A 5.95-g sample of AgNO3 is reacted with excess BaCl2 according to the equation below and 3.36 g of AgCl is produced. What is the percent yield of AgCl? 2AgNO3(aq) + BaCl2(aq) ––––> 2AgCl(s) + Ba(NO3)2(aq)

A) 44.6 %
B) 33.5 %
C) 66.9 %
D) 56.5 %
E) 100 %

Answers

Answer 1

The percent yield of AgCl is an option (C) 66.9 %.

The given balanced chemical equation is: 2AgNO₃(aq) + BaCl₂(aq) → 2AgCl(s) + Ba(NO₃)₂(aq)

A 5.95-g sample of AgNO₃ is reacted with excess BaCl₂ according to the equation above and 3.36 g of AgCl is produced. We are required to find the percent yield of AgCl.  

First, we will find the theoretical yield of AgCl. Theoretical yield is the maximum amount of product that can be formed in a chemical reaction.

The given mass of AgNO₃ is 5.95 g.

The molar mass of AgNO₃ is:

1 × Ag = 107.87 g/mol

1 × N = 14.01 g/mol

3 × O = 3 × 16.00 g/mol = 48.00 g/mol

Molar mass of AgNO₃ = 107.87 + 14.01 + 48.00 = 169.88 g/mol

n(AgNO₃) = mass/molar mass = 5.95 g/169.88 g/mol

n(AgNO₃) = 0.035 g

The stoichiometric ratio of AgNO₃ to AgCl is 2:2. It means 1 mole of AgNO₃ will produce 1 mole of AgCl.

The molar mass of AgCl is:

1 × Ag = 107.87 g/mol

1 × Cl = 35.45 g/mol

Molar mass of AgCl = 107.87 + 35.45 = 143.32 g/mol

0.035 mol of AgNO₃ produces 0.035 mol of AgCl (since 1 mole of AgNO₃ produces 1 mole of AgCl)

The mass of AgCl produced can be found by multiplying the number of moles of AgCl with its molar mass.

Mass of AgCl = n × M = 0.035 mol × 143.32 g/mol = 5.0252 g

Therefore, the theoretical yield of AgCl is 5.0252 g.

The percent yield can be calculated using the following formula:  

Percent yield = (actual yield / theoretical yield) × 100

The actual yield of AgCl is 3.36 g. Putting all the given and calculated values in the formula for percent yield, we get:

Percent yield = (actual yield / theoretical yield) × 100 = (3.36 g / 5.0252 g) × 100 = 66.9 %

Therefore, the correct option is C.

Learn more about Percent yield at https://brainly.com/question/11963853

#SPJ11


Related Questions

Enter an equation showing how BaSO4 dissolves in water. express your answer as a chemical equation. identify all of the phases in your answer.
BaSO4 (s) ↔Ba2+ (aq) + SO42 (aq)

Answers

The equation BaSO4 (s) ↔ Ba2+ (aq) + SO42- (aq) represents the dissolution of solid BaSO4 in water, with Ba2+ and SO42- ions being formed in the aqueous phase.

The equation showing the dissolution of BaSO4 (barium sulfate) in water is:

BaSO4 (s) ↔ Ba2+ (aq) + SO42- (aq)

In this equation, BaSO4 is in the solid phase (s), while Ba2+ and SO42- ions are in the aqueous phase (aq). The double-headed arrow (↔) represents the reversible reaction, indicating that BaSO4 can dissolve in water to form Ba2+ and SO42- ions, and these ions can also combine to form solid BaSO4 under certain conditions.

Barium sulfate (BaSO4) is sparingly soluble in water. When it comes into contact with water, it dissociates into its constituent ions, barium (Ba2+) and sulfate (SO42-). The dissolution process is reversible, meaning that Ba2+ and SO42- ions can also recombine to form solid BaSO4 when the concentration of these ions exceeds the solubility product.

The equation BaSO4 (s) ↔ Ba2+ (aq) + SO42- (aq) represents the dissolution of solid BaSO4 in water, with Ba2+ and SO42- ions being formed in the aqueous phase.

To know more about dissolution visit:

https://brainly.com/question/6319922

#SPJ11

The most stable state of elemental nitrogen is the N2 molecule characterized by a strong triple bond. The most stable state of elemental phosphorus, on the other hand, is the P4 molecule characterized as a tetrahedron of phosphorus atoms (shown below) held together by strong single bonds. Briefly comment on this difference.

Answers

The most stable state of elemental nitrogen is the N2 molecule characterized by a strong triple bond. The most stable state of elemental phosphorus is the P4 molecule characterized as a tetrahedron of phosphorus atoms held together by strong single bonds.

Let's discuss the difference between them: Nitrogen is an element with atomic number 7 and has an electronic configuration of 1s22s22p3. It has five electrons in its valence shell and needs three more electrons to fulfill the octet rule. This is why it usually forms a triple bond to another nitrogen atom and exists as N2. Due to the strong triple bond between nitrogen atoms, it is highly inert and difficult to break. The phosphorus is an element with atomic number 15 and has an electronic configuration of 1s22s22p63s23p3.

As a result, it is always kept under water to prevent it from reacting with air.This is the primary difference between nitrogen and phosphorus. The nitrogen molecule is more stable due to the presence of a triple bond, while the phosphorus molecule is more stable due to the tetrahedral structure with strong single bonds.

To know more about spontaneous combustion visit

https://brainly.com/question/27114088

#SPJ11

draw the organic product(s) of the following reaction. lithium diisopropylamide

Answers

The organic product of the reaction of lithium diisopropylamide is an anionic carbon species, which is a strong base. It can be used for deprotonation of a wide range of compounds.

Lithium diisopropylamide, commonly known as LDA, is a strong base used in organic synthesis. The main use of LDA is to deprotonate a wide range of organic compounds. When a compound containing an acidic hydrogen atom reacts with LDA, it undergoes deprotonation to give an anion.

Lithium diisopropylamide (LDA) is a strong base often used in organic chemistry to deprotonate a variety of organic compounds. In the presence of LDA, an anionic carbon species is produced by the removal of a proton (H+) from the acidic hydrogen of the starting compound.
To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

how do particles in solutions differ from those in suspensions

Answers

The main difference between particles in solutions and suspensions lies in their size, homogeneity, stability, and behavior.

In a solution, the particles are typically individual atoms, ions, or small molecules, and their size is usually on the order of nanometers. In contrast, particles in a suspension are much larger, ranging from micrometers to millimeters in size. Suspended particles can be visible and settle over time due to gravity.

Solutions are homogeneous mixtures where the particles are uniformly distributed at the molecular level. Suspensions are heterogeneous mixtures where the particles are not uniformly distributed. The particles may settle at the bottom of the container, leading to a cloudy or opaque appearance.

Learn more about suspensions, here:

https://brainly.com/question/29199641

#SPJ4

the activation energy ea for a particular reaction is 50.0 kj/mol. how much faster is the reaction at 313 k than at 310.0 k? (r = 8.314 j/mol • k)

Answers

The activation energy Ea for a particular reaction is 50.0 kJ/mol. The reaction's speed at 313 K is 1.89 times faster than its speed at 310 K.

We'll need to use the Arrhenius equation to figure out how much faster a reaction is at a higher temperature. The Arrhenius equation is an equation that expresses the temperature dependence of reaction rates. The equation is:k = Ae^(-Ea/RT)Where:k is the reaction rate coefficient, A is the pre-exponential factor or frequency factor, Ea is the activation energy, R is the gas constant, and T is the temperature.

To find the activation energy, we can rearrange the equation to isolate it:Ea = -ln(k/k') * RTThe activation energy can be determined using the rate coefficients at two different temperatures. The k and k' values must be in the same units of time. The reaction is 1.89 times faster because the temperature has increased by 3 K, which is proportional to the Boltzmann factor.

To know more about reaction visit:

https://brainly.com/question/30464598

#SPJ11

when mendeleev developed his periodic table, he placed the greatest emphasis on?

Answers

When Mendeleev developed his periodic table, he placed the greatest emphasis on organizing the elements based on their chemical properties and atomic weights.

Mendeleev developed the first periodic table of the elements based on the periodicity observed in the chemical properties and atomic weights of the elements. He placed the greatest emphasis on organizing the elements based on their chemical properties and atomic weights.

Mendeleev arranged the elements in horizontal rows called periods and vertical columns called groups. He arranged the elements in the order of increasing atomic weights and grouped them according to their chemical properties.He also left gaps in his table for elements that were yet to be discovered. He made predictions of the properties of the undiscovered elements based on the properties of the elements in the same group or period as the gaps.

To know more about chemical visit:

https://brainly.com/question/29240183

#SPJ11

How many unpaired electrons would you expect for each complex ion? (show with crystal field splitting diagram)
a. [Cr(H20)b* b. [Co(NH3)3Cl3] c. [Cu(CN)4 22

Answers

Crystal field splitting diagrams are useful to examine transition metal complexes to see the distribution of electrons. These diagrams depict the d-orbitals of the metal ion and the electrons that occupy them. C). [Cu(CN)4]3- has one unpaired electron.

To answer the question, let's create crystal field splitting diagrams for the three complexes given and see how many unpaired electrons there are. a. [Cr(H2O)6]3+The electronic configuration of Cr(III) is [Ar]3d3, which means that there are three unpaired electrons. Cr(III) is surrounded by six water ligands in this complex ion. The crystal field splitting diagram looks like this: There are three unpaired electrons present in the t2g orbitals, which can be seen. b. [Co(NH3)3Cl3]2+ The electronic configuration of Co(II) is [Ar]3d7, which means that there are three unpaired electrons. This complex has three ammonia and three chloride ligands surrounding the cobalt ion.

The crystal field splitting diagram looks like this: There are three unpaired electrons in the t2g orbitals, which can be seen. c. [Cu(CN)4]3- The electronic configuration of Cu(II) is [Ar]3d9, which means that there is one unpaired electron. This complex ion has four cyanide ligands surrounding the copper ion. The crystal field splitting diagram looks like this: One unpaired electron is present in the eg orbitals, which can be seen. In conclusion, a. [Cr(H2O)6]3+ has three unpaired electrons, b. [Co(NH3)3Cl3]2+ has three unpaired electrons, and c. [Cu(CN)4]3- has one unpaired electron.

To know more about unpaired electron  visit:-

https://brainly.com/question/31477249

#SPJ11

At a given temperature, the equilibrium constant Kc for the reaction 2NO(g)+2H2(g)<==>N2(g)+2H2O(g) is .11.
What is the equilibrium constant for the following reaction? NO(g)+H2(g)<==> 1/2N2(g)+H20(g)

Answers

The equilibrium constant for the reaction `NO(g) + H2(g) ⇌ 1/2N2(g) + H2O(g)` is 0.055.

The equilibrium constant Kc for the reaction `2NO(g) + 2H2(g) ⇌ N2(g) + 2H2O(g)` is 0.11.

The given reactions are `2NO(g) + 2H2(g) ⇌ N2(g) + 2H2O(g)` and `NO(g) + H2(g) ⇌ 1/2N2(g) + H2O(g)`.

When we compare both equations, the second equation has half the coefficients of the products, so we divide the Kc of the first equation by 2 to get the equilibrium constant for the second equation.

Kc for the second equation:`NO(g) + H2(g) ⇌ 1/2N2(g) + H2O(g)`= 0.11/2= 0.055

Therefore, the equilibrium constant for the reaction `NO(g) + H2(g) ⇌ 1/2N2(g) + H2O(g)` is 0.055.

To learn more about equilibrium constant :

https://brainly.com/question/3159758

#SPJ11

how many electrons does barium have to lose to become a noble gas

Answers

In summary, to achieve a noble gas-like stable electron configuration, barium needs to lose two electrons, resulting in a Ba²⁺ ion being formed.

Barium is an element with an atomic number of 56 and an electron configuration of [Xe]6s². Its outermost shell, like all other alkaline-earth metals, contains two electrons. It must lose two electrons to achieve a stable octet electron configuration, which is identical to a noble gas with eight electrons in its outermost shell (like Xe).

Barium has an atomic number of 56, indicating that it has 56 electrons in its natural state. Its electron configuration is [Xe]6s², indicating that there are two electrons in the outermost shell. Since noble gases have full outer shells, barium must lose the two electrons in the outermost shell to achieve a stable octet electron configuration, similar to that of a noble gas.

This results in a Ba²⁺ ion being formed, which is stable since it now has a stable electron configuration. Thus, two electrons need to be lost by barium to achieve a noble gas-like stable electron configuration. Answer more than 100 words: Barium is an alkaline earth metal that is found in Group 2 on the periodic table. It is a soft, silvery-white metal that has a high reactivity rate with air, and as a result, it is never found in its natural state.

It was first discovered in 1808 by Sir Humphry Davy, who named it after the Greek word barys, which means "heavy. "Barium's electron configuration is [Xe]6s², indicating that it has 56 electrons in its natural state. Barium has two electrons in its outermost shell, like all other alkaline-earth metals. Since noble gases have full outer shells, barium must lose the two electrons in the outermost shell to achieve a stable octet electron configuration, similar to that of a noble gas. This results in a Ba²⁺ ion being formed, which is stable since it now has a stable electron configuration.

To know more about barium visit:

https://brainly.com/question/3088814

#SPJ11

Propose the shortest synthetic route for the following transformation (5-dodecanone will also be produced in your synthetic route). Draw the steps of the transformation w W 1 = HBO 2 = HBr, HOOH w 3 = Br2 4 = H2SO4 5 = H2SO4, H20, HgSO4 6 = CH3CH2CH2CH2CH2CI 7 = CH3CH2CH2CH2CH2CH2CI 8 = CH3CH2CH2CH2CH2CH2CH2CI 9 = XS NaNH2/NH3 10 = H/Pt 11 = H/Wilkinson's Catalyst 12 = H Lindlar's Catalyst 13 = Na/NH3 14 = 1) O3 2) H20 15 = 1) O32) DMS

Answers

The reaction involves a series of reactions that produce 5-dodecanone. The following is the synthetic pathway, which includes all reactions and mechanisms.

The synthetic route for the given transformation is shown below:

The starting compound is the phenylpropionic acid, and the reaction begins with the formation of the alkene through HBO and HBr in the presence of HOOH. The alkene produced can undergo bromination to give the corresponding alkyl bromide using Br2. The intermediate formed by the reaction then reacts with H2SO4 to form an alkyl oxide ion which is then subjected to hydrolysis using H2SO4 and HgSO4 to form the corresponding alcohol. The alcohol is then subjected to a series of reactions to form the final product.The alcohol is first reacted with CH3CH2CH2CH2CH2CI to form a new alkyl iodide. The alkyl iodide is then reacted with CH3CH2CH2CH2CH2CH2CI to form another alkyl iodide. The process is repeated with CH3CH2CH2CH2CH2CH2CH2CI.

The alkyl iodide produced is then treated with NaNH2/NH3 to form the corresponding alkyne. The alkyne is then hydrogenated using H/Pt to form the corresponding alkene. The alkene is then subjected to hydrogenation again, this time using Wilkinson's Catalyst, to form the corresponding alkane. The alkane is then reacted with Lindlar's Catalyst to form the corresponding alkene. The alkene is then reacted with Na/NH3 to form the corresponding alkyne. Finally, the alkyne is subjected to ozonolysis using O3 and then subjected to reduction using DMS (dimethyl sulfide) to form the final product. The final product is 5-dodecanone, which is produced through the reactions outlined above.

To know more about synthetic pathway visit:

https://brainly.com/question/31622886

#SPJ11

TRUE/FALSE. one gram of iron(ii) chloride has a higher mass percentage of chloride than 1 gram of iron(iii) chloride.

Answers

The statement " one gram of iron(ii) chloride has a higher mass percentage of chloride than 1 gram of iron(iii) chloride." is TRUE.

Iron (II) chloride has a higher mass percentage of chloride than iron (III) chloride. It is because iron (II) chloride has a formula weight of 126.75 g/mol and the molar mass of its chloride ion is 35.45 g/mol. This makes the mass percentage of chloride in one gram of Iron (II) chloride to be;

Mass of chloride in one gram of iron(II) chloride = (2 * 35.45 g/mol)/126.75 g/mol= 0.5564 g chloride in 1 gram of iron (II) chloride.

Mass percentage of chloride in iron (II) chloride = (0.5564 g chloride / 1 g iron(II) chloride) × 100%= 55.64%.

Iron (III) chloride has a formula weight of 162.20 g/mol, and the molar mass of its chloride ion is 35.45 g/mol. This makes the mass percentage of chloride in one gram of Iron (III) chloride to be:

Mass of chloride in one gram of iron(III) chloride = (3 * 35.45 g/mol) /162.20 g/mol= 0.6496 g chloride in 1 gram of iron (III) chloride. Mass percentage of chloride in iron (III) chloride = (0.6496 g chloride / 1 g iron(III) chloride) × 100%= 64.96%.

Thus, it can be concluded that one gram of Iron (II) chloride has a higher mass percentage of chloride than one gram of Iron (III) chloride, so the statement is TRUE.

To know more about mass percentage refer here :

https://brainly.com/question/29183380

#SPJ11

False. One gram of iron(II) chloride [tex](FeCl2[/tex]) does not necessarily have a higher mass percentage of chloride than one gram of iron(III) chloride ([tex]FeCl3[/tex]).

The mass percentage of an element in a compound is calculated by dividing the mass of the element by the total mass of the compound and multiplying by 100.

In [tex]FeCl2[/tex], the molar mass of iron is 55.85 g/mol, and the molar mass of chlorine is 35.45 g/mol. Therefore, the total mass of[tex]FeCl2[/tex] is approximately 126.75 g/mol.

In FeCl3, the molar mass of iron is still 55.85 g/mol, but there are three chlorine atoms present, so the molar mass of chlorine is 3 * 35.45 g/mol = 106.35 g/mol. Thus, the total mass of FeCl3 is approximately 162.2 g/mol.

Comparing the mass percentages of chloride, we find that [tex]FeCl3[/tex]has a higher mass percentage of chloride because the molar mass of chloride is a larger fraction of the total mass of the compound.

Therefore, one gram of[tex]FeCl3[/tex] has a higher mass percentage of chloride than one gram of [tex]FeCl2[/tex].

To know more about chloride refer here:

https://brainly.com/question/32108518#

#SPJ11

For the UN-balanced reaction below; which element is oxidized? MnO4" (aq) + HSO3" (aq) Mn2+ (aq) + S042- (aq) 0 hydrogen oxygen manganese sulfur QUESTion For the UN-balanced reaction below what is the oxidizing agent? BiO3" (aq) + Mn(OH)2 (aq) ~ BIO(OH) (aq) + Mno4" (aq) Mno4" (aq) Bio3" (aq) BioOH) a01 MnioHi2 (aq)

Answers

the unbalanced reaction below, which element is oxidized MnO4" (aq) + HSO3" (aq) Mn2+ (aq) + SO42- (aq)0 are the Hydrogen Oxygen Manganese Sulfur  In the element   unbalanced reaction

MnO4" (aq) + HSO3" (aq) Mn2+ (aq) + SO42- (aq), the element that is oxidized is sulfur In the unbalanced chemical equation MnO4" (aq) + HSO3" (aq) Mn2+ (aq) + SO42- (aq)The oxidation states of each element are state of Mn: +7Oxidation state of O in MnO4": -2Oxidation state of H: +1Oxidation state of S: +4Oxidation state of O in SO42-: -2Oxidation state of Mn in Mn2+: +2The sulfur goes from +4 to +6. This means that sulfur is oxidized because it lost electrons. Therefore, the element that is oxidized is sulfur.Question 2For the unbalanced reaction below what is the oxidizing agent BiO3" (aq) + Mn(OH)2 (aq) ~ BIO(OH) (aq) + MnO4" (aq) Mno4" (aq) Bio3" (aq) Bio OH) a01 MnioHi2

The oxidizing agent is the species that causes another species to be oxidized, and it is always reduced in the process. In the unbalanced reaction:BiO3" (aq) + Mn(OH)2 (aq) ~ BIO(OH) (aq) + MnO4" (aq)We can see that Mn(OH)2 is oxidized to MnO4", and BiO3" is reduced to BIO(OH). Therefore, the oxidizing agent is BiO3".Explanation: In the reaction, the manganese in Mn(OH)2 is oxidized. The Mn(OH)2 acts as a reducing agent since it loses electrons and causes another species, BiO3" (which is acting as the oxidizing agent), to gain electrons.In the same reaction, BiO3" acts as the oxidizing agent and accepts electrons, causing Mn(OH)2 to be oxidized and causing the formation of MnO4".Thus, the oxidizing agent is BiO3".

To know more about element  Visit;

https://brainly.com/question/15304687

#SPJ11

A dust particle acquires a charge of -13 nC How many excess electrons does it carry? Now choose from one of the following options Why? (a 20.8 x 10-28 electrons 20.8x-19 electrons C 8.1 x 100 electrons (d) 8.1 x 10" electrons

Answers

the dust particle carries 8.1 × 10^10 excess electrons.

Given: Charge on dust particle = -13 nC

We know that Charge on electron = -1.6 × 10^-19 C

To calculate the excess electrons on the dust particle we will use the following formula:

Number of excess electrons = Charge on the body / Charge on an electron

Number of excess electrons = -13 × 10^-9 C / -1.6 × 10^-19 C = 8.125 × 10^10

Number of excess electrons = 8.1 × 10^10 (approximately)

Therefore, the dust particle carries 8.1 × 10^10 excess electrons.

Hence, the correct option is (d) 8.1 x 10^10 electrons.

learn more about Charge  here

https://brainly.com/question/18102056

#SPJ11

How many atoms of hydrogen must be lined up to make a line 1 inch long. Hydrogen radius is 53 pm. (Convert pm to inches)

Answers

185186 atoms of hydrogen must be lined up to make a line 1 inch long.

The atomic radius of hydrogen is 53 picometers. The conversion of picometers to inches is needed to calculate how many atoms of hydrogen will line up to make a 1 inch long line. Conversion factor: 1 picometer = 3.937 x 10^-11 inch

53 picometers × (1 inch/ 2.54 cm) × (1 cm/ 10 mm) × (1 mm/ 10^6 nm) × (1 nm/ 10^3 Å) × (1 Å/ 10^-10 m) = 2.09 x 10^-9 inch

Substitute the given value of hydrogen atomic radius into the expression below:

1 in ÷ (53 pm) = 185186 atoms

Therefore, 185186 atoms of hydrogen must be lined up to make a line 1 inch long.

learn more about hydrogen here

https://brainly.com/question/24433860

#SPJ11

A lead ball is added to a graduated cylinder containing 31.8 mL of water, causing the level of the water to increase to 93.7 mL. What is the volume in milliliters of the lead ball?
a) 31.8 mL
b) 61.9 mL
c) 93.7 mL
d) 125.5 mL

Answers

Given that a lead ball is added to a graduated cylinder containing 31.8 mL of water, causing the level of the water to increase to 93.7 mL. We need to find the volume in milliliters of the lead ball

. We know that the volume of water displaced by the ball is the same as the volume of the ball. So, to find the volume of the ball, we need to subtract the initial volume of water from the final volume of water

. Hence, the main answer is option b) 61.9 : The volume of the lead ball = Final volume of water - Initial volume of waterVolume of the lead ball = 93.7 mL - 31.8 mL= 61.9 mLTherefore, the volume of the lead ball is 61.9 mL

To know more about water visit:

https://brainly.com/question/28465561

#SPJ11

In the Krebs Citric Acid cycle, how much of the original methyl carbon from acetyl- CoA will remain in oxaloacetate after two full cycles? One quarter will remain. None, it will all be lost as CO2. All will remain Half will remain.

Answers

In the Krebs Citric Acid cycle, Half of the original methyl carbon from acetyl- CoA will remain in oxaloacetate after two full cycles.

The Krebs cycle, also known as the citric acid cycle, is a metabolic pathway that is required for the aerobic respiration of all living organisms. The Krebs cycle begins when Acetyl-CoA, which is produced from pyruvate by oxidative decarboxylation, enters the cycle.Oxaloacetate, a four-carbon molecule, accepts Acetyl-CoA and forms a six-carbon molecule known as citrate. The citrate undergoes a series of redox reactions to generate ATP, NADH, and FADH2. As the cycle progresses, the six-carbon molecule is broken down into a four-carbon molecule.

The methyl carbon is retained in the cycle's intermediates, while the rest of the carbon is released as CO2. However, due to the cycle's circular nature, the intermediates generated during the first cycle may be used during the second cycle. Half of the original methyl carbon from acetyl-CoA will remain in oxaloacetate after two full cycles.

To know more about Citric Acid cycle visit:

https://brainly.com/question/31329760

#SPJ11

Which of the following correctly represents the ground state electron configuration of Mn3+?
a- [Ar]3d⁴
b- [Ar]3d²
c- [Ar]3d⁵4s²
d- [Ar]3d²4s²

Answers

The correct representation of the ground state electron configuration of Mn3+ is: a- [Ar]3d⁴

To determine the electron configuration of Mn3+, we first need to identify the electron configuration of the neutral atom, which is manganese (Mn). The electron configuration of the neutral Mn atom is:

[Ar]4s²3d⁵

When Mn loses three electrons to form Mn3+, the electron configuration is modified. The three electrons are removed from the highest energy level, which is the 4s orbital. Therefore, the 4s² electrons are removed, leaving behind the 3d⁵ electrons.

The electron configuration of Mn3+ can be represented as:

[Ar]3d⁵

This indicates that in Mn3+, the 3d subshell is filled with 5 electrons. The 4s orbital is no longer occupied.

Therefore, the correct ground state electron configuration for Mn3+ is a.

Learn more about electron configuration at https://brainly.com/question/26084288

#SPJ11

Balance each of the following redox reactions occurring in acidic aqueous solution. Part A Zn(s) + Sn² + (aq) → Zn² (aq) + Sn(s)

Answers

The balanced equation in acidic aqueous solution is: Zn(s) + Sn²+(aq) + 2H⁺(aq) → Zn²+(aq) + Sn(s) + H₂O(l).

To balance the redox reaction Zn(s) + Sn²+(aq) → Zn²+(aq) + Sn(s) in acidic aqueous solution, we follow the steps of the half-reaction method.

First, we identify the oxidation and reduction half-reactions:

Oxidation half-reaction: Zn(s) → Zn²+(aq)

Reduction half-reaction: Sn²+(aq) → Sn(s)

Next, we balance the atoms in each half-reaction by adding water molecules and hydrogen ions (H⁺) as needed. In this case, no water molecules are needed, but we need to balance the charge with hydrogen ions:

Oxidation: Zn(s) → Zn²+(aq) + 2e⁻

Reduction: Sn²+(aq) + 2H⁺(aq) → Sn(s) + H₂O(l) + 2e⁻

Now, we balance the number of electrons transferred in each half-reaction by multiplying one or both of the half-reactions by appropriate coefficients. In this case, both half-reactions have 2 electrons, so no additional coefficients are needed.

Finally, we add the two half-reactions together, canceling out the electrons, and ensuring that the number of atoms and charges are balanced:

Zn(s) + Sn²+(aq) + 2H⁺(aq) → Zn²+(aq) + Sn(s) + H₂O(l)

The balanced equation in acidic aqueous solution is: Zn(s) + Sn²+(aq) + 2H⁺(aq) → Zn²+(aq) + Sn(s) + H₂O(l).

To know more about redox reaction, refer here:

https://brainly.com/question/13293425#

#SPJ11

the total biomass of photosynthetic autotrophs present in an ecosystem is known as

Answers

The total biomass of photosynthetic autotrophs present in an ecosystem is known as the primary productivity of the ecosystem. The primary productivity, while the long answer is as follows. Primary productivity is the rate at which biomass is produced through photosynthesis.

It is calculated as the total biomass of photosynthetic autotrophs present in an ecosystem. The productivity of an ecosystem is the speed at which new biomass is generated by photosynthesis and chemosynthesis. It is measured in grams per square meter per year (g/m²/year) or kilojoules per square meter per year (kJ/m²/year).The process of photosynthesis converts sunlight into chemical energy stored in the biomass of photosynthetic organisms. Primary productivity is the rate at which this biomass is generated,

it is the foundation of most ecosystems. By definition, primary productivity includes only the biomass produced by photosynthesis, and it does not include biomass from other sources. The primary productivity is that it is the rate of biomass production by autotrophs, which convert sunlight into organic compounds by photosynthesis. This process is limited by environmental factors such as temperature, light, and nutrient availability. Primary productivity is an important metric for understanding ecosystem dynamics because it influences the availability of energy and nutrients to higher trophic levels.

To know more about photosynthesis Visit;

https://brainly.com/question/14020202

#SPJ11

1.57 moles of hydrochloric acid is dissolved in 7.00 l of water. what is the ph of the solution? answer the question with the correct number of significant figures.

Answers

The pH of the solution is 0.65.

To find the pH of the solution, we need to first calculate the concentration of HCl in moles per liter (Molarity).

Molarity (M) = moles of solute/volume of solution (in liters)

In this case, we have 1.57 moles of HCl dissolved in 7.00 L of water:

Molarity (HCl) = 1.57 moles / 7.00 L = 0.224 M

The pH of a solution can be calculated using the equation:

pH = -log[H+]

Since HCl is a strong acid, it completely dissociates in water, and the concentration of H+ ions is equal to the concentration of HCl.

Therefore, the pH of the solution can be calculated as:

pH = -log(0.224) = 0.650

Rounding the answer to the correct number of significant figures, the pH of the solution is 0.65.

Learn more about pH at https://brainly.com/question/172153

#SPJ11

balance the redox reaction by inserting the appropriate reaction:h^{ } cro_{4}^{2-} no_{2}^{-} -> cr^{3 } h_{2}o no_{3}^{-}h cro2−4 no−2⟶cr3 h2o no−3

Answers

The balanced redox reaction is : 2H^+ + CrO4^2- + 3NO2^- → Cr^3+ + H2O + 3NO3^-

To balance a redox reaction, we ensure that the number of atoms and charges on both sides of the equation are equal. A step by step of balancing this is as follows :

1. Separating the reaction into two half-reactions, one for oxidation and one for reduction:

Oxidation half-reaction: CrO4^2- → Cr^3+

Reduction half-reaction: 3NO2^- → 3NO3^-

2. Balancing the atoms in each half-reaction by adding water (H2O) molecules:

Oxidation half-reaction: CrO4^2- → Cr^3+ + 4H2O

Reduction half-reaction: 3NO2^- + H2O → 3NO3^- + 2H^+

3. Balancing the hydrogen (H) atoms by adding hydrogen ions (H^+):

Oxidation half-reaction: CrO4^2- + 8H^+ → Cr^3+ + 4H2O

Reduction half-reaction: 3NO2^- + H2O → 3NO3^- + 2H^+

4. Balancing the charges by adding electrons (e^-):

Oxidation half-reaction: CrO4^2- + 8H^+ + 3e^- → Cr^3+ + 4H2O

Reduction half-reaction: 3NO2^- + H2O → 3NO3^- + 2H^+ + 2e^-

5. Multiplying each half-reaction by the appropriate coefficient to equalize the number of electrons transferred:

Oxidation half-reaction: 3CrO4^2- + 24H^+ + 9e^- → 3Cr^3+ + 12H2O

Reduction half-reaction: 6NO2^- + 3H2O → 6NO3^- + 4H^+ + 4e^-

6. Combining the balanced half-reactions and cancel out the electrons:

3CrO4^2- + 24H^+ + 9e^- + 6NO2^- + 3H2O → 3Cr^3+ + 12H2O + 6NO3^- + 4H^+ + 4e^-

Simplifying the equation:

2H^+ + CrO4^2- + 3NO2^- → Cr^3+ + H2O + 3NO3^-

To know more about redox reactions, refer to the link:

https://brainly.com/question/13293425#

#SPJ11

use kinetic molecular theory to explain the change in gas pressure that results from warming a sample of gas.

Answers

The kinetic molecular theory states that all molecules in a gas move constantly and randomly. The molecules collide with each other and with the walls of the container, and this results in pressure.

When the temperature of a gas increases, the average kinetic energy of its molecules also increases. This means that the molecules are moving faster and colliding with the walls of the container more frequently and with greater force. This results in an increase in the gas pressure.

On the other hand, when the temperature of a gas decreases, the average kinetic energy of its molecules decreases. This means that the molecules move more slowly and collide with the walls of the container less frequently and with less force. This results in a decrease in the gas pressure.

Therefore, the change in gas pressure that results from warming a sample of gas is an increase in pressure.

Learn more about kinetic molecular theory here:
https://brainly.com/question/30872266

#SPJ11

The common ion effect can be most effectively used to _________ precipitation of a _________ ionic solid.

Select the correct answer below:

encourage, soluble

discourage, soluble

encourage, slightly soluble

discourage, slightly soluble

Answers

The common ion effect can be most effectively used to discourage precipitation of a soluble ionic solid.

How does the common ion effect impact the precipitation of a slightly soluble ionic solid?

The common ion effect refers to the phenomenon where the presence of an ion already present in a solution reduces the solubility of a compound containing the same ion. It occurs due to the principle of equilibrium in chemical reactions.

In the context of precipitation, when two soluble ionic compounds are mixed, their respective ions dissociate and combine to form an insoluble product, which precipitates out of the solution. However, if one of the ions in the product is already present in high concentration due to the addition of a soluble compound containing that ion, the solubility of the product is reduced.

In this case, the common ion effect can be most effectively used to discourage the precipitation of a slightly soluble ionic solid. By adding a soluble compound containing one of the ions present in the product, the concentration of that ion is increased, shifting the equilibrium towards the dissolved form and reducing the precipitation of the solid.

Therefore, the correct answer is "discourage, slightly soluble" as the common ion effect is used to decrease the solubility and discourage the formation of a slightly soluble ionic solid.

Learn more about  common ion effect

brainly.com/question/30772969

#SPJ11

answer as much as you can please! need help :(

Answers

1. The number of moles of NaOH is 0.00162 moles

2. There are 0.00486 moles of citric acid

3. It is equivalent to 192 g of citric acid.

4. The mass of the citric acid is 12.95 g

What is neutralization?

1) The number of moles of the NaOH

Concentration * volume

= 0.1 M * 16.2/1000 L

= 0.00162 moles

1 mole of NaOH reacts with 3 moles of citric acid

0.00162 moles of NaOH reacts with 0.00162 * 3/1

= 0.00486 moles

Concentration of the citric acid = 0.00486 moles * 1000/25

= 0.19 M

Then;

m/M = CV

m = 0.19 * 355/1000 * 192

= 12.95 g

Learn more about neutralization:https://brainly.com/question/14156911

#SPJ1

1. When the half reaction is balanced in acidic solution, will water be a reactant or a product, and what is the lowest whole number stoichiometric coefficient for water?

VO2+ (aq) → VO2+ (aq)

1)Water will be a reactant with a stoichiometric coefficient of 1.
2)Water will be a product with a stoichiometric coefficient of 1.
3)Water will be a reactant with a stoichiometric coefficient of 2.
4)Water will be a product with a stoichiometric coefficient of 2.

Answers

In an acidic solution, water is neither a reactant nor a product. This is because, in acidic solution, the half reactions involve H+ ions as reactants or products. As a result, it is essential to balance half-reactions and the entire redox reaction by using H+ and/or H2O as necessary.

In an acidic solution, water is neither a reactant nor a product. This is because, in acidic solution, the half reactions involve H+ ions as reactants or products. As a result, it is essential to balance half-reactions and the entire redox reaction by using H+ and/or H2O as necessary. Balancing half-reactions and the entire redox reaction in an acidic solution is known as balancing redox reactions in acidic solution. When balancing a half-reaction in an acidic solution, it is critical to add H+ ions or H2O as necessary to balance the charge and mass of the half-reaction. It's important to note that when balancing half-reactions in an acidic solution, you don't need to balance oxygen or hydrogen atoms. Instead, balance the charge using H+ ions and the mass using H2O as necessary.

In summary, water will neither be a reactant nor a product when a half reaction is balanced in acidic solution. Balancing half reactions in acidic solutions involve adding H+ ions or H2O as necessary to balance the charge and mass of the half-reaction.

To know more about acidic solution visit: https://brainly.com/question/12411990

#SPJ11

assume c moles of a diatomic gas has an internal kinetic energy of e joules. determine the temperature of the gas after it has reached equilibrium.

Answers

If 3 moles of a diatomic gas has an internal kinetic energy of 10 Kilojoules then the temperature of the gas when it reaches equilibrium is 364.67 Kelvin.

To determine the temperature of a gas, we can use the equation for the average kinetic energy of a molecule:

KE_avg = (3/2) * k * T

Where:

KE_avg is the average kinetic energy of a molecule,

k is the Boltzmann constant (approximately 1.38 x 10^-23 J/K),

T is the temperature in Kelvin.

Given that the gas has 3.0 moles and an internal kinetic energy of 10 kJ, we need to convert the energy to joules and divide by the number of moles to find the average kinetic energy per molecule.

Internal kinetic energy = 10 kJ = 10,000 J

Number of moles (n) = 3.0 mol

Average kinetic energy per molecule (KE_avg) = Internal kinetic energy / Number of molecules

KE_avg = 10,000 J / (3.0 mol * 6.022 x 10^23 molecules/mol)

Now we can rearrange the equation to solve for temperature (T):

T = (KE_avg * 2) / (3 * k)

Plugging in the values:

T = (10,000 J / (3.0 mol * 6.022 x 10^23 molecules/mol)) * 2 / (3 * 1.38 x 10^-23 J/K)

Simplifying:

T ≈ 364.67 K

Therefore, the gas's temperature after reaching equilibrium is approximately 364.67 Kelvin.

The complete question should be:

Assume 3.0 moles of a diatomic gas has an internal kinetic energy of 10 kJ. Determine the temperature of the gas after it has reached equilibrium.

Learn more about Boltzmann constant:

https://brainly.com/question/30639301

#SPJ11

draw the organic product(s) of the following reactions, and include carbon dioxide if it is produced.

Answers

Carbon dioxide is produced along with the organic products. In reaction 4, four molecules of carbon dioxide are produced, but no organic product is formed.

Sure, I'd be happy to help you out! Here are the organic products of the following reactions, including carbon dioxide if it is produced:1. Reaction:

CH3COOH + Na2CO3 → Product:CH3COO-Na+ + CO2 + H2O2.

Reaction:

C6H5COOH + CaCO3 → Product:C6H5COO-Ca2+ + CO2 + H2O3.

Reaction:

C2H5OH + O2 → Product:CO2 + H2O (no organic product produced in this reaction)4.

Reaction:

2C2H5OH + 2K2Cr2O7 + 8H2SO4 → Product:4CO2 + 2Cr2(SO4)3 + 4KHSO4 + 2H2O

As you can see, in reactions 1-3, carbon dioxide is produced along with the organic products. In reaction 4, four molecules of carbon dioxide are produced, but no organic product is formed.

To know more about organic products visit:

https://brainly.com/question/30328741

#SPJ11

C6H5COOH(s) -- C6H5COO-(aq) + H+(aq)
Ka = 6.46 x 10e-5
Benzoic acid, C6H5COOH, dissociates in water as shown in the equation above. A 25.0 mL sample of an aqueous solution of pure benzoic acid is titrated using standardized 0.150 M NaOH.
After addition of 15.0 mL of the 0.150 M NaOH, the pH of the resulting solution is 4.37. Calculate the following:
The number of moles of NaOH added.
Please show steps.
Thank you in advance!

Answers

The number of moles of NaOH added is 0.00225 mol.

To calculate the number of moles of NaOH added, we can use the stoichiometry of the reaction between benzoic acid (C6H5COOH) and NaOH. According to the balanced equation, 1 mole of benzoic acid reacts with 1 mole of NaOH. Given that the concentration of NaOH is 0.150 M and 15.0 mL of NaOH solution is added, we can first convert the volume to liters by dividing it by 1000:
Volume of NaOH = 15.0 mL / 1000 mL/L = 0.015 L
Next, we can calculate the number of moles of NaOH using the formula:
moles of NaOH = concentration × volume
moles of NaOH = 0.150 M × 0.015 L = 0.00225 mol
Therefore, the number of moles of NaOH added is 0.00225 mol.

To know more about C6H5COOH, click here https://brainly.com/question/29206874

#SPJ11

b. what is the hybridization of the central atom in scl2? hybridization = what are the approximate bond angles in this substance ? bond angles =

Answers

The central atom in SCl2 undergoes sp3 hybridization. The bond angle between the two chlorine atoms is approximately 103.5 degrees.

This means that the sulfur atom in SCl2 forms four hybrid orbitals by combining one 3s orbital and three 3p orbitals. These hybrid orbitals arrange themselves in a tetrahedral geometry around the central sulfur atom.

The approximate bond angles in SCl2 can be calculated using the VSEPR theory (Valence Shell Electron Pair Repulsion). In this theory, lone pairs and bonding pairs of electrons around the central atom repel each other, causing the molecular geometry to adjust.

In SCl2, there are two bonding pairs and no lone pairs around the central sulfur atom. According to VSEPR theory, the molecule adopts a bent or V-shaped geometry. The bond angle between the two chlorine atoms is approximately 103.5 degrees.

To know more about hybridization, refer to the link:

https://brainly.com/question/14516902#

#SPJ11

how many microliters of 1.000 mnaoh solution must be added to 25.00 ml of a 0.1000 m solution of lactic acid ( ch3ch(oh)cooh or hc3h5o3 ) to produce a buffer with ph = 3.75?

Answers

First, we need to calculate equation  the concentration of CH3CH(OH)COO- and HCH3CH(OH)COOH needed to produce a buffer solution at a given pH.

We will use the Henderson-Hasselbalch equation for this purpose. Henderson -Hasselbalch are equatio pH = pKa + log [CH3CH(OH)COO-] / [HCH3CH(OH)COOH]pH = 3.75 (given)pKa for lactic acid (HC3H5O3) =

We can assume that the volume of the resulting buffer solution is 25.00 ml (the same as the original volume of lactic acid), so we will add only a tiny amount of NaOH to it. The concentration of NaOH is given as 1.000 M.

To know more about equation Visit;

https://brainly.com/question/27984374

#SPJ11

Other Questions
12. Rewrite the expression in terms of the given function: (sec x + csc x)(sin x + cos x) - 2 - tan x; cotx O A. 2cot x B. cot x C. 2 + cotx D. 0 Find z that such 8.6% of the standard normal curve lies to the right of z. 1. Consider the linear model y = Za + , where ~ N(0, Io) and Z is an n x p model matrix. do (c)(d) parts (a) (3 marks) Show that ||y - Za||2 is minimized by a = (ZTZ)-Zy. (b) (3 marks) Let ZT Reflect on the discussion of ethics and culture what will be the most important ethical principle you will hold onto in the workplace? the kinetic energy of the block reaches its maximum when which of the following occurs Nautilus Fitness is one of Lebanon's leading Health Clubs located in Beirut. The club provides exceptional levels of customer service to ensure that its members enjoy a memorable experience. It offers yearly memberships to its members, and the fees are due in full at the beginning of the membership period. As an incentive to new customers, Nautilus advertised that any customers not satisfied for any reason could receive a refund of the remaining portion of unused membership fees. As a result of this policy, Joseph Karam, company controller, recognized revenue ratably over the life of the membership. Nautilus is in the process of preparing its year- end financial statements. Mireille, Nautilus' treasurer, is concerned about the company's performance this year. She reviews the financial statements Joseph prepared and tells him to recognize membership revenue when the fees are received. Answer the following questions: a. Describe the revenue recognition principle as it relates to this case. b. What are the ethical issues related to this case? c. What should Joseph do? Which of the following elements would you predict to have similar properties? Oxygen (O), Bromine (Br), Sodium (Na), lodine (I), Nitrogen (N) 200 Bi is the heaviest stable nuclide, and its BE/A is low compared with medium-mass nuclides. Calculate BE/A, the binding energy per nucleon, for 200 Bi. The atomic mass of 200Bi is 208.980374 u. Sel Let f be the function defined by (o) - 3ar" - 36x + 6 for-4 Question 9 of 12 < View Policies Current Attempt in Progress Solve the given triangle. a= 21, b = 20, c = 29 Round your answers to the nearest integer. Enter NA in each answer area if the triangle doe The Laiterie de Coaticook in the Eastern Townships of Quebec produces several types of cheddar cheese. It markets this cheese in four varieties: aged 2 months, 9 months, 15 months, and 2 years. At the producer's store, 2 kg of each variety sell for the following prices: $8.50, $9.50, $11.25, and $12.50, respectively. Consider the cheese maker's decision whether to continue to age a particular 2-pound block of cheese. At 2 months, he can either sell the cheese immediately or let it age further. If he sells it now, he will receive $8.50 immediately. If he ages the cheese, he must give up the $8.50 today to receive a higher amount in the future. What is the IRR (expressed in percent per month) of the investment of giving up $85.00 today by choosing to store 20 kg of cheese that is currently 2 months old and instead selling 10 kg of this cheese when it has aged 9 months, 6 kg when it has aged 15 months, and the remaining 4 kg when it has aged 2 years? -8. The IRR is % per month. (Enter your response as a percent rounded to two decimal places.) The Laiterie de Coaticook in the Eastern Townships of Quebec produces several types of cheddar cheese. It markets this cheese in four varieties: aged 2 months, 9 months, 15 months, and 2 years. At the producer's store, 2 kg of each variety sell for the following prices: $8.50, $9.50, $11.25, and $12.50, respectively. Consider the cheese maker's decision whether to continue to age a particular 2-pound block of cheese. At 2 months, he can either sell the cheese immediately or let it age further. If he sells it now, he will receive $8.50 immediately. If he ages the cheese, he must give up the $8.50 today to receive a higher amount in the future. What is the IRR (expressed in percent per month) of the investment of giving up $85.00 today by choosing to store 20 kg of cheese that is currently 2 months old and instead selling 10 kg of this cheese when it has aged 9 months, 6 kg when it has aged 15 months, and the remaining 4 kg when it has aged 2 years? --- The IRR is% per month. (Enter your response as a percent rounded to two decimal places.) An investment bank agrees to underwrite the 20 million shares of stock for Lincoln Bros Inc. on a best-efforts basis. The investment bank is able to sell 16.2 million shares for $31.34 per share, and it charges Lincoln Bros Inc. $0.25 per share sold. How much money does Lincoln Bros Inc. receive?Enter your answer with dollar values. So, for example, if your answer is $20 million, then just enter 20,000,000. what type of solid is conductive when melted but not as a solid Louise's monthly gross income is $3,500. Her employer withholds $700 in federal, state, and local income taxes and $280 in Social Security taxes per month. Louise contributes $140 per month for her IR What is the annual percentage rate, compounded monthly, that results in an effective rate of 5.80%? A 5.63% B 5.65% C 5.60% 5.85% Question 13 3 pts We need 300 units of Item X. If 100 are already in stock, then the gross requirement is and the net requirement is O 350, 250 O 350, 300 O 300, 250 O 300, 200 What is not an example of why Operational Effectiveness is not enough to drive business success?A) Since every company does significant benchmarking at the end they basically do the same thing.B) Competition based on operational effectiveness is a zero-sum gain.C) May lead to more mergers and acquisitions.D) None of the above. increased amounts of light would inhibit the production of which hormone? help meAn athlete swings a 6.40-kg ball horizontally on the end of a rope. The ball moves in a circle of radius 0.760 m at an angular speed of 0.710 rev/s. (a) What is the tangential speed of the ball? m/s ( In 1958, the average tuition for one year at an Ivy League school was $1,800. 43 years later, in 2001, the average cost is $27,000. What is the growth rate in tuition over the 43-year period? a. 12% b. 9% c. 6.5% d. 7% e. 8%