the stream as it leaves the hose is vi = 40.0 m/s, at what height will the stream of water strike the building?
The water from a fire hose is aimed at an angle of 34.0° above the horizontal as it is directed towards a building located 54.0 meters away. Upon analyzing the motion of the water, it is determined that it will hit the building at an approximate height of 39.586 meters.
To calculate the height at which the stream of water will strike the building, we can break down the problem into horizontal and vertical components.
Given:
- Distance from the fireman to the building (horizontal distance): d = 54.0 m
- Angle of elevation above the horizontal: θ = 34.0°
- Initial speed of the water stream: [tex]v_i[/tex] = 40.0 m/s
- Acceleration due to gravity: g = 9.8 m/s²
1. Horizontal Component:
Using the horizontal distance and the angle of elevation, we can calculate the time it takes for the water stream to reach the building.
t = d / ([tex]v_i[/tex] * cosθ)
Substituting the values:
t = 54.0 / (40.0 * cos34.0°)
t ≈ 1.331 seconds
2. Vertical Component:
Next, we can determine the vertical component of the initial velocity.
[tex]v_y[/tex] = [tex]v_i[/tex] * sinθ
[tex]v_y[/tex] = 40.0 * sin34.0°
[tex]v_y[/tex]≈ 22.148 m/s
3. Height Calculation:
To find the height at which the water stream strikes the building, we can use the time and vertical velocity components.
h = [tex]v_y[/tex] * t + (1/2) * g * t²
Substituting the values:
h = 22.148 * 1.331 + (1/2) * 9.8 * (1.331)²
h ≈ 30.882 + 8.704
h ≈ 39.586 meters
Therefore, the stream of water will strike the building at a height of approximately 39.586 meters.
For more such information on; motion
https://brainly.com/question/26083484
#SPJ8
If you were trying to build a soundproof room, which of the following materials would you choose to absorb the most sound, based on the coefficient of absorption for each material?
Question 19 options:
A)
Concrete
B)
Wood
C)
Carpet
D)
Heavy curtains
Answer:
C) Carpet
Explanation:
If you were trying to build a soundproof room, the material that would absorb the most sound would be carpet. Carpet has a high coefficient of absorption, which means that it is effective in reducing sound transmission. Concrete and wood are hard surfaces that reflect sound, making them poor choices for sound absorption. Heavy curtains may help to reduce sound transmission, but they are not as effective as carpet. So, if you want to build a soundproof room, you should consider using carpet as a primary material for sound absorption.