Answer:
20 seconds
Explanation:
We are given 2 givens in the first statement
v0=0 and a=5
And we are trying to find time needed to cover 1km or 1000m.
So we use
x-x0=v0t+1/2at²
Plug in givens
1000=0+2.5t²
solve for t
t²=400
t=20s
In what direction is the centripetal force directed?
Answer:
towards the center
Explanation:
that is the solution above
Part C – RC Circuits in AC Mode 1. Derive Equation 5-6 from Equation 5-5. 2. Using the τ’s you calculated and your measured resistance: a. Calculate the capacitances of the capacitors. b. Compare your calculated and measured values via percent error.
Answer: hi your question is incomplete attached below is the complete question
1) attached below
2) a) 31 Ω, 302.9 Ω
b) 17.3 Ω , 26.4 Ω
Explanation:
1) Deriving Eqn 5-6 from Eqn 5-5
attached below
2) using τ’s calculated and measured resistance
use given data
Tm1 = Rm1 * Cm1
= 329.3 * 333 * 10^-9 = 109.65 μs
Tm2 = Rm2 * Cm2
= 329.3 * 200 * 10^-9 = 658.6 μs
a) Capacitance of capacitors
For Cm1
t₁₂ = 72 μs = R₁' Cm1 log²
∴ R₁' = ( 72 * 10^-6 ) / ( 333 * 10^-9 log² )
= 31 Ω
For Cm2
t₁₂ = 40 μs , ∴ R₂' = 302.9 Ω
b) comparing calculated and measured values via percent error
errors
Rm1 - R₁' = 17.3 Ω
Rm2 - R₂' = 26.4 Ω
A long, straight, vertical wire carries a current upward. Due east of this wire, in what direction does the magnetic field point
The magnetic field of the wire will be directed towards west. Using right thumb rule one can get the direction of field lines.
When you take your 1900-kg car out for a spin, you go around a corner of radius 55 m with a speed of 15 m/s. The coefficient of static friction between the car and the road is 0.88. Assuming your car doesn't skid, what is the force exerted on it by static friction?
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors
Answer:
The incoming white light is composed of light of different colors,
Since these different colors have different refractive indices they are refracted at different angles from one another.
The output light is then separated by color creating a color spectrum.
Since n is greater for shorter wavelengths (violet colors) these wavelengths are refracted thru the larger angles.
which is the correct formula for calculating the age of meteor right if using half life
Answer:
n × t_1/2
Exmplanation:
The age of meteorite is calculated by multiplying it's quantity n with the half life . This means that the formula is for age of this meteorite is;
Age of meteorite= n × t_1/2
where;
n = quantity of the meteorite
t_/2 = half life of the meteorite
Thus:
The correct formula is; n × t_1/2
In the following image, atoms are represented by colored circles. Different colors represent different types of atoms. If
atoms are touching, they are bonded.
Which of the following boxes shows a mixture of different compounds?
A
B
C
E
Answer:
Explanation:
There are all kinds of things floating around in B. The large dark blue and the smaller dark blue are one kind of compound.
The yellow by itself could be from column 18.
So could the smaller dark blue circle (be from column 18).
There are Big blue ones that have only 1 small blue one associated with it and others with one Big blue and two smaller light blues.
B is the answer to your question.
A stopped organ pipe of length L has a fundamental frequency of 220 Hz. For which of the following organ pipes will there be a resonance if a tuning fork of frequency 660 Hz is sounded next to the pipe?
a. a stopped organ pipe of length L
b. a stopped organ pipe of length 2L
c. an open organ pipe of length L;
d. an open organ pipe of length 2L.
Answer:
Option (a), (d) are correct.
Explanation:
Frequency, f = 220 Hz
Resonant frequency = 660 Hz
The next frequency of stopped organ pipe is
2f, 3 f, 4 f ....
= 2 x 220 , 3 x 220 , 4 x 220 ....
= 440 Hz, 660 Hz, 880 Hz
So, the option (a) is correct.
The next resonant frequency of open organ pipe is
3 f, 5 f,...
= 3 x 220, 5 x 220 , ..
= 660 Hz, 1100 Hz,...
So, option (d) is correct.
A student measure the length of a laboratory bench with a meter ruler. Which of the following values is the most approbriate way to record the result ? a.4.022m b.4.02m c.4.0m d.4m
Answer:
Well a meter stick has increments of a centimeter, and since 1 cm=0.01m he should record it as 4.02m(b)
Explanation:
A 1.0 ball moving at 2.0 / perpendicular to a wall rebounds from the wall at 1.5 /. If the ball was in contact with the wall for 0.1 , what force did the wall impart onto the ball?
Answer:
5N
Explanation:
We have a simple problem of momentum here.
ΔMomentum= mΔv= FΔt
Solve for F
mΔv/Δt=F
Plug in givens
1*(2-1.5)/0.1=F
F=5N
The amount of force that the wall imparts on the ball is 5.0N
According to Newton's second law, the formula for calculating the force applied is expressed as:
[tex]F=ma[/tex]
m is the mass of the object
a is the acceleration of the object
Since acceleration is the change in velocity of an object, hence [tex]a=\frac{\triangle v}{t}[/tex]
The applied force formula becomes [tex]F=\frac{m\triangle v}{t}[/tex]
Given the following parameters
m = 1.0kg
[tex]\triangle v=2.0-1.5\\\triangle v=0.5m/s[/tex]
t = 0.1sec
Substitute the given parameter into the formula
[tex]F=\frac{1.0\times 0.5}{0.1}\\F=\frac{0.5}{0.1}\\F=5N[/tex]
Hence the amount of force that the wall imparts on the ball is 5.0N
Learn more here: https://brainly.com/question/17811936
* A ball is projected horizontally from the top of
a building 19.6m high.
a, How long when the ball take to hit the ground?
b, If the line joining the point of projection to
the point where it hits the ground is 45
with the horizontal. What must be the
initial velocity of the ball?
c,with what vertical verocity does the ball strike
the grounds? (9= 9.8 M152)
Explanation:
Given
Ball is projected horizontally from a building of height [tex]h=19.6\ m[/tex]
time taken to reach ground is given by
[tex]\text{Cosidering vertical motion}\\\Rightarrow h=ut+0.5at^2\\\Rightarrow 19.6=0+0.5\times 9.8t^2\\\Rightarrow t^2=4\\\Rightarrow t=2\ s[/tex]
(b) Line joining the point of projection and the point where it hits the ground makes an angle of [tex]45^{\circ}[/tex]
From the figure, it can be written
[tex]\Rightarrow \tan 45^{\circ}=\dfrac{h}{x}\\\\\Rightarrow x=h\cdot 1\\\Rightarrow x=19.6[/tex]
Considering horizontal motion
[tex]\Rightarrow x=u_xt\\\Rightarrow 19.6=u_x\times 4\\\Rightarrow u_x=4.9\ m/s[/tex]
(c) The vertical velocity with which it strikes the ground is given by
[tex]\Rightarrow v^2-u_y^2=2as\\\Rightarrow v^2-0=2\times 9.8\times 19.6\\\Rightarrow v=\sqrt{384.16}\\\Rightarrow v=19.6\ m/s[/tex]
Thus, the ball strikes with a vertical velocity of [tex]19.6\ m/s[/tex]
Explanation:
Given
Ball is projected horizontally from a building of height
time taken to reach ground is given by
(b) Line joining the point of projection and the point where it hits the ground makes an angle of
From the figure, it can be written
Considering horizontal motion
(c) The vertical velocity with which it strikes the ground is given by
Thus, the ball strikes with a vertical velocity of
Two balls of known masses hang from the ceiling on massless strings of equal length. They barely touch when both hang at rest. One ball is pulled back until its string is at 45 ∘, then released. It swings down, collides with the second ball, and they stick together.The problem can be divided into three parts: (1) from when the first ball is released and to just before it hits the stationary ball, (2) the two balls collide, and (3) the two balls swing up together just after the collision to their highest point. ..............conserved in parts (1) and (3) as the balls swing like pendulums. During the collision in part (2) ................. conserved as the collision is ................. Explain.Match the words in the left column to the appropriate blanks in the sentences on the rightboth energy and momentum areonly energy is only momentum is.........both energy and momentum are only energy is only momentum iselasticinelastic
Answer:
In parts 1 and 3 the energy
In part 2 moment. inelastic
conserved
Explanation:
In this exercise, we are asked to describe the conservation processes for each part of the exercise.
In parts 1 and 3 the energy is conserved since the bodies do not change
In part 2 the bodies change since they are united therefore the moment is conserved and part of the kinetic energy is converted into potential energy.
Energy
moment .inelastic
conserved
The two balls swing up together just after the collision to their highest point. energy is conserved.
What is the law of conservation of momentum?According to the law of conservation of momentum, the momentum of the body before the collision is always equal to the momentum of the body after the collision.
According to the law of conservation of momentum
Momentum before collision =Momentum after collision
When the first ball is released and just before it hits the stationary ball, The two balls collide, The two balls swing up together just after the collision to their highest point. energy is conserved.
The balls swing like pendulums. During the collision in part (2) energy is conserved as the collision is inelastic.
We are requested to describe the conservation methods for each element of the activity in this exercise.
Because the bodies do not change in sections 1 and 3, energy is conserved.
Because the bodies change in part 2 is joined, the moment is conserved and some of the kinetic energy is transformed into potential energy.
Hence the two balls swing up together just after the collision to their highest point. energy is conserved.
To learn more about the law of conservation of momentum refer to;
https://brainly.com/question/1113396
two point charges two point charges are separated by 25 cm in the figure find The Net electric field these charges produced at point a and point b
The image is missing and so i have attached it.
Answer:
A) E = 8740 N/C
B) E = -6536 N/C
Explanation:
The formula for electric field is;
E = kq/r²
Where;
q is charge
k is a constant with value 8.99 x 10^(9) N•m²/C²
A) Now, to find the net electric field at point A, the formula would now be;
E = (kq1/(r1)²) - (kq2/(r2)²)
Where;
r1 is distance from charge q1 to point A
r2 is distance from charge q2 to point A.
q1 = -6.25 nC = -6.25 × 10^(-9) C
q2 = -12.5 nC = -12 5 × 10^(-9) C
From the attached image, r1 = 25 cm - 10 cm = 15 cm = 0.15 m
r2 = 10 cm = 0.1 m
Thus;
E = (8.99 x 10^(9)) × ((-6.25 × 10^(-9))/0.15^(2)) - ((-12.5 × 10^(-9))/0.1^(2))
E = 8740 N/C
B) similarly, electric field at point B;
E = (kq1/(r1)²) + (kq2/(r2)²)
Where;
r1 is distance from charge q1 to point B
r2 is distance from charge q2 to point B.
q1 = -6.25 nC = -6.25 × 10^(-9) C
q2 = -12.5 nC = -12 5 × 10^(-9) C
From the attached image, r1 = 10 cm = 0.1 m
r2 = 25cm + 10 cm = 35 cm = 0.35 m
Thus;
E = (8.99 x 10^(9)) × ((-6.25 × 10^(-9))/0.1^(2)) + ((-12.5 × 10^(-9))/0.35^(2))
E = -6536 N/C
A ball drops from a height, bounces three times, and then rolls to a stop when it reaches the ground the fourth time.
At what point is its potential energy greatest?
At what points does it have zero kinetic energy?
At what point did it have maximum kinetic energy?
Answer:
Greatest potential: moment before being dropped
Zero Kinetic: when it comes to rest
Greatest Kinetic: moment before first bounce
Explanation:
find out the odd one and give reason (length, volume, time, mass
Answer:
Time
Explanation:
The answer to the question is actually time. Time is not needed when you calculate the mass or volume of an object, a square, sphere, rectangle, or any other 3D shape. You must also calculate the length to know what numbers you will be multiplying by. The answer to the question is time.
If I could lift up to ten tons and I threw a ball the size of an orange but weighed a ton, to the ground, how big of an impact would it make? And could you also show me the equation to solve similar problems myself. Thank you.
Answer:
The impact force is 98000 N.
Explanation:
mass = 10 tons
The impact force is the weight of the object.
Weight =mass x gravity
W = 10 x 1000 x 9.8
W = 98000 N
The impact force is 98000 N.
The gravitational field strength due to its planet is 5N/kg What does it mean?
Answer:
The weight of an object is the force on it caused by the gravity due to the planet. The weight of an object and the gravitational field strength are directly proportional. For a given mass, the greater the gravitational field strength of the planet, the greater its weight.
Weight can be calculated using the equation:
weight = mass × gravitational field strength
This is when:
weight (W) is measured in newtons (N)
mass (m) is measured in kilograms (kg)
gravitational field strength (g) is measured in newtons per kilogram (N/kg)
(a) If half of the weight of a flatbed truck is supported by its two drive wheels, what is the maximum acceleration it can achieve on wet concrete where the coefficient of kinetic friction is 0.5 and the coefficient of static friction is 0.7.
(b) Will a metal cabinet lying on the wooden bed of the truck slip if it accelerates at this rate where the coefficient of kinetic friction is 0.3 and the coefficient of static friction is 0.55?
(c) If the truck has four-wheel drive, and the cabinet is wooden, what is it's maximum acceleration (in m/s2)?
Answer:
a) a = 27.44 m / s², b) a = 5.39 m / s², c) a = 156.8 m / s², cabinet maximum acceleration does not change
Explanation:
a) In this exercise the wheels of the truck rotate to provide acceleration, but the contact point between the ground and the 2 wheels remains fixed, therefore the coefficient of friction for this point is static.
Let's apply Newton's second law
we set a regency hiss where the x axis is in the direction of movement of the truck
Y axis y
N- W = 0
N = W = m g
X axis
2fr = m a
the expression for the friction force is
fr = μ N
fr = μ m g
we substitute
2 μ m g = m /2 a
a = 4 μ g
a = 4 0.7 9.8
a = 27.44 m / s²
b) let's look for the maximum acceleration that can be applied to the cabinet
fr = m a
μ N = ma
μ m g = m a
a = μ g
a = 0.55 9.8
a = 5.39 m / s²
as the acceleration of the platform is greater than this acceleration the cabinet must slip
c) the friction force is in the four wheels as well
With when the truck had two-wheel Thracian the weight of distributed evenly between the wheels, in this case with 4-wheel Thracian the weight must be distributed among all
applying Newton's second law
4 fr = (m/4) a
16 mg = (m) a
a = 16 g
a = 16 9.8
a = 156.8 m / s²
cabinet maximum acceleration does not change
A car is moving north at 5.2 m/s2. Which type of motion do the SI units in this
value express?
Answer:
the SI unit (meter per second square) indicates a linear type of motion.
Explanation:
Given;
acceleration of the car, a = 5.2 m/s² North
the SI unit of the car, = m/s²
The SI unit of the given value (acceleration), indicates a linear type of motion.
Linear acceleration is the change in linear velocity with time. Also, the northwards direction indicates linear displacement of the car.
Therefore, the SI unit (meter per second square) indicates a linear type of motion.
Answer:
displacement
Explanation:
PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. What is the decay constant for this decay?
Explanation:
hope this will help u
mark me as brinalist or vote me
Thankyou
In Trial II, the same spring is used as in Trial I. Let us use this information to find the suspended mass in Trial II. Use 0.517 ss for the value of the period.
Trial 1 Spring constant is 117N/m, period of oscillations .37s, mass of the block is .400kg .
Trial 2 oscillation period is .52s
Answer:
[tex]M_2=0.79kg[/tex]
Explanation:
From the question we are told that:
Period [tex]T=0.517s[/tex]
Trial 1
Spring constant [tex]\mu=117N/m[/tex]
Period [tex]T_1=0.37[/tex]
Mass [tex]m=0.400kg[/tex]
Trial 2
Period [tex]T_2=0.52[/tex]
Generally the equation for Spring Constant is mathematically given by
\mu=\frac{4 \pi^2 M}{T^2}
Since
[tex]\mu _1=\mu_2[/tex]
Therefore
[tex]\frac{4 \pi^2 M_1}{T_1^2}=\frac{4 \pi^2 M_2}{T_2^2}[/tex]
[tex]M_2=M_1*(\frac{T_2}{T_1})^2[/tex]
[tex]M_2=0.400*(\frac{0.52}{0.37}})^2[/tex]
[tex]M_2=0.79kg[/tex]
Julie drives 100 mi to Grandmother's house. On the way to Grandmother's, Julie drives half the distance at 40.0 mph and half the distance at 60.0 mph . On her return trip, she drives half the time at 40.0 mph and half the time at 60.0 mph.
Required:
a. What is Julie's average speed on the way to grandmother's house?
b. What is her average speed in the return trip?
Answer:
a. The average speed on her way to Grandmother's house is 48.08 mph
b. The average speed in the return trip is 50 mph.
Explanation:
The average speed (S) can be calculated as follows:
[tex] S = \frac{D}{T} [/tex]
Where:
D: is the total distance
T: is the total time
a. To find the total distance in her way to Grandmother's house, we need to find the total time:
[tex]T_{i} = t_{1_{i}} + t_{2_{i}} = \frac{d_{1_{i}}}{v_{1_{i}}} + \frac{d_{2_{i}}}{v_{2_{i}}}[/tex]
Where v is for velocity
[tex] T = \frac{d_{1_{i}}}{v_{1_{i}}} + \frac{d_{2_{i}}}{v_{2_{i}}} = \frac{(100/2) mi}{40.0 mph} + \frac{(100/2) mi}{60.0 mph} = 1.25 h + 0.83 h = 2.08 [/tex]
Hence, the average speed on her way to Grandmother's house is:
[tex]S_{i} = \frac{D}{T_{i}} = \frac{100 mi}{2.08 h} = 48.08 mph[/tex]
b. Now, to calculate the average speed of the return trip we need to calculate the total time:
[tex]D = v_{1_{f}}\frac{T_{f}}{2} + v_{2_{f}}\frac{T_{f}}{2} = \frac{T_{f}}{2}(v_{1_{f}} + v_{2_{f}})[/tex]
[tex]100 mi = \frac{T_{f}}{2}(40 mph + 60 mph)[/tex]
[tex] T_{f} = \frac{200 mi}{40 mph + 60 mph} = 2 h [/tex]
Therefore, the average speed of the return trip is:
[tex]S_{f} = \frac{D}{T_{f}} = \frac{100 mi}{2 h} = 50 mph[/tex]
I hope it helps you!
The pressure exerted at the bottom of a column of liquid is 30 kPa. The height of the
column is 3,875 m. What type of liquid is used?
Answer:
For example, the pressure acting on a dam at the bottom of a reservoir is ... pressure = height of column × density of the liquid × gravitational field ... The density of water is 1,000 kg/m 3.
Two forces act on the screw eye. If F = 600 N, determine the magnitude of the resultant force and the angle θ if the resultant force is directed vertically upward.
Answer:
how to solve this problem ???????
The magnitude of the resultant force is 919.6 N and the value of angle θ is 36.87⁰.
Resultant of the two forces
The resultant of the two forces is determined by resolving the force into x and y component as shown below;
[tex]F_1_x + F_2x_x = F_R_x \ --- (1) \\\\F_1_y + F_2_y = F_R_y\ ---(2)[/tex]
where;
F1 = 500 NF2 = 600 NValue of Angle θThe value of Angle θ is determined from equation (1)
-500sinθ + 600sin(30) = 0
500sinθ = 600sin(30)
500sinθ = 300
sinθ = 3/5
θ = 36.87⁰
Resultant of the two forcesThe resultant of the forces is determined using the second equation;
500cosθ + 600cos(30) = R
500 x cos(36.87) + 600 x cos(30) = R
919.6 N = R
Learn more about resultant forces here: https://brainly.com/question/25239010
An object moving along a horizontal track collides with and compresses a light spring (which obeys Hooke's Law) located at the end of the track. The spring constant is 52.1 N/m, the mass of the object 0.250 kg and the speed of the object is 1.70 m/s immediately before the collision.
(a) Determine the spring's maximum compression if the track is frictionless.
?? m
(b) If the track is not frictionless and has a coefficient of kinetic friction of 0.120, determine the spring's maximum compression.
??m
(a) As it gets compressed by a distance x, the spring does
W = - 1/2 (52.1 N/m) x ²
of work on the object (negative because the restoring force exerted by the spring points in the opposite direction to the object's displacement). By the work-energy theorem, this work is equal to the change in the object's kinetic energy. At maximum compression x, the object's kinetic energy is zero, so
W = ∆K
- 1/2 (52.1 N/m) x ² = 0 - 1/2 (0.250 kg) (1.70 m/s)²
==> x ≈ 0.118 m
(b) Taking friction into account, the only difference is that more work is done on the object.
By Newton's second law, the net vertical force on the object is
∑ F = n - mg = 0
where n is the magnitude of the normal force of the track pushing up on the object. Solving for n gives
n = mg = 2.45 N
and from this we get the magnitude of kinetic friction,
f = µn = 0.120 (2.45 N) = 0.294 N
Now as the spring gets compressed, the frictional force points in the same direction as the restoring force, so it also does negative work on the object:
W (friction) = - (0.294 N) x
W (spring) = - 1/2 (52.1 N/m) x ²
==> W (total) = W (friction) + W (spring)
Solve for x :
- (0.294 N) x - 1/2 (52.1 N/m) x ² = 0 - 1/2 (0.250 kg) (1.70 m/s)²
==> x ≈ 0.112 m
For the 0.250 kg object moving along a horizontal track and collides with and compresses a light spring, with a spring constant of 52.1 N/m, we have:
a) The spring's maximum compression when the track is frictionless is 0.118 m.
b) The spring's maximum compression when the track is not frictionless, with a coefficient of kinetic friction of 0.120 is 0.112 m.
a) We can calculate the spring's compression when the object collides with it by energy conservation because the track is frictionless:
[tex] E_{i} = E_{f} [/tex]
[tex] \frac{1}{2}m_{o}v_{o}^{2} = \frac{1}{2}kx^{2} [/tex] (1)
Where:
[tex]m_{o}[/tex]: is the mass of the object = 0.250 kg
[tex]v_{o}[/tex]: is the velocity of the object = 1.70 m/s
k: is the spring constant = 52.1 N/m
x: is the distance of compression
After solving equation (1) for x, we have:
[tex] x = \sqrt{\frac{m_{o}v_{o}^{2}}{k}} = \sqrt{\frac{0.250 kg*(1.70 m/s)^{2}}{52.1 N/m}} = 0.118 m [/tex]
Hence, the spring's maximum compression is 0.118 m.
b) When the track is not frictionless, we can calculate the spring's compression by work definition:
[tex] W = \Delta E = E_{f} - E_{i} [/tex]
[tex] W = \frac{1}{2}kx^{2} - \frac{1}{2}m_{o}v_{o}^{2} [/tex] (2)
Work is also equal to:
[tex] W = F*d = F*x [/tex] (3)
Where:
F: is the force
d: is the displacement = x (distance of spring's compression)
The force acting on the object is given by the friction force:
[tex] F = -\mu N = -\mu m_{o}g [/tex] (4)
Where:
N: is the normal force = m₀g
μ: is the coefficient of kinetic friction = 0.120
g: is the acceleration due to gravity = 9.81 m/s²
The minus sign is because the friction force is in the opposite direction of motion.
After entering equations (3) and (4) into (2), we have:
[tex]-\mu m_{o}gx = \frac{1}{2}kx^{2} - \frac{1}{2}m_{o}v_{o}^{2}[/tex]
[tex]\frac{1}{2}kx^{2} - \frac{1}{2}m_{o}v_{o}^{2} + \mu m_{o}gx = 0[/tex]
[tex] \frac{1}{2}52.1 N/m*x^{2} - \frac{1}{2}0.250 kg*(1.70)^{2} + 0.120*0.250 kg*9.81 m/s^{2}*x = 0 [/tex]
Solving the above quadratic equation for x
[tex] x = 0.112 m [/tex]
Therefore, the spring's compression is 0.112 m when the track is not frictionless.
Read more here:
https://brainly.com/question/14245799?referrer=searchResultshttps://brainly.com/question/16857618?referrer=searchResultsI hope it helps you!
A loop of wire is carrying current of 2 A . The radius of the loop is 0.4 m. What is the magnetic field at a distance 0.09 m along the axis and above the center of the loop
Answer:
[tex]B=2.91\ \mu T[/tex]
Explanation:
Given that,
The current in the loop, I = 2 A
The radius of the loop, r = 0.4 m
We need to find the magnetic field at a distance 0.09 m along the axis and above the center of the loop. The formula for the magnetic field at some distance is given as follows :
[tex]B=\dfrac{\mu_o}{4\pi }\dfrac{2\pi r^2 I}{(r^2+d^2)^{3/2}}[/tex]
Put all the values,
[tex]B=10^{-7}\times \dfrac{2\pi \times 0.4^2 \times 2}{(0.4^2+0.09^2)^{3/2}}\\\\=2.91\times 10^{-6}\ T\\\\or\\\\B=2.91\ \mu T[/tex]
So, the required magnetic field is equal to [tex]2.91\ \mu T[/tex].
15.1.2 Exam: Semester Exam
ŽA
This graph shows the energy of a reaction over time. Which statement is
true?
Potential energy
N
Reaction progress
O A. G represents the activation energy
OB. H represents the energy of the products,
O C. G represents the energy of the products.
< PREVIOUS
Answer: D. F represents the activation energy
Explanation:
The activation energy is the energy required to get the reactants to begin reacting with one another such that products are created. This energy ranges from the minimum to the maximum energy required.
F is therefore the activation energy because it shows the range between the minimum energy it took for the reaction to start and the maximum energy that was required to continue the reaction.
Explain why the flow from the battery increases when the switch is closed. Give the label of the concept(s) that you use from the model of electricity. [
Answer:
Due to the applied filed the electrons move in a particular direction.
Explanation:
Initially when the switch is off, the free electrons move here and there in any random directions in the conductor with the random speeds called thermal velocity. So, tat the net flow is almost zero.
When the battery is connected is switch is ON, the random motion of the electrons aligned in a particular direction due to the force applied by the electric filed, so the net flow is not zero it increases and thus the current flow.
Two identical cylinders with a movable piston contain 0.7 mol of helium gas at a temperature of 300 K. The temperature of the gas in the first cylinder is increased to 412 K at constant volume by doing work W1 and transferring energy Q1 by heat. The temperature of the gas in the second cylinder is increased to 412 K at constant pressure by doing work W2 while transferring energy Q2 by heat.
Required:
Find ÎEint, 1, Q1, and W1 for the process at constant volume.
Answer:
ΔE[tex]_{int[/tex],₁ = 977.7 J , Q₁ = 977.7 J and W₁ = 0 J
Explanation:
Given the data in the question;
T[tex]_i[/tex] = 300 K, T[tex]_f[/tex] = 412 K, n = 0.7 mol
since helium is monoatomic;
Cv = (3/2)R, Cp = (5/2)R
W₁ = 0 J [ at constant volume or ΔV = 0]
Now for the first cylinder; from the first law of thermodynamics;
Q₁ = ΔE[tex]_{int[/tex],₁ + W₁
Q₁ = ΔE[tex]_{int[/tex],₁ = n × Cv × ΔT
we substitute
Q₁ = ΔE[tex]_{int[/tex],₁ = 0.7 × ( 3/2 )8.314 × ( 412 - 300 )
Q₁ = ΔE[tex]_{int[/tex],₁ = 0.7 × 12.471 × 112
Q₁ = ΔE[tex]_{int[/tex],₁ = 977.7 J
Therefore, ΔE[tex]_{int[/tex],₁ = 977.7 J , Q₁ = 977.7 J and W₁ = 0 J
Three 15-Ω and two 25-Ω light bulbs and a 24 V battery are connected in a series circuit. What is the current that passes through each bulb?
1) 0.18 A
2) 0.25 A
3) 0.51 A
4) 0.74 A
5) The current will be 1.6 A in the 15-Ω bulbs and 0.96 A in the 25-Ω bulbs.
Answer:
I = 0.25 A
Explanation:
Given that,
Three 15 ohms and two 25 ohms light bulbs and a 24 V battery are connected in a series circuit.
In series combination, the equivalent resistance is given by :
[tex]R=R_1+R_2+R_3+....[/tex]
So,
[tex]R=15+15+15+25+25\\\\=95\ \Omega[/tex]
The current each resistor remains the same in series combination. It can be calculated using Ohm's law i.e.
V = IR
[tex]I=\dfrac{V}{R}\\\\I=\dfrac{24}{95}\\\\I=0.25\ A[/tex]
So, the current of 0.25 A passes through each bulb.