A car traveling at 24.0 m/s runs out of gas while traveling up a
19.0 ∘ slope. How far up the hill will it coast before starting to
roll back down? Express your answer with the appropriate units.

Answers

Answer 1

A car traveling at 24.0 m/s runs out of gas while traveling up a 19.0 ∘ slope, the car will coast approximately 42.5 meters up the hill before starting to roll back down.

To determine how far the car will coast up the hill before rolling back down, we need to calculate the distance traveled along the slope.

Initial velocity, v = 24.0 m/s

Slope angle, θ = 19.0°

The force acting on the car can be decomposed into two components: the force of gravity pulling the car downhill and the force of friction opposing the motion. Since the car is on the verge of rolling back down, the force of friction must equal the force of gravity.

The force of gravity pulling the car downhill can be calculated using the equation:

Fg = m * g * sin(θ)

The force of friction opposing the motion is given by:

Ff = μ * m * g * cos(θ)

Since the car is on the verge of rolling back, Fg = Ff, which gives:

m * g * sin(θ) = μ * m * g * cos(θ)

Simplifying and canceling out the mass and gravitational acceleration, we have:

sin(θ) = μ * cos(θ)

Rearranging the equation, we get:

μ = tan(θ)

Now we can calculate the coefficient of friction:

μ = tan(19.0°) = 0.342

The distance the car will coast up the hill can be found using the equation:

d = (v^2) / (2 * g * μ)

Substituting the given values, we have:

d = (24.0^2) / (2 * 9.8 * 0.342) ≈ 42.5 meters

To know more about "Force of gravity" refer here:

https://brainly.com/question/30429270#

#SPJ11


Related Questions

a triangle has a base of 9 feet and a height of 12 feet. what is the area of the triangle? responses 42 ft2 42 ft, 2 54 ft2 54 ft, 2 84 ft2 84 ft, 2 108 ft2

Answers

A triangle has a base of 9 feet and a height of 12 feet. The area of that triangle will be got as 54 ft².

When we know the base and height of the triangle, we can find out the area of the triangle by using the formula of the area of a triangle. The area of a triangle formula is A = 1/2 × base × height.

The base of the triangle is given as 9 feet and the height is 12 feet. Substituting the values into the formula,

A = 1/2 × base × height = 1/2 × 9 × 12 = 54 ft²

Therefore, the area of the triangle is 54 square feet. 

Area of triangle = 1/2 × b × h

Here, the base of the triangle is 9 feet and the height is 12 feet.

Area of triangle = 1/2 × 9 × 12 = 54 ft².

Hence, the answer is 54 ft².

Learn more about finding out area here:

https://brainly.com/question/27683633

#SPJ11

the two 10-cm-long parallel wires in the figure are separated by 5.0 mm. for what value of the resistor

Answers

The value of the resistor depends on the value of the resistivity of the wires used. For example, if the resistivity of the wires is 2.00×10⁻⁸ ohm-meters, then the resistance of the parallel wire would be:R = 2.00×10⁻⁸ ohm-meters × 1270.88 = 0.0255 ohms. Therefore, the value of the resistor for the given parallel wires would be 0.0255 ohms.

The question involves a problem about parallel wires separated by a distance of 5.0 mm. To find the resistor for a given length of parallel wires, we need to know the value of the resistivity of the wires. We can use the formula to find the value of the resistor. Resistivity (ρ) is a property of materials that tells us how well a material can conduct electricity. It is measured in ohm-meters (Ω.m).The formula for the resistance (R) of a wire with resistivity (ρ), length (L), and cross-sectional area (A) is given by:R = ρ(L/A)where R is the resistance in ohms, ρ is the resistivity in ohm-meters, L is the length of the wire in meters, and A is the cross-sectional area in square meters.Now, we have to determine the resistance of a parallel wire by using the given values. The length of the wire (L) is 10 cm = 0.1 m. The distance between the wires (d) is 5.0 mm = 0.005 m. The cross-sectional area (A) of the wire can be calculated by using the diameter of the wire (d) as follows:A = π(d/2)² = π(0.001/2)² = 7.854×10⁻⁷ m². Now, we can substitute these values into the formula for the resistance of the parallel wire:R = ρ(L/A) = ρ(0.1/7.854×10⁻⁷) = ρ(1270.88)The value of the resistor depends on the value of the resistivity of the wires used. For example, if the resistivity of the wires is 2.00×10⁻⁸ ohm-meters, then the resistance of the parallel wire would be:R = 2.00×10⁻⁸ ohm-meters × 1270.88 = 0.0255 ohms. Therefore, the value of the resistor for the given parallel wires would be 0.0255 ohms.

To know more about resistivity visit :

brainly.com/question/29427458

#SPJ11

The displacement of a car moving with constant velocity 9.5 m/s in time interval between 3 seconds to 5 seconds is given by odt. What is the displacement of the car during that interval in meters?

Answers

The displacement of a car moving with a constant velocity of 9.5 m/s in a time interval between 3 seconds to 5 seconds is 19 meters.

It given by the formula: Δx = vΔt where Δx = displacement v = velocity Δt = time interval Substituting the given values, we get:Δx = 9.5 m/s × (5 s - 3 s)Δx = 9.5 m/s × 2 sΔx = 19 m, the displacement of the car during the given interval is 19 meters.

The given formula is derived from the definition of velocity which is the change in displacement per unit time. Since the velocity of the car is constant, we can assume that its acceleration is zero. Therefore, the car is not changing its velocity, which means that the displacement during that interval is equal to the product of velocity and time.In this case, we are given the initial and final times, and we need to find the displacement during that time interval.

The difference between the two times is 2 seconds. Multiplying the velocity with the time interval, we get the displacement of the car. The unit of displacement is meter, which is the same as the unit of distance.

Know more about displacement  here:

https://brainly.com/question/29769926

#SPJ11

the following appear on a physician's intake form. identify the level of measurement: (a) happiness on a scale of 0 to 10 (b) family history of illness (c) age (d) temperature

Answers

(a) The level of measurement for "happiness on a scale of 0 to 10" is an interval.

The happiness scale from 0 to 10 represents an interval measurement. The scale has equal intervals between the numbers, but it does not have a true zero point. The absence of happiness (0) does not indicate the complete absence of the attribute being measured. Therefore, it is an interval level of measurement.

(b) The level of measurement for "family history of illness" is nominal.

Family history of illness is a qualitative variable that represents categories or groups. It does not have a numerical order or magnitude. It is simply a classification of whether or not there is a family history of illness. Hence, it is a nominal level of measurement.

(c) The level of measurement for "age" is a ratio.

Age is a quantitative variable that has a meaningful zero point and a numerical order. Ratios between values are also meaningful. For example, someone who is 20 years old is half the age of someone who is 40 years old. Age satisfies all the properties of a ratio level of measurement.

(d) The level of measurement for "temperature" is an interval.

Temperature is a quantitative variable that can be measured on a scale such as Celsius or Fahrenheit. While temperature has equal intervals between the values, it does not have a true zero point (absolute absence of temperature). Therefore, it is an interval level of measurement.

To learn more about magnitude click here

https://brainly.com/question/29766788

#SPJ11

A very long line of charge with charge per unit length +8.00 C/m is on the z-axis and its midpoint is at a 0. A second very long line of charge with charge per unit length -4.00 μC/m is parallel to the x-axis at y 15.0 cm and its midpoint is also at z = 0. ▼ Part A At what point on the y-axis is the resultant electric field of the two lines of charge equal to zero? Enter the y-coordinate of the point and include the appropriate units. 3 d ?

Answers

At 10 cm the y-axis is the resultant electric field of the two lines of charge equal to zero.

A charge is a fundamental property of matter. It is a fundamental property of particles, such as electrons and protons, that determines their electromagnetic interactions. The charge can be either positive or negative.

Given,

Charge density on z-axis = 8 C/m

E = λ / (2π.v.ε₀)

According to the question,

E₁ = E₂

λ₁ / (2π.v.ε₀) = λ₂ / (2π.v.ε₀)

λ₁/x = λ₂/x

(8 × 10⁻⁶) / x = (4 × 10⁻⁶) / (0.15 - x)

(0.15 - x) / x = 1/2

x = 0.1 m

x = 10 cm

Therefore, the point on which the y-axis is at 10 cm.

To learn more about Charge, here:

brainly.com/question/19886264

#SPJ4

A truck of mass 5000kg travels at a constant speed a distance of 100m up an incline plane that makes an angle of 10 degree with the horizontal. If the frictional forces against the motion of the truck are 1000N how much work is done? What is the force exerted by the engine of the truck? To what vertical height above the starting position does the truck travel?

Answers

The work done by the truck is 500,000 J (Joules). The force exerted by the engine of the truck is 1,000 N (Newtons). The vertical height above the starting position that the truck travels is 17.37 m.

To calculate the work done, we can use the formula:

Work = Force × Distance × cos(θ),

where θ is the angle between the force and the displacement. In this case, the force opposing the motion of the truck is the frictional force, which is given as 1000 N.

The distance traveled is 100 m. Since the force and displacement are in the opposite direction, the angle between them is 180 degrees or π radians.

Thus, the work done is calculated as:

Work = 1000 N × 100 m × cos(180°) = -100,000 J.

However, since the work done against the frictional force is negative, we take the magnitude, resulting in 500,000 J.

The force exerted by the engine of the truck can be calculated using Newton's second law, which states that force equals mass times acceleration (F = m × a).

Since the truck travels at a constant speed, its acceleration is zero. Therefore, the force exerted by the engine must be equal in magnitude and opposite in direction to the frictional force, which is 1000 N.

To find the vertical height traveled by the truck, we can use the equation: height = distance × sin(θ), where θ is the angle of the incline plane. In this case, the angle is given as 10 degrees.

Substituting the values, we have: height = 100 m × sin(10°) = 17.37 m. Thus, the truck travels a vertical distance of approximately 17.37 meters above the starting position.

To know more about work done, refer here:

https://brainly.com/question/32263955#

#SPJ11

Max observes the zoo and the library from a helicopter flying at a height of 2001/3 feet
above the ground, as shown below:
Helicopter
200root3
What is the distance between the zoo and the library? (1 point)
400 feet
200 feet
600 feet
800 feet

Answers

The distance between the zoo and the library is approximately 400 feet. We can use the Pythagorean theorem since the helicopter is flying at a height above the ground.

To determine the distance between the zoo and the library, we can use the Pythagorean theorem since the helicopter is flying at a height above the ground.

Given that the height of the helicopter is 200√3 feet, and assuming the distance between the zoo and the library is represented by 'd', we can set up the following equation:

d^2 = (200√3)^2 + 200^2

Simplifying this equation, we get:

d^2 = 120,000 + 40,000

d^2 = 160,000

Taking the square root of both sides, we find:

d = √160,000

d ≈ 400 feet

Therefore, the distance between the zoo and the library is approximately 400 feet.

To learn more about Distance click here

https://brainly.com/question/13034462

#SPJ11

Final answer:

The distance between the zoo and the library, given the height of the helicopter is 2001/3 feet, is 200 feet. This is solved using the properties of a 30-60-90 right triangle.

Explanation:

It seems from your question that you are attempting to solve a problem related to right triangles and trigonometry. Given that the height of the helicopter from the ground is 200√3 feet, we can utilize the properties of 30-60-90 right triangles, where the sides are in the ratio 1:√3:2. Here, the height of the helicopter forms the 'long leg' of the triangle, which is √3 times the short leg. As such, the distance between the zoo and the library (the 'short leg') would be 200√3 / √3 = 200 feet.

Learn more about Right Triangle here:

https://brainly.com/question/36869450

#SPJ12

what is the mass-volume percentage of a solution of 1.50g of solute dissolved in water to make 50.0ml of solution? your answer should have three significant figures. provide your answer below:

Answers

To calculate the mass-volume percentage, we need to divide the mass of the solute by the volume of the solution and multiply by 100.

Given:

Mass of solute = 1.50 g

Volume of solution = 50.0 mL

First, let's convert the volume from milliliters to liters:

50.0 mL = 50.0 / 1000 = 0.050 L

Now we can calculate the mass-volume percentage: Mass-volume percentage = (mass of solute / volume of solution) * 100

= (1.50 g / 0.050 L) * 100

= 3000 %

Therefore, the mass-volume percentage of the solution is 3000%.

To learn more about mass-volume, https://brainly.com/question/952755

#SPJ11

when he reaches the bottom, 4.2 mm below his starting point, his speed is 2.2 m/sm/s . by how much has thermal energy increased during his slide?

Answers

We can estimate ΔEth_boy to be about 20% of ΔEth:ΔEth_boy = 0.2 ΔEth = 0.2(79.82 J) = 15.96 JTherefore, the thermal energy has increased by about 15.96 J or approximately 16 J during his slide.

When he reaches the bottom, 4.2 mm below his starting point, his speed is 2.2 m/s. By how much has thermal energy increased during his slide? Answer: Thermal energy has increased by about 31 J during his slide.Explanation:According to the law of conservation of energy, the total energy of a system remains constant, i.e., energy can neither be created nor destroyed; it can only be transformed from one form to another.In this case, as the boy slides down the slide, his initial potential energy decreases, while his kinetic energy (motion energy) increases. At the same time, the frictional forces between the boy and the slide cause a conversion of some of the boy's kinetic energy into thermal energy (heat). This thermal energy increases the temperature of the boy, the slide, and the surrounding air. Therefore, the sum of the boy's kinetic and thermal energies at the bottom of the slide must be equal to his initial potential energy.To calculate the change in thermal energy, we first need to determine the boy's initial potential energy at the top of the slide. The potential energy (PE) of an object at a height h above the ground is given by:PE = mghwhere m is the mass of the object, g is the acceleration due to gravity (9.81 m/s²), and h is the height above the ground.In this case, the boy's potential energy at the top of the slide is:PE = (35 kg)(3.6 m/s²)(4.2 mm) = 5.33 Jwhere we converted the height of the slide (4.2 mm) to meters.Next, we need to determine the boy's kinetic energy (KE) at the bottom of the slide. The kinetic energy of an object of mass m moving at a speed v is given by:KE = 0.5mv²In this case, the boy's kinetic energy at the bottom of the slide is:KE = 0.5(35 kg)(2.2 m/s)² = 85.15 JNow we can calculate the change in thermal energy (ΔEth) during the boy's slide by using the law of conservation of energy:ΔEth = PE_initial - KE_final = 5.33 J - 85.15 J = -79.82 JSince the value of ΔEth is negative, this means that the thermal energy has increased by about 79.82 J during the boy's slide. However, this value represents the total energy lost by the boy to thermal energy (heat), including the energy that went into heating the slide and the surrounding air. To calculate the increase in thermal energy that affected only the boy, we can assume that the slide and the surrounding air act as a heat sink that absorbs the excess thermal energy. Therefore, we can estimate the increase in thermal energy that affected only the boy as:ΔEth_boy = ΔEth - Eth_sinkwhere Eth_sink is the thermal energy absorbed by the slide and the surrounding air. The value of Eth_sink is difficult to determine without additional information, but we can assume that it is roughly proportional to the mass and temperature of the slide and the air. Therefore, we can estimate ΔEth_boy to be about 20% of ΔEth:ΔEth_boy = 0.2 ΔEth = 0.2(79.82 J) = 15.96 JTherefore, the thermal energy has increased by about 15.96 J or approximately 16 J during his slide.

To know more about thermal energy visit :

brainly.com/question/3022807

#SPJ11

Two objects with masses of m1 and m2 have the same kinetic energy and are both moving to the right. The same constant force F-> is applied to the left to both masses. If m1 = 4m2, the ratio of the stopping distance of m1 to that of m2 is: A. 1:4 B. 4:1 C. 1:2 D. 2:1 E. 1:1

Answers

When same constant force F-> is applied to the left to both masses. The ratio of the stopping distance of m1 to that of m2 would be 1:4 (option A).

Here two objects with masses of m1 and m2 have the same kinetic energy and are both moving to the right. When the same constant force is applied to both masses, the stopping distance is inversely proportional to the mass of the object. Since m1 has a mass four times greater than m2, its stopping distance will be one-fourth of the stopping distance of m2. Therefore, the correct ratio is 1:4, indicating that the stopping distance of m1 is four times greater than that of m2.

To know more about ,constant force, click here https://brainly.com/question/2193163

#SPJ11

how do you know the mass of an aquious solution without water

Answers

Aqueous solutions are mixtures that have water as a solvent. So, if we want to determine the mass of an aqueous solution without water, we can simply subtract the mass of the water from the total mass of the solution.

To determine the mass of an aqueous solution without water, follow these steps:1. Determine the total mass of the solution. This can be done by weighing the container that holds the solution on a scale.2.

Remove the water from the solution. This can be done by heating the solution to evaporate the water or by using a process such as distillation.3. Weigh the container again to determine the mass of the solution without water.

To know more about Aqueous solutions visit :-

https://brainly.com/question/31271307

#SPJ11

7. Determine the de Broglie wavelength of a proton that has 1.2 x 10 eV of kinetic energy.

Answers

The de Broglie wavelength of a proton with 1.2 x 10 eV of kinetic energy is approximately 1.14 x [tex]10^-^1^0[/tex] meters.

To determine the de Broglie wavelength of a proton, we can use the de Broglie wavelength equation:

λ = h / p

where λ is the de Broglie wavelength, h is Planck's constant (6.626 x [tex]10^-^3^4[/tex]J*s), and p is the momentum of the proton.

The momentum of a proton can be calculated using the equation:

p = ([tex]\sqrt{2mK)}[/tex]

where p is the momentum, m is the mass of the proton (1.67 x [tex]10^-^2^7[/tex] kg), and K is the kinetic energy of the proton.

Given the kinetic energy of the proton as 1.2 x 10 eV, we need to convert it to joules before proceeding with the calculation. The conversion factor is 1 eV = 1.6 x [tex]10^-^1^9[/tex] J. Therefore, the kinetic energy of the proton is:

K = 1.2 x 10 eV * (1.6 x [tex]10^-^1^9[/tex] J/eV)

K = 1.92 x [tex]10^-^1^9[/tex] J

Next, we can calculate the momentum of the proton:

p = [tex]\sqrt{(2 * 1.67 x 10^-^2^7 kg * 1.92 x J)}[/tex]

p =[tex]\sqrt{ (3.3648 x 10^-^4^6 kg }[/tex]* J)

p = 5.8 x [tex]10^-^2^4[/tex]kg*m/s

Finally, we can substitute the momentum into the de Broglie wavelength equation to find the de Broglie wavelength of the proton:

λ = (6.626 x [tex]10^-^3^4[/tex]J*s) / (5.8 x[tex]10^-^2^4[/tex] kg*m/s)

λ = 1.14 x [tex]10^-^1^0[/tex] m

For more such information on: wavelength

https://brainly.com/question/10750459

#SPJ8

Give the structure of the major product formed in each case when the reactant(s) shown undergo alkene metathesis in the presence of an appropriate ruthenium catalyst.

Answers

In alkene metathesis reaction, a ruthenium catalyst is used which is responsible for converting functional group present in one alkene to another functional group. The metathesis reactions occur between different types of alkenes.

In each case, the main product formed will be a cyclic alkene as shown below:

In the first reaction, the two reactants involved are 2-butene and 2-pentene. The alkene metathesis reaction that occurs between the two reactants involves the interchange of the 2 carbon fragments attached to the double bonds to form a 5-carbon alkene and a 4-carbon alkene as shown below:

Here, a cyclic alkene is formed, which is the major product of the reaction.

In the second reaction, the two reactants involved are 2-hexene and 3-octene. The alkene metathesis reaction that occurs between the two reactants involves the interchange of the 2 carbon fragments attached to the double bonds to form a 6-carbon alkene and a 5-carbon alkene as shown below:

Here again, a cyclic alkene is formed, which is the major product of the reaction.

Learn more about metathesis reaction: https://brainly.com/question/30883712

#SPJ11

An object lies outside the focal point of a diverging lens. Which of the following statements about the image formed by this lens must be true? A. The image is always virtual and inverted. B. The image could be real or virtual, depending on how far the object is past the focal point. C. The image could be erect or inverted, depending on how far the object is past the focal point. D. The image is always virtual and on the same side of the lens as the object. or both B and C

Answers

The correct answer is B. The image could be real or virtual, depending on how far the object is past the focal point.

When an object is placed outside the focal point of a diverging lens, the resulting image is always virtual and upright (erect). However, the location of the image (whether it is real or virtual) depends on the distance of the object from the lens. If the object is placed closer to the lens than the focal point, the image will be virtual, upright, and on the same side of the lens as the object. It will be magnified and will appear larger than the object. If the object is placed farther from the lens than the focal point, the image will be virtual, upright, and on the opposite side of the lens from the object. It will be reduced in size and will appear smaller than the object. Therefore, the statement "The image could be real or virtual, depending on how far the object is past the focal point" accurately describes the behavior of the image formed by a diverging lens when the object is located outside the focal point.

To learn more about image, https://brainly.com/question/31729454

#SPJ11

The angular position of a point on the rim of a rotating wheel is given by _________________

Answers

The angular position of a point on the rim of a rotating wheel is given by the angle in radians measured from a reference direction on the axis of rotation of the wheel.

This angle varies with time as the wheel rotates, and it can be calculated using the formula

θ = ωt, where θ is the angular position,

is the angular velocity of the wheel, and t is the time elapsed since the reference position was last passed.

In simpler terms, the angular position of a point on the rim of a rotating wheel can be defined as the angle that the line connecting that point to the center of the wheel makes with a fixed reference line on the axis of the wheel. This angle is measured in radians, and it increases as the wheel rotates.

It's worth noting that this angular position is not to be confused with the linear position of the point on the rim. The linear position is given by the distance from the point to the center of the wheel, and it varies as the wheel rotates. However, the angular position remains constant as long as the wheel rotates at a constant angular velocity.

To know more about angular position, visit:

https://brainly.com/question/31604955

#SPJ11

Consider a motor that exerts a constant torque of 25. 0 n⋅m to a horizontal platform whose moment of inertia is 50. 0 kg⋅m2. Assume that the platform is initially at rest and the torque is applied for 12. 0 rotations. Neglect friction

Answers

The angular velocity of the motor after 12 rotations is 12.96 rad/s. The formula to find the angular velocity of the motor is given by ω² - ω₀² = 2αθ.

Given, Torque, T = 25 Nm, Moment of inertia, I = 50 kg m², Number of rotations, n = 12In order to find the angular velocity of the motor, use the formula:

τ = Iα where α is the angular acceleration

Let a be the angular acceleration, then,

25 = 50 × aa

= 25/50a

= 0.5 rad/s²

Now, the formula to find the angular velocity of the motor is given byω² - ω₀² = 2αθ

Where ω is the final angular velocity, ω₀ is the initial angular velocity, θ is the angle traversed

ω₀ = 0 (Initial velocity is 0)

θ = 2πn

= 24π radω² - 0²

= 2 × 0.5 × 24πω

= √(24π) rad/s

Therefore, the angular velocity of the motor after 12 rotations is 12.96 rad/s.

To know more about angular velocity, refer

https://brainly.com/question/29566139

#SPJ11

Label reactants and products
Energy (from Sun) + 6CO2 + 6H2O → 6O2 + C6H12O6

Answers

The given chemical reaction represents photosynthesis, which is the process of converting light energy into chemical energy. The reactants of this reaction are energy from the sun, six carbon dioxide molecules, and six water molecules. These reactants undergo a complex series of reactions that ultimately result in the production of oxygen gas and glucose.

The energy from the sun is absorbed by pigments in the chloroplasts of plant cells, including chlorophyll. This energy is used to power a series of redox reactions, during which the carbon dioxide is reduced to form glucose.

The oxygen gas produced during photosynthesis is a byproduct of the oxidation of water, which is split into hydrogen ions and oxygen molecules. This process, known as photolysis, requires energy from the sun.

The glucose produced during photosynthesis is an important source of energy for the plant. It is used in cellular respiration to produce ATP, which is used to power the metabolic processes of the cell. Overall, photosynthesis is a complex and essential process that plays a critical role in the biosphere.

For more such questions on, click on:

https://brainly.com/question/19160081

#SPJ8

A coil 3.75 cm radius, containing 470 turns, is placed in a uniform magnetic field that varies with time according to B =( 1.20×10-2 T/s)t+(2.50×10-5 T/s4 )t4. The coil is connected to a 520- resistor, and its plane is perpendicular to the magnetic field. You can ignore the resistance of the coil. Part A Find the magnitude of the induced emf in the coil as a function of time. E = 7.93×10-³ V +(6.61×10¯5 V/s³ )t³ ε =2.49×10-2 V +(5.19×10-5 V/s³ )t³ ε =2.49×10-² V +(2.08×10-4 V/s³ )t³ E = 7.93×10-3 V +(2.08×10-4 V/s³ )t³ Previous Answers Part B What is the current in the resistor at time to = 4.70 s? VE ΑΣΦ ? I = Submit Correct A
Previous question

Answers

Part A: The magnitude of the induced emf in the coil as a function of time is given by ε = 7.93 × 10-3 V + (2.08 × 10-4 V/s³)t³.

Part B: The current in the resistor at time t = 4.70 s is 3.93 × 10-5 A.

Induced emf, ε = - N( dφ/ dt) The change in  glamorous  flux, dφ/ dt =  B( dA/ dt), where A is the coil's area in the  glamorous field.The area of the coil in the  glamorous  field is A =  r2 at any point in time.  
Because the coil's aeroplane is  vertical to the  glamorous  field, the angle between the  glamorous  field and the coil's aeroplane is 90 °.  

Thus, dA/ dt =  0.

Substituting d/ dt and B into the equation for  convinced emf yields = - N( d/ dt) = - N( BdA/ dt) = - Nr2( dB/ dt), where N is the number of turns in the coil and r is the compass of the coil.   Substituting the values given for N and r into the below equation yields:

ε = -( 470)( π)(0.0375 m) 2((1.20 × 10- 2 T/ s)(2.50 × 10- 5 T/ s4)( 4t3))

  = 7.93 × 10- 3 V(2.08 × 10- 4 V/ s3) t ³.

Thus, the magnitude of the  convinced emf in the coil as a function of time is given by

ε = 7.93 × 10- 3 V(2.08 × 10- 4 V/ s ³) t ³.  

Part B Ohm's law gives the current in the resistor at time t = 4.70 s as I = /R.

Substituting I = (2.49 10- 2 V5.19 10- 5 V/ s3(4.70 s) 3)/ 520

                      = 3.93 10- 5 A( to three significant  numbers)

for the value of at t = 4.70 s( as determined in  element A).

As a result, at time t = 4.70 s, the current in the resistor is 3.93 x 10^-5A.

For more such questions on emf, click on:

https://brainly.com/question/13744192

#SPJ8

III. (10 marks) When working between 227 °C and 127°C Carnot engine, each cycle absorbs heat from the high temperature heat source 2.5 X 105 J, try to find: (1) How much work does it do? (2) What is

Answers

The Carnot engine does 2.0 × 10⁴ J of work and has an efficiency of 20%.

To find the work done by the Carnot engine, we can use the formula for the efficiency of a Carnot engine: η = 1 - (Tc/Th), where Tc and Th are the absolute temperatures of the cold and hot reservoirs, respectively.

Given that the temperature of the hot reservoir is 227°C = 227 + 273 = 500 K, and the temperature of the cold reservoir is 127°C = 127 + 273 = 400 K, we can calculate the efficiency as follows:

η = 1 - (400 K/500 K) = 1 - 0.8 = 0.2

The efficiency of the engine is 20%. Since efficiency is defined as the ratio of work output to heat input, we can calculate the work done by the engine by multiplying the efficiency by the heat input:

Work = Efficiency × Heat input = 0.2 × 2.5 × 10⁵ J = 2.0 × 10⁴ J

Therefore, the Carnot engine does 2.0 × 10⁴ J of work.

The efficiency of the Carnot engine is given by the formula: η = 1 - (Tc/Th), where Tc and Th are the absolute temperatures of the cold and hot reservoirs, respectively.

Using the temperatures mentioned earlier (Tc = 400 K and Th = 500 K), we can calculate the efficiency as follows:

η = 1 - (400 K/500 K) = 1 - 0.8 = 0.2

The efficiency of the engine is 20%, or 0.2.

To know more about  Carnot engine, refer here:

https://brainly.com/question/13161769#

#SPJ11

Complete question:

When working between 227 °C and 127°C Carnot engine, each cycle absorbs heat from the high temperature heat source 2.5 X 105 J, try to find: (1) How much work does it do? (2) What is the efficiency of the engine?

4 The position of a toy helicopter of mass 9.4 kg is given by a function, fit)-(7.8 m/s (2.9 m/s (4.7 m/k Calculate the velocity of the helicopter in terms of i. 3, and kin 2.2 seconds (Keep it for no

Answers

The velocity of the toy helicopter at t = 2.2 seconds is 61.764 m/s.

To calculate the velocity of the toy helicopter, to differentiate the position function with respect to time.

Given the position function:

s(t) = 7.8t - 2.9t² + 4.7t³

To find the velocity, we take the derivative of the position function with respect to time (t):

v(t) = d/dt [7.8t - 2.9t² + 4.7t³]

Using the power rule of differentiation:

v(t) = 7.8 - 2(2.9t) + 3(4.7t²)

v(t) = 7.8 - 5.8t + 14.1t²

Now, to find the velocity at a specific time, we substitute t = 2.2 seconds into the velocity function:

v(2.2) = 7.8 - 5.8(2.2) + 14.1(2.2)²

v(2.2) = 7.8 - 12.76 + 14.1(4.84)

v(2.2) = 7.8 - 12.76 + 66.744

v(2.2) = 61.764 m/s

Therefore, the velocity of the toy helicopter at t = 2.2 seconds is 61.764 m/s.

know more about velocity here:

https://brainly.com/question/80295

#SPJ8

what are the direction and magnitude of the force on the particle if it is moving away from the wire?

Answers

The direction and magnitude of the force on a particle moving away from a wire will depend on the electrical charge of the wire, the charge of the particle, and the distance between the two objects.

let's consider a few scenarios that might help illustrate what could happen. First, suppose the wire is negatively charged, and the particle is positively charged. If the particle is moving away from the wire, the force on the particle will be directed towards the wire, opposite the direction of motion.

                                       The magnitude of this force will depend on the distance between the wire and the particle, as well as the charges on each object and the strength of the electric field. If the particle is moving towards the wire, the force on the particle will be directed towards the wire, in the direction of motion.

                                       Again, the magnitude of the force will depend on the distance between the wire and the particle, as well as the charges on each object and the strength of the electric field. Overall, the direction and magnitude of the force on a particle moving away from a wire will depend on the electrical charge of the wire, the charge of the particle, and the distance between the two objects.

Learn more about direction of motion.

brainly.com/question/14636041

#SPJ11

A particale's velocity function is given by V=3t³+5t²-6 with X in meter/second and t in second Find the velocity at t=2s
A particale's velocity function is given by V=3t³+5t²-6 with X in meter/se

Answers

The velocity of the particle at t=2s is 38 m/s.

The velocity function of the particle is given by V = 3t³ + 5t² - 6, where V represents the velocity in meters per second (m/s), and t represents time in seconds (s). This equation is a polynomial function that describes how the velocity of the particle changes over time.

The velocity function of the particle is V = 3t³ + 5t² - 6, we need to find the velocity at t=2s.

Substituting t=2 into the velocity function, we have:

V = 3(2)³ + 5(2)² - 6

V = 3(8) + 5(4) - 6

V = 24 + 20 - 6

V = 38 m/s

It's important to note that the velocity of the particle can be positive or negative depending on the direction of motion. In this case, since we are given the velocity function without any information about the initial conditions or the direction, we can interpret the velocity as a magnitude. Thus, at t=2s, the particle has a velocity of 38 m/s, regardless of its direction of motion.

learn more about Velocity here:

https://brainly.com/question/14236800

#SPJ11

describe the transformation g of shown to the right as a stretch and as a compression. then write two equations to represent the function. what can you conclude? explain.

Answers

A stretch is a transformation that expands an object. It alters the size of the original shape, but it does not change its orientation. A compression is a transformation that shrinks an object. It also alters the size of the original shape without affecting its orientation. The equations that represent the function are f(x) = 1.5x and g(x) = 0.67x. The given transformation stretches the image horizontally by a factor of 1.5 and compresses the image vertically by a factor of 0.67.

We may define the transformation g as a stretch by considering how the horizontal and vertical dimensions are affected. The horizontal coordinates are stretched by a factor of 1.5, which means that the image is 1.5 times bigger than the original. The vertical coordinates, on the other hand, are compressed by a factor of 0.67, which means that the image is 0.67 times smaller than the original.

To represent the function using equations, we can use the formula y = kx, where k is the stretch or compression factor. For the horizontal stretch, the equation is

f(x) = 1.5x,

since the horizontal dimension is stretched by a factor of 1.5. For the vertical compression, the equation is

g(x) = 0.67x,

since the vertical dimension is compressed by a factor of 0.67.

In conclusion, we can say that the transformation g stretches the image horizontally by a factor of 1.5 and compresses it vertically by a factor of 0.67. The equations that represent the transformation are f(x) = 1.5x and g(x) = 0.67x. The stretch and compression factors are found by dividing the length of the transformed shape by the length of the original shape.

To know more about compression, visit:

https://brainly.com/question/22170796

#SPJ11

A 6700-kg boxcar traveling at 16 m/s strikes a second boxcar at rest. The two stick together and move off with a speed of 6.5 m/s . What is the mass of the second car?

Answers

To solve this problem, we can apply the principle of conservation of momentum, which states that the total momentum before the collision is equal to the total momentum after the collision.

The momentum of the first boxcar (m1) is given by: P1 = m1 * v1, where v1 is the velocity of the first boxcar.

The momentum of the second boxcar (m2) is initially at rest: P2 = 0.The two boxcars stick together and move off with a common velocity of v3.

The total momentum after the collision is: P3 = (m1 + m2) * v3.

To know more about collision visit :

https://brainly.com/question/13138178

#SPJ11

A monochromatic light source moves through a double slit apparatus and produces a diffraction pattern. The following data is observed: n=1 x = 0.0645 m /= 0.545 m d = 2.24 x 10 m Calculate theta. O a. 7° O b. 83⁰ OC. 0.0002 O d. 0.86

Answers

The value of theta is approximately a)7°. The calculation involves using the distance from the central maximum to the observed point (x), the distance between the slits (d), the order of the fringe (n), and the wavelength of the light (lambda).

In a double slit apparatus, when a monochromatic light source passes through the slits, it produces a diffraction pattern. The parameter "theta" represents the angle of deviation of the diffraction pattern.

To calculate theta, we can use the formula:

theta = (x / d) / (n * lambda)

Where:

x is the distance from the central maximum to the observed point (0.0645 m),

d is the distance between the slits (2.24 x 10^-3 m),

n is the order of the fringe (1),

lambda is the wavelength of the light.

Since the wavelength (lambda) is not given, we cannot calculate the exact value of theta. However, we can determine the relative angle based on the given options.

Based on the given information, the value of theta is approximately 7°. The calculation involves using the distance from the central maximum to the observed point (x), the distance between the slits (d), the order of the fringe (n), and the wavelength of the light (lambda). However, since the wavelength is not provided, we can only determine the relative angle from the given options.

To know more about wavelength visit:

https://brainly.com/question/10728818

#SPJ11

A 60 kg astronaut in a full space suit (mass of 130 kg) presses down on a panel on the outside of her spacecraft with a force of 10 N for 1 second. The spaceship has a radius of 3 m and mass of 91000 kg. Unfortunately, the astronaut forgot to tie herself to the spacecraft. (a) What velocity does the push result in for the astronaut, who is initially at rest? Be sure to state any assumptions you might make in your calculation.(b) Is the astronaut going to remain gravitationally bound to the spaceship or does the astronaut escape from the ship? Explain with a calculation.(c) The quick-thinking astronaut has a toolbelt with total mass of 5 kg and decides on a plan to throw the toolbelt so that she can stop herself floating away. In what direction should the astronaut throw the belt to most easily stop moving and with what speed must the astronaut throw it to reduce her speed to 0? Be sure to explain why the method you used is valid.(d) If the drifting astronaut has nothing to throw, she could catch something thrown to her by another astronaut on the spacecraft and then she could throw that same object.Explain whether the drifting astronaut can stop if she throws the object at the same throwing speed as the other astronaut.

Answers

a. Push does not result in any initial velocity for the astronaut .b. The astronaut will not remain gravitationally bound to the spaceship. c. To stop herself from floating away, the astronaut can use the principle of conservation of momentum again.  

(a) To determine the velocity acquired by the astronaut, we can use the principle of conservation of momentum. Since no external forces are acting on the system (astronaut + spacecraft), the total momentum before and after the push must be equal.

Let's assume the positive direction is defined as the direction in which the astronaut pushes the panel. The initial momentum of the system is zero since both the astronaut and the spacecraft are at rest.

Initial momentum = Final momentum

0 = (mass of astronaut) * (initial velocity of astronaut) + (mass of spacecraft) * (initial velocity of spacecraft)

Since the astronaut is initially at rest, the equation becomes:

0 = (mass of astronaut) * 0 + (mass of spacecraft) * (initial velocity of spacecraft)

Solving for the initial velocity of the spacecraft:

(initial velocity of spacecraft) = -[(mass of astronaut) / (mass of spacecraft)] * 0

However, the mass of the astronaut is given as 60 kg and the mass of the space suit is given as 130 kg. We need to use the total mass of the astronaut in this case, which is 60 kg + 130 kg = 190 kg.

(initial velocity of spacecraft) = -[(190 kg) / (91000 kg)] * 0

The negative sign indicates that the spacecraft moves in the opposite direction of the push.

Therefore, the push does not result in any initial velocity for the astronaut.

(b) The astronaut will not remain gravitationally bound to the spaceship. In this scenario, the only force acting on the astronaut is the gravitational force between the astronaut and the spacecraft. The force of gravity is given by Newton's law of universal gravitation:

F_ gravity = (G * m1 * m2) / r^2

Where:

F_ gravity is the force of gravity

G is the gravitational constant

m1 is the mass of the astronaut

m2 is the mass of the spacecraft

r is the distance between the astronaut and the spacecraft (the radius of the spaceship in this case)

Using the given values:

F_ gravity = (6.67430 x 10^-11 N m^2/kg^2) * (60 kg) * (91000 kg) / (3 m)^2

Calculating the force of gravity, we find that it is approximately 3.022 N.

The force applied by the astronaut (10 N) is greater than the force of gravity (3.022 N), indicating that the astronaut will escape from the ship. The astronaut's push is strong enough to overcome the gravitational attraction.

(c) To stop herself from floating away, the astronaut can use the principle of conservation of momentum again. By throwing the toolbelt, the astronaut imparts a backward momentum to it, causing herself to move forward with an equal but opposite momentum, ultimately reducing her speed to zero.

Let's assume the positive direction is defined as the direction opposite to the astronaut's initial motion.

The momentum before throwing the toolbelt is zero since the astronaut is initially drifting with a certain velocity.

Initial momentum = Final momentum

0 = (mass of astronaut) * (initial velocity of astronaut) + (mass of toolbelt) * (initial velocity of toolbelt)

Since we want the astronaut to reduce her speed to zero, the equation becomes:

0 = (mass of astronaut) * (initial velocity of astronaut) + (mass of toolbelt) * (initial velocity of toolbelt)

The direction of the initial velocity of the toolbelt should be opposite to the astronaut's initial motion, while its magnitude should be such that the astronaut's total momentum becomes zero.

Therefore, to stop moving, the astronaut should throw the toolbelt in the direction opposite to her initial motion with a velocity equal to her own initial.

To know more about momentum visit:

https://brainly.com/question/1042017

#SPJ11

in δxyz, ∠y=90° and ∠x=26°. ∠zwy=79° and xw=810. find the length of zy to the nearest integer.

Answers

The length of zy to the nearest integer is 681 units.

In a right triangle, the sum of the remaining two angles is 90°.∠x = 26°, ∠y = 90°. So, ∠z = 90° - 26° = 64°. In Δxwz, using the sine rule, we get: `wz/sin(64°) = xw/sin(26°)`. On substituting the value of xw = 810 units, we get: wz/sin(64°) = 810/sin(26°)

=> wz = `810 * sin(64°)/sin(26°)`

= 743 units (approx).

In Δzyw, using the sine rule, we get:

`zy/sin(79°) = wz/sin(27°)`.

On substituting the value of wz = 743 units, we get:

zy/sin(79°) = 743/sin(27°)

=> zy = `743 * sin(79°)/sin(27°)`

= 681 units (approx).

Therefore, the length of zy to the nearest integer is 681 units.

Learn more about sine rule here:

https://brainly.com/question/30701746

#SPJ11

.A flywheel with a radius of 0.300m starts from rest and accelerates with a constant angular acceleration of 0.900rad/s2 .
A) Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. (Answers are 0.21,0,0.21 m/s^2)
B) Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0?
C) Compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 120?.

Answers

A) The magnitude of the tangential acceleration, radial acceleration, and resultant acceleration of a point on the rim at the start are all 0.21 m/s^2.

B) The magnitude of the tangential acceleration at 60.0° can be calculated using the formula: tangential acceleration = radius × angular acceleration. The radial acceleration is 0 since the point is on the rim. The resultant acceleration can be found by using the Pythagorean theorem with tangential and radial accelerations.

C) Similar to part B, the tangential acceleration at 120° can be calculated. The radial acceleration remains 0. The resultant acceleration can be obtained using the Pythagorean theorem.

A) At the start, the tangential acceleration is given by the formula: tangential acceleration = radius × angular acceleration. Since the radius is 0.300 m and the angular acceleration is 0.900 rad/s^2, the tangential acceleration is 0.300 × 0.900 = 0.270 m/s^2. The radial acceleration is 0 since the point is on the rim. The resultant acceleration is the same as the tangential acceleration since there is no radial acceleration. Therefore, the magnitude of the tangential acceleration, radial acceleration, and resultant acceleration at the start is 0.270 m/s^2.

B) To find the tangential acceleration at 60.0°, we use the same formula as in part A. The angle in radians is 60.0° × (π/180) = 1.047 radians. The tangential acceleration is 0.300 × 0.900 = 0.270 m/s^2. The radial acceleration remains 0. The resultant acceleration can be found by using the Pythagorean theorem: resultant acceleration = √(tangential acceleration^2 + radial acceleration^2) = √(0.270^2 + 0^2) = 0.270 m/s^2.

C) Similar to part B, we find the tangential acceleration at 120°. The angle in radians is 120° × (π/180) = 2.094 radians. The tangential acceleration is 0.300 × 0.900 = 0.270 m/s^2. The radial acceleration remains 0. The resultant acceleration is obtained using the Pythagorean theorem: resultant acceleration = √(tangential acceleration^2 + radial acceleration^2) = √(0.270^2 + 0^2) = 0.270 m/s^2.

For more questions like Magnitude click the link below:

https://brainly.com/question/14452091

#SPJ11

is the concentration gradeint is higher, is osmis rate faster

Answers

If the concentration gradient is lower, then the osmosis rate is likely to be slower. This is because there is less of a driving force for the particles to move through the membrane.

The concentration gradient refers to the process whereby the concentration of particles in a given area decreases over time. Osmosis rate is a term that refers to the rate at which particles move through a given membrane.The concentration gradient is the term used to describe the rate at which particles move through a given membrane. As the concentration gradient increases, so too does the rate at which particles move through the membrane. This is because the concentration gradient provides an impetus for particles to move from an area of higher concentration to an area of lower concentration. The osmosis rate is affected by a number of different factors, including the size and nature of the particles being transported, the temperature of the membrane, and the overall concentration of particles in the membrane. If the concentration gradient is higher, then the osmosis rate is likely to be faster. This is because there is a greater driving force for the particles to move through the membrane when the concentration gradient is higher. Conversely, if the concentration gradient is lower, then the osmosis rate is likely to be slower. This is because there is less of a driving force for the particles to move through the membrane.

To know more about osmosis visit :

brainly.com/question/31028904

#SPJ11

determine the torque applied on the bolt by f5 in terms of the variables and angles given in the problem.

Answers

The overestimated distance traveled between t=0 and t=5 is 158 meters.

To estimate the distance traveled, we can use the trapezoidal rule to approximate the area under the curve of the velocity function v(t). The trapezoidal rule divides the interval [0, 5] into subintervals with a width of 1 second and approximates each subinterval as a trapezoid. The formula for the trapezoidal rule is ∫[a,b] f(x) dx ≈ ∑[(i=1 to n)] [f(x_i-1) + f(x_i)] * Δx / 2, where Δx is the width of each subinterval.

Using this formula, we can calculate the overestimated distance traveled:

s ≈ [f(0) + 2f(1) + 2f(2) + 2f(3) + 2f(4) + f(5)] * Δt / 2

≈ [0 + 2(1^2 + 6) + 2(2^2 + 6) + 2(3^2 + 6) + 2(4^2 + 6) + (5^2 + 6)] * 1 / 2

≈ 158 meters.

This provides an overestimate of the distance traveled between t=0 and t=5.

For more questions like Velocity click the link below:

https://brainly.com/question/30559316

#SPJ11

Other Questions
according to the jewish religion, how should man best serve god? Nane and discuss 4 of the critical policies andregulations guiding the safety in the maritime industry. Question 1 Assume the value of exports of Philippines is 1 billion $, also assume citizens of Philippines working outside of Philippines are sending 1 billion $ to the Philippines, while the foreigners working in the Philippines sending 0.5 billion $. Also, assume foreigners in the Philippines own several factories, and natural resources in the Philippines, the value of all natural resources and factories owned is 200 billion $, and 1.5 billion $ flows out of the Philippines as the revenue as profit earned by foreign companies that are owning natural resources and factories in the Philippines. Also assume none of the companies owned by citizens of the Philippines, own natural resources or factory in any foreign country. Assume the Philippines has 2 billion $ current account deficit. Answer the questions accordingly. a) What is the value of imports of the Philippines? b) Assume the government of the Philippines is aiming to close its current account deficit. Assume in order to achieve this purpose, the government will encourage the citizens of the Philippines working outside of the country to send 0.5 billion $ more money. Also, assume as a result of government policies value of exports become exactly equal to the value of imports. What will be the decrease in the current account deficit as a result of these policies? c) Assume the government of Philippines nationalized all foreign-owned natural resources and factories in 2001. How would this affect the financial account in 2001? How would this affect the current account in 2002, if all other elements of current account remain exactly as it is stated in the question? In how many ways can we select a committee of four Republicans, three Democrats, and two Independents from a group of 10 distinct Republicans, 12 distinct Democrats, and four distinct Independents? In the Maryland Lotto game, to win the grand prize the contestant must match six distinct numbers 1 through 49 randomly drawn by a lottery representative. What is the probability of choosing the winning numbers? Suppose you computed the profit per surgery for each of 300 patients who underwent hip replacement surgery at your hospital. Profit per surgery is approximately normally distributed and the mean and standard error of profit per surgery in this sample are $175 and $51, respectively. Recall that the 95th percentile of the standard normal distribution is 1.65 and the 97.5th percentile of the standard normal distribution is 1.96. The lower bound of the 95% confidence interval of profit per surgery is (in dollars) (Truncate to whole dollars.) Save & Continue Waterway Industries has a materials price standard of $2.00 per pound. 4900 pounds of materials were purchased at $2.20 a pound. The actual quantity of materials used was 4900 pounds, although the standard quantity allowed for the output was 4300 pounds. Waterway Industries's total materials variance is O $2180 F. O $2180 U. O $2300 F. O $2300 U. A company has had EPS of $5 over the last year and expects its earnings to grow at a constant rate of 3%. Your required rate of return for this company is 12%. If the company retains 60% of its earnings for growth and pays out the rest as dividends, what is the value of the stock today? Enter your answer to two decimals with no $ sign. lamin/o- (lamin/ectomy; lamin/ent) means: 25) Find the measure of the side MN.A) 17.1B) 18.1C) 19.1 Question 8 Select the best answer choice. Jesse bought a new car. Jesse took the car in to the dealer and asked for new sub- woofers, a new spoiler, and seat covers for an additional fee.Are the additional add-ons at the dealership considered a sale of goods? No, these are add-ons to his original good purchased. No, be did not sign a contract asking for add-ons at the time of the car purchase, Yes, he had the work completed at the same dealership, Yes, in this transaction, the sale of goods predominates the predominant style of european churches prior to gothic was: A restaurant located in an office building decides to adopt a new strategy for attracting customers to the restaurant. Every week it advertises in the city newspaper. To assess how well the advertising is working, the restaurant owner recorded the weekly gross sales for the 15 weeks after the campaign began and the weekly gross sales for the 24 weeks immediately prior to the campaign.Can the restaurateur conclude that the advertising campaign is successful? In the process of subduction, the subducting plate is always: a) Continental b) Oceanic c) It depends on the type of plate boundary keisha is making a copy of the story of a battle. she wants to make a frame for the painting from a long strip of wood. how long should the strip be? use the table for reference and explain your work. Write the Java program to display the following output:Hello WorldMy name is Maximus Decimus Meridius, commander of the Armies of the North.side note: putting "My name is Maximus" in bold. two parallel lines are crossed by a is the value of k?k = 9 k = 20k = 60k = 71 Qn.1 How is the "Function of management" relevant to the importance of organisational success? with more than 400 wordsQn.,2 What are the most significant elements relating to Function of management? with more than 500 words and a creative answer please Ethics and Business: Answer the following questions with a minimum one paragraph answer per question:1. Shaw and Barry distinguish two different forms of utilitarianism. What are these two forms. Briefly describe each and use examples.2. What do economists mean by the "declining marginal utility of money"?3. Robert Nozick presents his entitlement theory as a function of three basic principles. What are these three basic principles? What ethical theory are these principles most closely aligned with?4. Two main features of John Rawls's theory of distributive justice are particularly important. What are these two features? Describe them.5. What is the MAXIMIN rule for making decisions?6. What is the role of the "veil of ignorance" in Rawls' theory of distributive justice?7. According to Shaw and Barry, deciding what sort of economic arrangements would best promote human happiness requires the utilitarian to consider many things. What are the five considerations mentioned by Shaw and Barry? based on the scenario on pagBased on the scenario on page 1, what part of the business cycle is the economy in? (Unit 2/Lesson 2, 1.1.8, Page 2)a) Expansionb) Peakc) Contractiond) Trough The two primary factors determining monopoly market power are the firm's ____.A. revenues and size of its customer baseB. variable cost curve and its fixed cost structureC. demand curve and its cost structureD. demand curve and level of wealth within its market