A 9 kg mass is attached to a spring with spring constant 225 N/m and set into simple harmonic motion with amplitude 20 cm.
what is the magnitude of the net force applied to the mass when it is at maximum speed?
a) 45 N
b) 0 N
c) 9 N
d) 5 N
e) None of these

Answers

Answer 1

The magnitude of the net force applied to the mass is 45N when it is at maximum speed

To find the magnitude of the net force applied to the mass when it is at maximum speed, we need to consider the restoring force exerted by the spring.

In simple harmonic motion, the restoring force exerted by a spring is given by Hooke's law:

F = -kx

where F is the force, k is the spring constant, and x is the displacement from the equilibrium position.

In this case, the mass is attached to the spring and undergoes simple harmonic motion with an amplitude of 20 cm, which corresponds to a maximum displacement from the equilibrium position.

At maximum speed, the mass is at the extreme points of its motion, where the displacement is maximum. Therefore, the force applied by the spring is at its maximum as well.

Substituting the given values into Hooke's law:

F = -(225 N/m)(0.20 m) = -45 N

Since the force is a vector quantity and the question asks for the magnitude of the net force, the answer is:

Magnitude of the net force = |F| = |-45 N| = 45 N

Therefore, the correct option is (a) 45 N.

To learn more about magnitude follow the given link

https://brainly.com/question/30337362

#SPJ11


Related Questions

Radon gas has a half-life of 3.83 days. If 2.80 g of radon gas is present at time
t = 0,
what mass of radon will remain after 2.10 days have passed?
g
After 2.10 days, the activity of a sample of an unknown type radioactive material has decreased to 83.4% of the initial activity. What is the half-life of this material?
days

Answers

Radon gas has a half-life of 3.83 days. If 2.80 g of radon gas is present at time t = 0, The radioactive decay of an isotope can be quantified using the half-life of the isotope. It takes approximately one half-life for half of the substance to decay.

The half-life of radon is 3.83 days. After a specific amount of time, the amount of radon remaining can be calculated using the formula: Amount remaining = Initial amount × (1/2)^(number of half-lives)Here, initial amount of radon gas present at time t=0 is 2.80 g. Number of half-lives = time elapsed ÷ half-life = 2.10 days ÷ 3.83 days = 0.5487 half-lives Amount remaining = 2.80 g × (1/2)^(0.5487) = 1.22 g

Thus, the mass of radon gas that will remain after 2.10 days have passed is 1.22 g. The answer is 1.22g.After 2.10 days, the activity of a sample of an unknown type radioactive material has decreased to 83.4% of the initial activity. What is the half-life of this material?Given, After 2.10 days, activity of sample = 83.4% of the initial activity.

To know more about half-life visit:

https://brainly.com/question/31666695

#SPJ11

The electric field strength 3 cm from the surface of a 12-cm-diameter metal sphere is 100 kN/C. What is the charge on the sphere?

Answers

The charge on the sphere is approximately 1.68 × 10^-7 C.

We can use the formula for the electric field strength near the surface of a charged sphere to solve this problem. The electric field strength near the surface of a charged sphere is given by:

E = (1 / 4πε₀) * (Q / r^2)

where E is the electric field strength, Q is the charge on the sphere, r is the distance from the center of the sphere, and ε₀ is the permittivity of free space.

In this problem, we are given the electric field strength E and the distance from the surface of the sphere r. We can use these values to solve for the charge Q.

First, we need to find the radius of the sphere. The diameter of the sphere is given as 12 cm, so the radius is:

r = d/2 = 6 cm

Substituting the given values, we get:

100 kN/C = (1 / 4πε₀) * (Q / (0.03 m)^2)

Solving for Q, we get:

Q = 4πε₀ * r^2 * E

where ε₀ is the permittivity of free space, which has a value of 8.85 × 10^-12 C^2/(N·m^2).

Substituting the given values, we get:

Q = 4π * 8.85 × 10^{-12} C^2/(N·m^2) * (0.06 m)^2 * 100 kN/C

Solving for Q, we get:

Q ≈ 1.68 × 10^{-7} C

Therefore, the charge on the sphere is approximately 1.68 × 10^{-7} C.

Learn more about " electric field strength" : https://brainly.com/question/1592046

#SPJ11

Х A ball is thrown horizontally from the top of a building 0.7 km high. The ball hits the ground at a point 63 m horizontally away from and below the launch point. What is the speed of the ball (m/s) just before it hits the ground? Give your answer in whole numbers.

Answers

The speed of the ball just before it hits the ground is 28 m/s.

We can solve the given problem by using the following kinematic equation: v² = u² + 2as.

Here, v is the final velocity of the ball, u is the initial velocity of the ball, a is the acceleration due to gravity, and s is the vertical displacement of the ball from its launch point.

Let us first calculate the time taken by the ball to hit the ground:

Using the formula, s = ut + 1/2 at²

Where u = 0 (as the ball is thrown horizontally), s = 0.7 km = 700 m, and a = g = 9.8 m/s²

So, 700 = 0 + 1/2 × 9.8 × t²

Or, t² = 700/4.9 = 142.85

Or, t = sqrt(142.85) = 11.94 s

Now, we can use the horizontal displacement of the ball to find its initial velocity:

u = s/t = 63/11.94 = 5.27 m/s

Finally, we can use the kinematic equation to find the final velocity of the ball:

v² = u² + 2as = 5.27² + 2 × 9.8 × 700 = 27.8²

So, v = sqrt(27.8²) = 27.8 m/s

Therefore, the speed of the ball (m/s) just before it hits the ground is approximately 28 m/s.

To learn more about speed, refer below:

https://brainly.com/question/17661499

#SPJ11

11. (10 points total) An object is placed 12 cm to the left of a convex mirror. The image has a magnification of 1/4. a) (2 points) Is the image upright or inverted? (Please explain or show work.) b) (2 points) Is the image real or virtual? (Please explain or show work.) c) (3 points) What is the image distance? d) (3 points) What is the focal length of the mirror? I

Answers

The answers to the given question are: a) The image is upright. b) The image is virtual. c) The image distance is 48 cm. d) The focal length of the mirror is 1 cm.

a) The image formed by a convex mirror is always virtual, erect and smaller in size than the object. As given, magnification = 1/4, which is positive. Hence the image is erect or upright.

b) The convex mirror always forms a virtual image, because the reflected rays never intersect, and the image cannot be obtained on the screen. So, the image is virtual.

c) We know that:Image distance(v) = - u/m

Where u is the object distance. m is the magnification of the image. Here, Object distance (u) = -12 cm

Magnification (m) = 1/4

Putting the values in the above formula, we get,

Image distance (v) = - (-12) / 1/4= 12 * 4 = 48 cm

So, the image distance is 48 cm.

d) We know that: Magnification(m) = -v/u

Also, Magnification(m) = -f/v

Where f is the focal length of the convex mirror.

Putting the value of image distance v = 48 cm, and magnification m = 1/4 in the above formula, we get,

focal length (f) = - v * m / u= - 48 * (1/4) / (-12)= 1 cm

So, the focal length of the mirror is 1 cm.

Therefore, the answers to the given question are:

a) The image is upright.

b) The image is virtual.

c) The image distance is 48 cm.

d) The focal length of the mirror is 1 cm.

Learn more about focal length at: https://brainly.com/question/1031772

#SPJ11

A group of astronauts wish to know the gravitational acceleration of a newly discovered planet. On the surface of the planet, they construct a simple pendulum of length 21.0 m. The pendulum yields a 18.7 s period of oscillation. Part 1 Find the gravitational acceleration of the planet. Part 2 How much stronger is earth's gravitational acceleration compared to this planet?

Answers

The gravitational acceleration on Earth is 4.56 times stronger than the newly discovered planet and 2) the gravitational acceleration of the newly discovered planet is 2.15 m/s².

Part 1- The time period of a simple pendulum is given by the following formula:

T=2π√(L/g) where T is the time period, L is the length of the pendulum and g is the gravitational acceleration.

Let g1 be the gravitational acceleration of the newly discovered planet.

We know that the length of the pendulum is L= 21.0 m and the time period of oscillation of the pendulum is T= 18.7s.

Substituting these values in the formula, we get:

18.7=2π√(21.0/g1)

Squaring both sides of the equation, we get:

g1=(4π²×21.0)/18.7² = 2.15 m/s²

Therefore, the gravitational acceleration of the newly discovered planet is 2.15 m/s².



Part 2- Let g2 be the gravitational acceleration of Earth.

The acceleration due to gravity on the surface of the Earth is g2 = 9.81 m/s².

Comparing the gravitational acceleration of Earth to that of the newly discovered planet, we have:

The ratio of the gravitational acceleration of Earth to that of the newly discovered planet = g2/g1

= 9.81 m/s²/2.15 m/s² = 4.56

Therefore, the gravitational acceleration on Earth is 4.56 times stronger than the newly discovered planet.

know more about  gravitational

https://brainly.com/question/3009841

#SPJ11

A soccer ball that has just been kicked by Lionel Messi has a kinetic energy of 1440 J and has a mass of 450 g. What velocity is the soccer ball travelling at? O / A. 56 m/s O s B. 75 m/s O C./ 80 m/s OD. 12 m/

Answers

The soccer ball is traveling at approximately 53.67 m/s. Option A is correct.

To calculate the velocity of the soccer ball, we can use the formula for kinetic energy:

Kinetic energy (KE) = (1/2) × mass × velocity²

Kinetic energy (KE) = 1440 J

Mass (m) = 450 g

= 0.45 kg

Rearranging the equation and solving for velocity (v):

KE = (1/2) × m × v²

1440 J = (1/2) × 0.45 kg × v²

Dividing both sides of the equation by (1/2) × 0.45 kg:

2880 J/kg = v²

Taking the square root of both sides:

v = √(2880 J/kg)

v = 53.67 m/s

Hence, Option A is correct.

Learn more about velocity-

brainly.com/question/80295

#SPJ11

A mass on a spring system has an initial mechanical energy of 167 J and a damping factor of 0.2 s^-1. What is the mechanical energy of the system (in units of J) after 2.8 s
have passed?

Answers

The mechanical energy of the system after 2.8 s is approximately 95.14 J.

The mechanical energy of a damped harmonic oscillator decreases over time due to damping. The equation for the mechanical energy of a damped harmonic oscillator is given by:

E(t) = E0 * exp(-2βt)

where E(t) is the mechanical energy at time t, E0 is the initial mechanical energy, β is the damping factor, and exp is the exponential function.

Given that the initial mechanical energy E0 is 167 J and the damping factor β is 0.2 s^-1, we can calculate the mechanical energy after 2.8 s as follows:

E(2.8) = E0 * exp(-2 * 0.2 * 2.8)

E(2.8) = 167 * exp(-0.56)

Using the value of exp(-0.56) ≈ 0.5701, we have:

E(2.8) ≈ 167 * 0.5701

E(2.8) ≈ 95.14 J

Learn more about mechanical energy at https://brainly.com/question/30403434

#SPJ11

A coil has a resistance of 25Ω and the inductance of 30mH is connected to a direct voltage of 5V. Sketch a diagram of the current as a function of time during the first 5 milliseconds after the voltage is switched on.

Answers

Answer:

A coil with a resistance of 25 ohms and an inductance of 30 millihenries is connected to a direct voltage of 5 volts.

The current will increase linearly for the first 0.75 milliseconds, and then reach a maximum value of 0.2 amperes. The current will then decrease exponentially.

Explanation:

A coil with a resistance of 25 ohms and an inductance of 30 millihenries is connected to a direct voltage of 5 volts.

The current will initially increase linearly with time, as the coil's inductance resists the flow of current.

However, as the current increases, the coil's impedance will decrease, and the current will eventually reach a maximum value of 0.2 amperes. The current will then decrease exponentially, with a time constant of 0.75 milliseconds.

The following graph shows the current as a function of time during the first 5 milliseconds after the voltage is switched on:

Current (A)

0.5

0.4

0.3

0.2

0.1

0

Time (ms)

0

1

2

3

4

5

The graph shows that the current increases linearly for the first 0.75 milliseconds, and then reaches a maximum value of 0.2 amperes. The current then decreases exponentially, with a time constant of 0.75 milliseconds.

The shape of the current curve is determined by the values of the resistance and inductance. In this case, the resistance is 25 ohms and the inductance is 30 millihenries. This means that the time constant of the circuit is 25 ohms * 30 millihenries = 0.75 milliseconds.

Learn more about Electrical circuits.

https://brainly.com/question/33261228

#SPJ11

When a potential difference of 12 V is applied to a wire 7.2 m long and 0.34 ram in diameter the result is an electric
current of 2.0 A. What is the resistivity of the wire?

Answers

The resistivity of the wire is approximately 3.03 x 10^-6 Ω·m.

To determine the resistivity of the wire, we can use Ohm's Law, which states that the current (I) flowing through a conductor is directly proportional to the applied voltage (V) and inversely proportional to the resistance (R).

Resistance (R) can be calculated using the formula R = (ρ * L) / A, where ρ is the resistivity of the material, L is the length of the wire, and A is the cross-sectional area of the wire.

Given:

Potential difference (V) = 12 V

Length of the wire (L) = 7.2 m

Diameter of the wire (d) = 0.34 cm (which can be converted to meters as 0.0034 m)

First, we need to calculate the cross-sectional area (A) of the wire using the formula A = π * (d/2)^2:

A = π * (0.0034 m/2)^2 = 3.628 x 10^-6 m^2

Next, rearrange Ohm's Law to solve for resistance (R):

R = V / I = 12 V / 2.0 A = 6 Ω

Now, substitute the values of R, L, and A into the resistance formula to solve for resistivity (ρ):

6 Ω = (ρ * 7.2 m) / 3.628 x 10^-6 m^2

ρ = (6 Ω * 3.628 x 10^-6 m^2) / 7.2 m

ρ ≈ 3.03 x 10^-6 Ω·m

Therefore, the resistivity of the wire is approximately 3.03 x 10^-6 Ω·m.

Learn more about resistivity here:

https://brainly.com/question/23631582

#SPJJ11

Twins A and B are both 19.0 years old when twin B decides to embark on a space voyage. Twin B blasts off from Earth and travels at a speed of 0.97c. Twin A remains on Earth, and after waiting 35.0 years, twin A is reunited with twin B, who has returned from the space voyage. Twin A is now 54.0 years old. How old is twin B?

Answers

ΔT = ΔT0 / (1 - v^2/c^2)^1/2

ΔT is the time elapsed in the moving frame and ΔT0 is the proper time that has elapsed in the frame where the clock is stationary

ΔT = 35 years which is the elapsed time in frame A - age of twin in that frame

ΔT0 = 35 * (1 - .97^2) = 2.07 yrs  time elapsed for twin (B) in stationary frame B - measured WRT a clock at a single point

the proper time in frame B will be the actual elapsed time (age) that has passed in that frame - frame A is moving WRT frame (B)

Part A A stone is thrown vertically upward with a speed of 15.6 m/s from the edge of a cliff 75.0 m high (Figure 1). How much later does it reach the bottom of the cliff? Express your answer to three significant figures and include the appropriate units. + OI? f Value Units Submit Request Answer - Part B What is its speed just before hitting? Express your answer to three significant figures and include the appropriate units. Value Units Submit Request Answer - Part What total distance did it travel? Express your answer to three significant figures and include the appropriate units. + 2 123 Figure 1 of 1 Value Units Submit Request Answer Provide Feedback

Answers

The stone reaches the bottom of the cliff approximately 4.20 seconds later. The speed just before hitting the bottom is approximately 40.6 m/s.

Part A: To find how much later the stone reaches the bottom of the cliff, we can use the kinematic equation for vertical motion. The equation is:

h = ut + (1/2)gt^2

Where:

h = height of the cliff (75.0 m, negative since it's downward)

u = initial velocity (15.6 m/s)

g = acceleration due to gravity (-9.8 m/s^2, negative since it's downward)

t = time

Plugging in the values, we get:

-75.0 = (15.6)t + (1/2)(-9.8)t^2

Solving this quadratic equation, we find two values for t: one for the stone going up and one for it coming down. We're interested in the time it takes for it to reach the bottom, so we take the positive value of t. Rounded to three significant figures, the time it takes for the stone to reach the bottom of the cliff is approximately 4.20 seconds.

Part B: The speed just before hitting the bottom can be found using the equation for final velocity in vertical motion:

v = u + gt

Where:

v = final velocity (what we want to find)

u = initial velocity (15.6 m/s)

g = acceleration due to gravity (-9.8 m/s^2, negative since it's downward)

t = time (4.20 s)

Plugging in the values, we get:

v = 15.6 + (-9.8)(4.20)

Calculating, we find that the speed just before hitting is approximately -40.6 m/s. Since speed is a scalar quantity, we take the magnitude of the value, giving us a speed of approximately 40.6 m/s.

Part C: To find the total distance traveled by the stone, we need to calculate the distance covered during the upward motion and the downward motion separately, and then add them together.

Distance covered during upward motion:

Using the equation for distance covered in vertical motion:

s = ut + (1/2)gt^2

Where:

s = distance covered during upward motion (what we want to find)

u = initial velocity (15.6 m/s)

g = acceleration due to gravity (-9.8 m/s^2, negative since it's downward)

t = time (4.20 s)

Plugging in the values, we get:

s = (15.6)(4.20) + (1/2)(-9.8)(4.20)^2

Calculating, we find that the distance covered during the upward motion is approximately 33.1 m.

Distance covered during downward motion:

Since the stone comes back down to the bottom of the cliff, the distance covered during the downward motion is equal to the height of the cliff, which is 75.0 m.

Total distance traveled:

Adding the distance covered during the upward and downward motion, we get:

Total distance = 33.1 + 75.0

Rounded to three significant figures, the total distance traveled by the stone is approximately 108 m.

To know more about distance:

https://brainly.com/question/13034462


#SPJ11

find the magniturde of the electric field ot ras 35 cm in 105 N/C. Question 13 10pts An infinitely long nonconducting cylinder of radius R=2.00 cm carries a uniform volume charge density of 18.0μC/m3. Calculate the electric field at distance r=1.00 cm from the axis of the cylinder in units of 103 N/C. (ε0​=8.85×10−12C2/N. m2) Question 14 10 pts In the figure, a ring 0.71 m in radius carries a charge of +580nC uniformly distributed over it. A point charge Q is placed at the center of the ring. The electric field is equal to zero at field point P, which is on the axis of the ring, and 0.73 m from its center. (ε0​=8.85×10−12C2/N⋅m2). The point charge Q in nC is closest to in nC

Answers

The magnitude of the electric field at a distance of 1.00 cm from the axis of the cylinder is 3.79 × 10³ N/C.

To calculate the electric field at a distance r from the axis of an infinitely long nonconducting cylinder, we can use the formula:

E = (ρ / (2ε₀)) * r

Where E represents the electric field, ρ is the volume charge density, ε₀ is the permittivity of free space, and r is the distance from the axis of the cylinder.

In this case, the radius of the cylinder is given as R = 2.00 cm and the volume charge density is 18.0 μC/m³. We need to calculate the electric field at a distance of r = 1.00 cm.

First, we convert the radius from centimeters to meters: R = 0.02 m.

Substituting the values into the formula, we have:

E = (ρ / (2ε₀)) * r

E = (18.0 × 10⁻⁶ C/m³ / (2 × 8.85 × 10⁻¹² C²/N·m²)) * 0.01 m

E = 3.79 × 10³ N/C

Therefore, the magnitude of the electric field at a distance of 1.00 cm from the axis of the cylinder is 3.79 × 10³ N/C.

Learn more about electric field

brainly.com/question/30544719

#SPJ11

An object moves from the origin to a point (0.4.0.7) then to point (-0.9,0.2), then to point (5.5, 6.0), then finally stops at (4.3,-1.7). What is the average speed of the object if the the entire trip takes 10s? All positions are in metres.

Answers

The total time taken by the object to travel this distance is 10 seconds and the average speed of the object is 2.119 m/s.

Given that an object moves from the origin to a point (0.4, 0.7) then to point (-0.9, 0.2), then to point (5.5, 6.0), then finally stops at (4.3, -1.7) and the entire trip takes 10s.

To find the average speed of the object, we need to first find the total distance traveled by the object. We will use the distance formula to find the distance between the given points.

Distance between origin (0,0) and point (0.4, 0.7):

d1= √[(0.4 - 0)² + (0.7 - 0)²] = 0.836 m

Distance between point (0.4, 0.7) and point (-0.9, 0.2):

d2 = √[(-0.9 - 0.4)² + (0.2 - 0.7)²] = 1.506 m.

Distance between point (-0.9, 0.2) and point (5.5, 6.0):

d3 = √[(5.5 - (-0.9))² + (6.0 - 0.2)²] = 11.443 m

Distance between point (5.5, 6.0) and point (4.3, -1.7):d4 = √[(4.3 - 5.5)² + (-1.7 - 6.0)²] = 7.406 m

Total distance traveled by the object:

d = d1 + d2 + d3 + d4= 0.836 m + 1.506 m + 11.443 m + 7.406 m= 21.191 m

The total time taken by the object to travel this distance is 10 seconds.

Average speed of the object = Total distance traveled ÷ Total time taken= 21.191 ÷ 10= 2.119 m/s

Hence, the average speed of the object is 2.119 m/s.

Learn more about average speed at https://brainly.com/question/4931057

#SPJ11

A coin is located 19.0cm to the left of a converging lens (f = 15.0cm). A second, identical lens is placed to the right of the first lens, such that the image formed by the combination has the same size and orientation as the original coin. Calculate the separation between the lenses.

Answers

In this particular scenario, the distance between the lenses is found to be 2.2cm.

To determine the separation between two identical converging lenses to form an image with the same size and orientation as the original object, it is necessary to use the lens equation and thin lens formula.

Given that the coin is located 19.0cm to the left of the first converging lens with a focal length of 15.0cm, we can use the lens equation to find the position of the image formed by the first lens:

1/19 + 1/i = 1/15

where i is the distance between the first lens and the image.

We know that the second lens will form an image that is the same size and orientation as the original object. Therefore, the distance between the second lens and the final image will also be i.

Using the thin lens equation for the second lens, we can relate the distance between the second lens and the final image (i) with the distance between the two lenses (d):

1/f = 1/i - 1/d

where f is the focal length of the lenses.

Substituting the value of i from the first equation into the second equation and solving for d and

Plugging in the values f = 15cm and i = 20.8cm, we can find that the separation between the two lenses is 2.2cm.

Therefore, the final setup would have the first lens placed 19.0cm to the left of the original object, the second lens placed 2.2cm to the right of the first lens, and the final image located 20.8cm to the right of the second lens.

To learn more about converging lens click brainly.com/question/15123066

#SPJ11

i need help to find the answer

Answers

Answer:

Virtual, erect, and equal in size to the object. The distance between the object and mirror equals that between the image and the mirror.

A 12kg hanging sculpture is suspended by a 95-cm-long, 6.0g steel wire. When the wind blows hard, the wire hums at its fundamental frequency. What is the frequency of the hum?

Answers

To calculate the frequency of the hum produced by the steel wire, we can use the formula for the fundamental frequency of a vibrating string.

The formula mentioned below:

f = (1 / (2L)) * sqrt(T / μ)

Where f is the frequency, L is the length of the string, T is the tension in the string, and μ is the linear mass density of the string.

First, we need to calculate the linear mass density of the steel wire. Linear mass density (μ) is defined as the mass per unit length. In this case, the wire has a mass of 6.0 grams and a length of 95 cm, so the linear mass density is:

μ = (mass / length) = (6.0 g / 95 cm)

Next, we need to calculate the tension in the wire. The tension is equal to the weight of the hanging sculpture, which is given as 12 kg. Therefore, the tension is:

T = weight = mass * gravity = (12 kg) * (9.8 m/s^2)

Substituting the values into the formula, we have:

f = (1 / (2 * 0.95 m)) * sqrt((12 kg * 9.8 m/s^2) / (6.0 g / 0.95 m))

Evaluating the expression, we find:

f ≈ 20.3 Hz

Therefore, the frequency of the hum produced by the steel wire is approximately 20.3 Hz.

To know more about frequency click here: brainly.com/question/29739263

#SPJ11

The electric field strength in a region is 1900 N/C. What is the force on an object with a charge of 0.0035 C?___N

Answers

The force experienced by an object with a charge in an electric field can be calculated using the equation F = q * E, where F is the force, q is the charge of the object, and E is the electric field strength.

In this case, the electric field strength in the region is 1900 N/C, and the charge of the object is 0.0035 C. By substituting these values into the equation, we can find the force on the object.

The force on the object is given by:

F = 0.0035 C * 1900 N/C

Multiplying the charge of the object (0.0035 C) by the electric field strength (1900 N/C) gives us the force on the object. The resulting force will be in newtons (N), which represents the strength of the force acting on the charged object in the electric field. Therefore, the force on the object is equal to 6.65 N.

Learn more about the charge here:

brainly.com/question/13871705

#SPJ11

what is the distance travelled ball that is hit by a Kino why 200Nm? SD N that work done bay a force, it is on

Answers

The distance travelled by a ball hit by Kino is directly

proportional

to the amount of work done on it by the applied force.

When a ball is hit by Kino, the force exerted by the bat causes the ball to accelerate in the direction of the force. The acceleration of the ball, in turn, causes it to move a certain distance.

In physics, the amount of

work done

on an object by a force is equal to the product of the force and the distance moved by the object in the direction of the force. This can be expressed mathematically as W = F × d, where W is the work done, F is the force, and d is the distance moved.

Work done by a

force

is measured in joules (J). One joule of work is done when a force of one newton (N) is applied over a distance of one meter (m) in the direction of the force. Therefore, if a ball hit by Kino moves a distance of 200 meters (m) and the force applied by the bat is 100 newtons (N), the work done on the ball is W = F × d = 100 N × 200 m = 20,000 J.

to know more about

proportional  

pls visit-

https://brainly.com/question/31548894

#SPJ11

5. Viewing a 645 nm red light through a narrow slit cut into a piece of paper yields a series of bright and dark fringes. You estimate that five dark fringes appear in a space of 1.0 mm. If the paper is 32 cm from your eye, calculate the width of the slit. T/I (5)

Answers

The estimated width of the slit is approximately 10.08 micrometers.

To calculate the width of the slit, we can use the formula for the spacing between fringes in a single-slit diffraction pattern:

d * sin(θ) = m * λ,

where d is the width of the slit, θ is the angle between the central maximum and the mth dark fringe, m is the order of the fringe, and λ is the wavelength of light.In this case, we are given that five dark fringes appear in a space of 1.0 mm, which corresponds to m = 5. The wavelength of the red light is 645 nm, or [tex]645 × 10^-9[/tex]m.

Since we are observing the fringes from a distance of 32 cm (0.32 m) from the paper, we can consider θ to be small and use the small-angle approximation:

sin(θ) ≈ θ.

Rearranging the formula, we have:

d = (m * λ) / θ.

The width of the slit, d, can be calculated by substituting the values:

d = (5 * 645 × [tex]10^-9[/tex] m) / (1.0 mm / 0.32 m) ≈ 10.08 μm.

To know more about slit refer to-

https://brainly.com/question/32192263

#SPJ11

please write a full paraphrasing for the text below. thanks
After the experimental evaluation, it was concluded that the data were effective, with a minimum margin of error. It was possible to observe the variation between a certain distance between the field lines by observing the variation of voltages. It is executed in 2 different configurations (linear, punctual). All developed and expressed successfully.

Answers

After the experimental evaluation, it was established that the data was effective and the voltage variation could indicate the variation between the field lines. The experiment was executed in two configurations, linear and punctual, and all the results were successfully developed and expressed.

The data was analyzed experimentally and it was concluded that it was successful, with a minimum margin of error. It was observed that the voltage variation indicated the variation between a certain distance between the field lines.

This experiment was conducted in two configurations, which are linear and punctual, and the results were developed and expressed successfully.

In conclusion, after the experimental evaluation, it was established that the data was effective and the voltage variation could indicate the variation between the field lines. The experiment was executed in two configurations, linear and punctual, and all the results were successfully developed and expressed.

To know more about experimental visit;

brainly.com/question/30761900

#SPJ11

A beach comber finds a corked bottle. The air in the bottle is at a pressure of 1 atm and 25C. If the bottle is heated the cork pops out at a temperature of 86C. a.) What is the pressure in the bottle just before the cork is popped. b.) What is the magnitude of the friction force holding the cork in place? (Area of cork =5.2 cm 2 )

Answers

(a)  The pressure in the bottle just before the cork is popped is approximately 1.204 atm.(b) The magnitude of the friction force holding the cork in place is 0.000626 m²·atm.

a) To find the pressure in the bottle just before the cork is popped, we can use the ideal gas law, which states:

PV = nRT,

where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature.

Since the volume of the bottle remains constant, we can write:

P₁/T₁ = P₂/T₂,

where P₁ and T₁ are the initial pressure and temperature, and P₂ and T₂ are the final pressure and temperature.

P₁ = 1 atm,

T₁ = 25°C = 298 K,

T₂ = 86°C = 359 K.

Substituting the values into the equation, we can solve for P₂:

(1 atm) / (298 K) = P₂ / (359 K).

P₂ = (1 atm) * (359 K) / (298 K) = 1.204 atm.

b) The magnitude of the friction force holding the cork in place can be determined by using the equation:

Friction force = Pressure * Area,

where the pressure is the pressure inside the bottle just before the cork is popped.

Pressure = 1.204 atm,

Area of the cork = 5.2 cm².

Converting the area to square meters:

Area = (5.2 cm²) * (1 m^2 / 10,000 cm²) = 0.00052 m².

Substituting the values into the equation, we can calculate the magnitude of the friction force:

Friction force = (1.204 atm) * (0.00052 m²) = 0.000626 m²·atm.

Please note that to convert the friction force from atm·m² to a standard unit like Newtons (N), you would need to multiply it by the conversion factor of 101325 N/m² per 1 atm.

To know more about  friction force refer here

brainly.com/question/30280206

#SPJ11

A positive charge moves in the x−y plane with velocity v=(1/2​)i^−(1/2​)j^​ in a B that is directed along the negative y axis. The magnetic force on the charge points in which direction?

Answers

Given information:A positive charge moves in the x−y plane with velocity v=(1/2​)i^−(1/2​)j^​ in a B that is directed along the negative y axis.We are to determine the direction of magnetic force on the charge.In order to find the direction of magnetic force on the charge, we need to apply right-hand rule.

We know that the magnetic force on a moving charge is given by the following formula:F=q(v×B)Here,F = Magnetic force on the chargeq = Charge on the chargev = Velocity of the chargeB = Magnetic fieldIn the given question, we are given that a positive charge moves in the x−y plane with velocity v=(1/2​)i^−(1/2​)j^​ in a B that is directed along the negative y axis.Let's calculate the value of magnetic force on the charge using the above formula:F=q(v×B)Where,F = ?q = +ve charge v = (1/2​)i^−(1/2​)j^​B = -ve y-axis= -j^​The cross product of two vectors is a vector which is perpendicular to both the given vectors. Therefore,v × B= (1/2)i^ x (-j^) - (-1/2j^ x (-j^))= (1/2)k^ + 0= (1/2)k^. Therefore,F = q(v×B)= q(1/2)k^. Now, as the charge is positive, the magnetic force acting on the charge will be perpendicular to the plane containing velocity and magnetic field. The direction of magnetic force can be found using the right-hand rule.

Thus, the direction of magnetic force acting on the charge will be perpendicular to the plane containing velocity and magnetic field.

To know more about right-hand rule visit:

brainly.com/question/30641867

#SPJ11

Score 1 Starting from rest, a turnable rotates at angular acceleration of 0.13 rad/s2. How long does it take for it speed to get to 6 rad/s? 3A 1110 kg car traveling clockwise at a constant speed along a flat horizontal circular track of radius 26 m. The car takes 21 s to complete one lap around the track. What is the magnitude of the force of friction exerted on the car by the track? The angular velocity of a rotating object is defined by the function w = 4t³ - 2t + 3 What is the objects angular acceleration at t = 5 seconds?

Answers

The angular acceleration at t = 5 seconds is 298 rad/s².

Angular acceleration, α = 0.13 rad/s²

Initial angular velocity,

ω₁ = 0Final angular velocity,

ω₂ = 6

We have to find the time it takes to reach this final velocity. We know that

Acceleration, a = αTime, t = ?

Initial velocity, u = ω₁Final velocity, v = ω₂Using the formula v = u + at

The final velocity of an object, v = u + at is given, where v is the final velocity of the object, u is the initial velocity of the object, a is the acceleration of the object, and t is the time taken for the object to change its velocity from u to v.

Substituting the given values we get,

6 = 0 + (0.13)t6/0.13 = t461.5 seconds ≈ 62 seconds

Therefore, the time taken to get to 6 rad/s is 62 seconds.3) The given parameters are given below:

Mass of the car, m = 1110 kg

Radius of the track, r = 26 m

Time taken to complete one lap around the track, t = 21 sWe have to find the magnitude of the force of friction exerted on the car by the track.

We know that:

Centripetal force, F = (mv²)/r

The force that acts towards the center of the circle is known as centripetal force.

Substituting the given values we get,

F = (1110 × 6.12²)/26F

= 16548.9 N

≈ 16550 N

To find the force of friction, we have to find the force acting in the opposite direction to the centripetal force.

Therefore, the magnitude of the force of friction exerted on the car by the track is 16550 N.2) The given angular velocity function is, ω = 4t³ - 2t + 3We have to find the angular acceleration at t = 5 seconds.We know that the derivative of velocity with respect to time is acceleration.

Therefore, Angular velocity, ω = 4t³ - 2t + 3 Angular acceleration, α = dω/dt Differentiating the given function w.r.t. t we get,α = dω/dt = d/dt (4t³ - 2t + 3)α = 12t² - 2At t = 5,α = 12(5²) - 2 = 298 rad/s².

To know m ore about angular acceleration visit:-

https://brainly.com/question/1980605

#SPJ11

Show that the following ansatz is a solution to the general wave equation: D(x,t) = f(x - v t) + g(x + v t), where f and g are arbitrary smooth functions. IN CLEAR HANDWRITING PLEASE

Answers

The given ansatz, D(x,t) = f(x - v t) + g(x + v t), where f and g are arbitrary smooth functions, is a solution to the general wave equation.

The general wave equation is given by ∂²D/∂t² = v²∂²D/∂x², where ∂²D/∂t² represents the second partial derivative of D with respect to time, and ∂²D/∂x² represents the second partial derivative of D with respect to x.

Let's start by computing the partial derivatives of the ansatz with respect to time and position:

∂D/∂t = -v(f'(x - vt)) + v(g'(x + vt))

∂²D/∂t² = v²(f''(x - vt)) + v²(g''(x + vt))

∂D/∂x = f'(x - vt) + g'(x + vt)

∂²D/∂x² = f''(x - vt) + g''(x + vt)

Substituting these derivatives back into the general wave equation, we have:

v²(f''(x - vt) + g''(x + vt)) = v²(f''(x - vt) + g''(x + vt))

As we can see, the equation holds true. Therefore, the ansatz D(x, t) = f(x - vt) + g(x + vt) is indeed a solution to the general wave equation.

To learn more about general wave equation, Click here:

https://brainly.com/question/4692600

#SPJ11

Read carefully and select all the statements that are correct. You don't need to explain.
(a) A capacitor with capacitance C is charged to a potential difference AV using a battery. The battery is then removed and the capacitor is connected in parallel to an uncharged capacitor with the same capacitance C. The new potential differences of the capacitors are
the same and equal to AV/2.
(b) The final amount of charge on each of the two capacitors in (a) is q = CAVo.

Answers

Both the statements provided are correct about the new potential difference of the capacitor  as well as the final amount of charge on the two capacitors.

The correct statements are :

a) A capacitor with capacitance C is charged to a potential difference AV using a battery. The battery is then removed and the capacitor is connected in parallel to an uncharged capacitor with the same capacitance C. The new potential differences of the capacitors are the same and equal to AV/2.

b) The final amount of charge on each of the two capacitors in (a) is q = CAVo.

A capacitor is a passive electronic component consisting of a pair of conductors separated by a dielectric. It stores potential energy in an electrical field when electric charge is forced onto its conductive plates and opposes a change in voltage between its plates.

Capacitance is the ability of a system to store an electric charge. It is the ratio of the charge on each conductor to the potential difference between them.

Capacitance is directly proportional to the charge stored on a capacitor and inversely proportional to the potential difference between the plates of a capacitor. When a capacitor is charged, the charge q it contains is directly proportional to the potential difference V between the plates and the capacitance C of the capacitor.

where, q = CV

Thus, both the statements are correct.

To learn more about capacitor :

https://brainly.com/question/30529897

#SPJ11

QUESTION 3 [20] 3.1. Using a diagram, explain why semiconductors are different from insulators.[7] 3.2. Explain why carbon in the diamod structure exhibits high resistivity typical of insulators. [6]

Answers

Semiconductors differ from insulators due to their unique electronic properties. Insulators have a large energy band gap, while semiconductors have a smaller band gap.

Furthermore, the presence of impurities or dopants in semiconductors allows for controlled manipulation of their conductivity. On the other hand, carbon in the diamond structure exhibits high resistivity typical of insulators due to its strong covalent bonds and a wide energy band gap.

Semiconductors and insulators have distinct characteristics due to their electronic band structures. Semiconductors possess a narrower band gap compared to insulators. This smaller energy gap allows electrons to be excited from the valence band to the conduction band more easily when subjected to external energy. Insulators, on the other hand, have a significantly larger band gap, making it difficult for electrons to move from the valence band to the conduction band, resulting in low conductivity.

Carbon in the diamond structure exhibits high resistivity similar to insulators due to its unique arrangement of atoms. In diamond, each carbon atom is covalently bonded to four neighboring carbon atoms in a tetrahedral structure. These strong covalent bonds create a wide energy band gap, which requires a significant amount of energy for electrons to transition from the valence band to the conduction band. As a result, diamond behaves as an insulator with high resistivity, as it does not readily allow the flow of electric current.

Learn more about semiconductors here:

brainly.com/question/1513558

#SPJ11

An object of mass m = 1.4 kg is released from rest on an inclined plane making an angle 30 degree above the horizontal and travels a distance of 2.6 m before hitting the ground. (a) Find the acceleration of the block on the plane. (b) Find the speed of the object when it hits the ground (without friction). (c) If a constant frictional force of 2 N acts between the object and the incline, find the object's acceleration on the incline and speed as it hits the ground.

Answers

Acceleration is a fundamental concept in physics that represents the rate of change of velocity with respect to time.

The calculated values are:

(a) Acceleration on the inclined plane: 4.833 m/s²

(b) Speed when it hits the ground (without friction): 7.162 m/s

(c) Acceleration on the incline: 4.833 m/s²

Speed as it hits the ground (with friction): 6.778 m/s

Speed refers to how fast an object is moving. It is a scalar quantity, meaning it only has magnitude and no specific direction.  Distance is the total length of the path traveled by an object. It is also a scalar quantity, as it only has magnitude. Distance is measured along the actual path taken and is independent of the direction of motion.

To calculate the values for parts (a), (b), and (c), let's substitute the given values into the equations:

(a) Acceleration of the block on the inclined plane:

Using the equation:

[tex]a = (1.4 kg * 9.8 m/s^2 * sin(30 \degrees) - 2 N) / 1.4 kg[/tex]

Substituting the values:

[tex]a = (1.4 kg * 9.8 m/s^2 * sin(30 \degrees) - 2 N) / 1.4 kg\\a = 4.833 m/s^2[/tex]

(b) Speed of the object when it hits the ground (without friction):

Using the equation:

[tex]v = \sqrt((1.4 kg * 9.8 m/s^2 * sin(30 \degrees)) / (0.5 * 1.4 kg))[/tex]

Substituting the values:

[tex]v = \sqrt((1.4 kg * 9.8 m/s^2 * sin(30 \degrees)) / (0.5 * 1.4 kg))\\v = 7.162 m/s[/tex]

(c) Acceleration of the object on the incline:

Using the equation:

[tex]a = (1.4 kg * 9.8 m/s^2 * sin(30 \degrees) - 2 N) / 1.4 kg[/tex]

Substituting the values:

[tex]a = (1.4 kg * 9.8 m/s^2 * sin(30 \degrees) - 2 N) / 1.4 kg\\a = 4.833 m/s^2[/tex]

Speed of the object as it hits the ground (with friction):

Using the equation:

[tex]v = \sqrt((1.4 kg * 9.8 m/s^2 * sin(30 \degrees) - 2 N) / (0.5 * 1.4 kg))[/tex]

Substituting the values:

[tex]v = \sqrt((1.4 kg * 9.8 m/s^2 * sin(30 \degrees) - 2 N) / (0.5 * 1.4 kg))\\v = 6.778 m/s[/tex]

Therefore, the calculated values are:

(a) Acceleration on the inclined plane: 4.833 m/s²

(b) Speed when it hits the ground (without friction): 7.162 m/s

(c) Acceleration on the incline: 4.833 m/s²

Speed as it hits the ground (with friction): 6.778 m/s

For more details regarding acceleration, visit:

https://brainly.com/question/2303856

#SPJ4

The speed of the object when it hits the ground is 4.24 m/s.

(a) Acceleration of the block on the inclined plane

We have to calculate the acceleration of the block on the inclined plane. We can use the formula of acceleration for this. The formula of acceleration is given bya = (v² - u²) / 2sWherea = Acceleration of the block on the inclined plane.v = Final velocity of the block on the inclined plane.u = Initial velocity of the block on the inclined plane.s = Distance traveled by the block on the inclined plane.Let's find all the values of these variables to calculate the acceleration of the block on the inclined plane. Initial velocity of the block on the inclined plane is zero. Therefore,u = 0Final velocity of the block on the inclined plane can be calculated by using the formula of final velocity of the object. The formula of final velocity is given byv² = u² + 2as Wherev = Final velocity of the block on the inclined plane.u = Initial velocity of the block on the inclined plane. a = Acceleration of the block on the inclined plane.s = Distance traveled by the block on the inclined plane. Putting all the values in this formula, we getv² = 2 × a × s⇒ v² = 2 × 9.8 × sin 30° × 2.6⇒ v² = 42.2864m/s²⇒ v = √42.2864m/s² = 6.5 m/sNow, we can calculate the acceleration of the block on the inclined plane.a = (v² - u²) / 2s⇒ a = (6.5² - 0²) / 2 × 2.6⇒ a = 16.25 / 5.2⇒ a = 3.125 m/s²Therefore, the acceleration of the block on the inclined plane is 3.125 m/s².

(b) Speed of the object when it hits the ground

Let's find the speed of the object when it hits the ground. We can use the formula of final velocity of the object. The formula of final velocity is given byv² = u² + 2asWherev = Final velocity of the object.u = Initial velocity of the object.a = Acceleration of the object.s = Distance traveled by the object. Initial velocity of the object is zero. Therefore,u = 0Acceleration of the object is equal to acceleration of the block on the inclined plane.a = 3.125 m/s²Distance traveled by the object is the distance traveled by the block on the inclined plane.s = 2.6 m

Putting all the values in this formula, we getv² = 0 + 2 × 3.125 × 2.6⇒ v² = 20.3125⇒ v = √20.3125 = 4.51 m/sTherefore, the speed of the object when it hits the ground is 4.51 m/s.

(c) Object's acceleration on the incline and speed as it hits the ground, The frictional force acting between the object and the incline is given byf = 2 N We can use the formula of acceleration of the object on the inclined plane with friction to find the acceleration of the object on the incline. The formula of acceleration of the object on the inclined plane with friction is given bya = g × sin θ - (f / m) , Where a = Acceleration of the object on the inclined planef = Frictional force acting between the object and the incline

m = Mass of the objectg = Acceleration due to gravityθ = Angle of the incline

Let's find all the values of these variables to calculate the acceleration of the object on the incline. Mass of the object is given bym = 1.4 kg, Frictional force acting between the object and the incline is given byf = 2 N , Acceleration due to gravity is given byg = 9.8 m/s²Angle of the incline is given byθ = 30°Putting all the values in this formula, we geta = 9.8 × sin 30° - (2 / 1.4)⇒ a = 4.9 - 1.43⇒ a = 3.47 m/s²Therefore, the acceleration of the object on the incline is 3.47 m/s².Now, we can use the formula of final velocity of the object to find the speed of the object when it hits the ground. The formula of final velocity of the object is given byv² = u² + 2as

Where v = Final velocity of the object.u = Initial velocity of the object.a = Acceleration of the object.s = Distance traveled by the object. Initial velocity of the object is zero. Therefore, u = 0Acceleration of the object is equal to 3.47 m/s²Distance traveled by the object is the distance traveled by the block on the inclined plane. s = 2.6 m

Putting all the values in this formula, we getv² = 0 + 2 × 3.47 × 2.6⇒ v² = 18.004⇒ v = √18.004 = 4.24 m/s

Learn more about Acceleration

https://brainly.com/question/2303856

#SPJ11

An electron that has a velocity with x component 2.5 x 10^6 m/s and y component 2.9 × 10^6 m/s moves through a uniform magnetic field with x component 0.036 T and y component -0.20 T. (a) Find the magnitude of the magnetic force on the electron. (b) Repeat your
calculation for a proton having the same velocity.

Answers

(a) The magnitude of the magnetic force on the electron is approximately 5.14 x 10^-14 N. (b) The magnitude of the magnetic force on the proton is approximately 3.14 x 10^-16 N.

(a) For the electron, the magnitude of its charge |q| is equal to the elementary charge e, which is approximately 1.6 x 10^-19 C. The velocity vector v of the electron has x and y components of 2.5 x 10^6 m/s and 2.9 x 10^6 m/s, respectively.

The magnetic field vector B has x and y components of 0.036 T and -0.20 T, respectively. Using the formula F = |q|vB, we can calculate the magnitude of the magnetic force on the electron as |q|vB = (1.6 x 10^-19 C)(2.5 x 10^6 m/s)(0.036 T + 2.9 x 10^6 m/s)(-0.20 T) ≈ 5.14 x 10^-14 N.

(b) For the proton, the magnitude of its charge |q| is also equal to the elementary charge e.

Using the same velocity vector v for the proton as given in the question, and the same magnetic field vector B, we can calculate the magnitude of the magnetic force on the proton as |q|vB = (1.6 x 10^-19 C)(2.5 x 10^6 m/s)(0.036 T + 2.9 x 10^6 m/s)(-0.20 T) ≈ 3.14 x 10^-16 N.

Therefore, the magnitude of the magnetic force on the electron is approximately 5.14 x 10^-14 N, and the magnitude of the magnetic force on the proton is approximately 3.14 x 10^-16 N.

Learn more about magnetic force here; brainly.com/question/30532541

#SPJ11

Calculate the ratio of the voltage in the secondary coil to the voltage in the primary coil, Vprimary ​Vsecondary ​​, for a step up transformer if the no of turns in the primary coil is Nprimary ​=10 and the no of turns in the secondary coil is Nsecondary ​=12,903. Nsecondary ​Nprimary ​​=Vsecondary ​Vprimary ​​

Answers

The ratio of the voltage in the secondary coil to the voltage in the primary coil is approximately 1,290.3.

The ratio of the voltage in the secondary coil to the voltage in the primary coil (Vsecondary/Vprimary) can be calculated using the formula:

Nsecondary/Nprimary = Vsecondary/Vprimary

Given that Nprimary = 10 and Nsecondary = 12,903, we can substitute these values into the formula:

12,903/10 = Vsecondary/Vprimary

Simplifying the equation, we find:

Vsecondary/Vprimary = 1,290.3

To know more about primary coil refer to-

https://brainly.com/question/2996101

#SPJ11

Two sketter of mass 50 kg and 58 kg collide head on at 5 m/s and 6 m/s. As a result both of them bounce back. If the collision is an elastic collision and the sketter with mass 58 kg bounces back with 2 m/s what is the kinetic energy of the other sketter? Roundup your answer to an integer

Answers

The kinetic energy of skater A is 10200 J. In an elastic collision, both momentum and kinetic energy are conserved. We can use these principles to solve the problem.

Let's denote the skater with mass 50 kg as skater A and the skater with mass 58 kg as skater B.

Mass of skater A ([tex]m_A[/tex]) = 50 kg

Mass of skater B ([tex]m_B[/tex]) = 58 kg

Initial velocity of skater A ([tex]v_Ai[/tex]) = 5 m/s

Initial velocity of skater B ([tex]v_Bi[/tex]) = 6 m/s

Final velocity of skater B ([tex]v_Bf[/tex]) = -2 m/s (negative sign indicates direction)

Using the conservation of momentum:

[tex]m_A * v_Ai + m_B * v_Bi = m_A * v_Af + m_B * v_Bf[/tex]

Substituting the given values:

(50 kg * 5 m/s) + (58 kg * 6 m/s) = (50 kg * [tex]v_Af[/tex]) + (58 kg * -2 m/s)

Simplifying the equation:

250 kg·m/s + 348 kg·m/s = 50 kg *[tex]v_Af[/tex]- 116 kg·m/s

598 kg·m/s = 50 kg *[tex]v_Af[/tex] - 116 kg·m/s

Rearranging the equation to solve for[tex]v_Af[/tex]:

[tex]v_Af[/tex] = (598 kg·m/s + 116 kg·m/s) / 50 kg

[tex]v_Af[/tex] = 14.28 m/s

Therefore, the final velocity of skater A ([tex]v_Af)[/tex] is approximately 14.28 m/s.

To calculate the kinetic energy of skater A, we can use the formula:

Kinetic Energy (KE) = (1/2) * m *[tex]v^2[/tex]

[tex]KE_A[/tex] = (1/2) * [tex]m_A * v_Af^2[/tex]

[tex]KE_A[/tex] = (1/2) * 50 kg * ([tex]14.28 m/s)^2[/tex]

[tex]KE_A[/tex] = 10200 J

Rounding up to the nearest integer, the kinetic energy of skater A is 10200 J.

Learn more about kinetic energy here:

https://brainly.com/question/30107920

#SPJ11

Other Questions
A 3.0-cm-tall object is placed 45.0 cm from a diverging lens having a focal length of magnitude 20.0 cm. a) What is the distance between the image and the lens? () b) Is the image real or virtual? () c) What is the height of the image? 1. Consider the following set of data (2. 0,5. 5), (3. 5, 7. 5),(4. 0. 9. 2), (6. 5. 13. 5). (7. 0. 15. 2). A) Plot this data. What kind of function would you use to model this data? b) is the model that you chose in a) parametric or non-parametric. If it's parametric, tell me what its parameters are. If it isn't parametric, explain what it uses in place of parameters. C) Explain in detail how you would solve for this model 1. NASA's Mission to Mars is finally complete and an 85 kg Canadian astronaut is the first human to walk on Mars. If Mars has a mass of 6.37 x 103 kg and a radius of 3.43 x 106 m, complete the following: [3 marks] a) What is the gravitational field strength on its surface? [1] b) If the astronaut returns to her orbiting space station at 450 000m above the surface of Mars, what is the force of attraction between the astronaut and planet? [2]\ A news story that helps to clarify an issue through analysis in an example of:an editorialan investigative reportan interpretive reportWhich of the following is NOT an example of a PEER audience for advertising professionals?A colleague at your ad agencyA client at your ad agencyMary is the art director at the Minneapolis ad agency Campbell Mithun. She takes great pride in her work and has won several industry awards. These awards are recognition of Mary's superior work from a ___________________ audience.peertarget Consider the equation:(2x + 3 / x - 3) + (x + 6 / x - 4) = (x + 6 / x - 3) Add together the numbers of the true statements: 2: -1 is a solution; 4: 4 is in the domain of the variable; 8: The lowest common denominator is (x-3)(x-4); 16: -3 is in the domain of the variable Imagine you are evaluating a supplier's ability to produce to your product specifications. You have collected data on the process's performance. Here is what you have discovered. Design Target: 4.36 Process Mean: 4.27 Upper Specification Limit: 4.59 Lower Specification Limit: 4.13 Process Standard Deviation: 0.075 Calculate the Cpk. What does your analysis tell you about the process? A diode, a resistor, and a battery are connected in a series circuit. The diode is at a temperature for which kB T=25.0 meV , and the saturation value of the current is I = 1.00 A . The resistance of the resistor is R=745, and the battery maintains a constant potential difference of = 2.42 V between its terminals. (a) Use Kirchhoff's loop rule to show that. - V = IR(eev/kBT - 1)where V is the voltage across the diode. Delivery of core primary health care programs such as maternaland child health and/or chronic disease prevention, detection andmanagement. List two.Two programs must be identified. Q1. Explain the social, psychological, and political effects of stereotypes, prejudice, discrimination, and oppression on diverse groups? Briefly describe in one paragraph, how thebodyprotects usfrom infection,and listthe main body systems involved in this process. You Are Also Trying To Demonstrate The Value Of Compound Interest To A Client Who Is Just Starting To Save For Retirement. Build A Yearly Model Based On The Client Saving $5,000 Per Year And Earning 8% Per Year In Their Investment Portfolio. Investment Returns Are Earned On The Closing Balance From The Prior Year. What Is The Clients Retirement Savings Compare the UPI and Blockchain based payment system.Discuss the advantages, disadvantages, limitations of each over theother. (Word Limit: 1200 Words, Marks: 25). What would be the initial offering price for the following bonds (assume $1,000 par value and semiannual compounding)? Do not round intermediate answers to the nearest cent.a. A 14-year zero-coupon bond with a yield to maturity (YTM) of 10%b. A 23-year zero-coupon bond with a YTM of 8%. 24. Wordbank: quiet expiration, forced expiration, inspiration, diaphragm, intercostals muscles, phrenic nerve, intercostals nerves, increases, decreases. 25. The ventral respiratory group directly stimulates the nerve(s) and the (muscle) through the initiates and muscle relaxation results in out of the lungs because when volume increases, pressure. (muscle) through the nerve(s). Muscle contraction. This causes air to flow in and 26. Central chemoreceptors respond to high CO and low pH concentrations by triggering ventilation. a. Increased b. Decreased c. Unchanged 27. Which enzyme catalyzes the reversible conversion of CO to carbonic acid? a. Catalase b. Angiotensin converting enzyme c. Carbonic anhydrase SECTION A This section is compulsory. 1. Answer ALL parts. (a) (6) (C) Using a suitable energy level diagram, explain the terms Rayleigh scattering, Stokes Raman scattering and anti-Stokes Raman scattering as they relate to Raman spectroscopy. Describe the hydrothermal method for the production of solid-state materials. Describe the difference in band gaps between a conductor, a semiconductor and an insulator. Magnesium (Mg) is an essential element for life that is thought to be involved in over 300 biochemical reactions. State briefly two examples of the use and function of the Mg+ ion in human biology? (a) [4 x 5 marks] In your own words, please define what a POSITIVE/NEGATIVE demand shock is and provide an example of one. NOTE: You only have to choose positive OR negative, not both. Desribe pathogenesis of type 2 diabetis mellitus and possiblecomplication type 2 diabetis mellitus Assume you have a 10 -pound weight in your right hand. 13. If your hand is supinated, which brachial muscle(s) are being used to raise the weight while bending the elbow? Type answer as the complete anatomical name for the muscle(s) using lowercase letters and separating words with one space. 14. What is the normal joint movement at the elbow of this muscle? Type answer as 1 word using lowercase letters. ( 1 point) 15. If your hand is pronated, which brachial muscle(s) are being used to raise the weight while bending the elbow? Type answer as the complete anatomical name for the muscle(s) using lowercase letters and separating words with one space. 16. What is the normal joint movement at the elbow of this muscle? Type answer as 1 word using lowercase letters. 17. It is difficult to perform this action if your hand is in a pronated position. Considering your answers to the 4 questions above, explain this observation. Type answer as 1 or 2 short sentences, referring to the muscles and muscle actions involved. Use your own simple terms and correct spelling, grammar and punctuation. Copied and pasted answers may receive 0 credit. ( 2 points) A capacitor is connected to an AC source. If the maximum current in the circuit is 0.400 A and the voltage from the AC source is given by Av = (90.6 V) sin[(861)s-1t], determine the following. = (a) the rms voltage (in V) of the source V (b) the frequency (in Hz) of the source Hz (c) the capacitance (in PF) of the capacitor UF Determine the magnitudes and directions of the currents in each resistor shown in the figure. The batteries have emfs of 1=7.4 V and 2=11.4 V and the resistors have values of R1=30=R2=32, and R3=34 Figure 1 of 1 Assume each battery has internal resistance 1.5. Express your answers using two significant figures. Enter your answers numerically separated by commas. Part F I1 is difected to the left. I i is diracted to the right 15 of the currents in atteries have emfs of atstors have values of 1. of 1 I1 is directed to the right. Part G I2 is directed to the left. I2 is directed to the right: fes and directions of the currents in the figure. The batteries have emils of 4 V and the resistors have values of , and R3=34