A circuit has a 42.3 pF capacitor, a 59.6 pF capacitor and a
69.4 pF capacitor in parallel with each other. What is the
equivalent capacitance (in pico-Farads) of these three
capacitors?

Answers

Answer 1

The equivalent capacitance of three capacitors in parallel is 171.3 pF.

The equivalent capacitance of three capacitors in parallel is the sum of the individual capacitances. Here, we have three capacitors of capacitance 42.3 pF, 59.6 pF, and 69.4 pF, which are in parallel to each other. Thus, the total capacitance is the sum of these three values as follows;

Total capacitance = 42.3 pF + 59.6 pF + 69.4 pF = 171.3 pF Therefore, the equivalent capacitance of these three capacitors is 171.3 pico-Farads. Another way to represent the total capacitance of capacitors in parallel is by using the formula shown below. Here, C1, C2, C3,....Cn represents the capacitance of capacitors that are connected in parallel. C = C1 + C2 + C3 + .......Cn .

Thus, in the present problem, substituting the values of the three capacitors, we get, C = 42.3 pF + 59.6 pF + 69.4 pF = 171.3 pF.

To know more about capacitance visit

https://brainly.com/question/13200919

#SPJ11


Related Questions

A coin is tossed vertically up in the air. It first rises and then falls. As the coin passes through its highest point the net force on it (a) becomes zero. (b) acts downwards and reaches a maximum value. (c) acts downwards and reaches a minimum value. (d) acts downwards and remains constant ___________

Answers

As the coin falls downwards, its velocity increases due to the gravitational force. The net force acting downwards on the coin increases as it falls down.

As the coin passes through its highest point the net force on it becomes zero. The given statement is True.

Net force can be defined as the resultant force acting on an object. It is the difference between the force that acts in a forward direction and the force that acts in a backward direction on an object.

When a coin is thrown upwards, it reaches a certain height and then falls down on the ground. The gravitational force acts downwards and the force with which the coin was thrown upwards is in an upward direction.

Hence, when the coin is at its highest point, the force acting downwards is equal to the force acting upwards. So, the net force acting on the coin becomes zero as it passes through the highest point.

So, the correct option is (a) becomes zero. When a coin is tossed vertically up in the air, it is thrown with a certain velocity. The force acting in an upward direction on the coin is equal to the force acting downwards on the coin due to the gravitational force.

So, the net force acting on the coin is zero at its highest point. As the coin rises upwards, it loses its velocity due to the gravitational force and eventually stops at its highest point.

The gravitational force acting downwards on the coin remains constant throughout its motion. After reaching its highest point, the coin falls back to the ground due to the gravitational force acting downwards on it.

To know more about gravitational force visit:

https://brainly.com/question/32609171

#SPJ11

In an engine, a piston oscillates with simple harmonic motion so that its position varies
according to the expression, x = 4.00 cos (4t + ϖ/4) where x is in centimeters and t is in
seconds.
(a) At t = 0, find the position of the piston.
(b) At t = 0, find velocity of the piston.
(c) At t = 0, find acceleration of the piston.
(d) Find the period and amplitude of the motion.

Answers

The amplitude of the motion is the maximum displacement of the piston from its equilibrium position. The amplitude of the motion is 4cm.

The position of a piston in an engine is given by the equation, x = 4.00cos(4t + ω/4), where x is in centimeters and t is in seconds.

(a) At t = 0, find the position of the piston.

Substituting t = 0 into the equation for x, we get:

x = 4.00cos(ω/4)

At t = 0, the cosine term simplifies to cos(ω/4) = +√2/2, since cos(0) = 1.

Therefore, the position of the piston at t = 0 is:

x = 4.00 * √2/2 = 2.828 cm

(b) At t = 0, find velocity of the piston.

The velocity of the piston is given by the derivative of the position function with respect to time. Taking the derivative of x with respect to t, we get:

v = dx/dt = -16.00sin(4t + ω/4)

Substituting t = 0 and using the same value of cosine as before, we get:

v = -16.00sin(ω/4)

Since sin(ω/4) = 1/√2, the velocity at t = 0 is:

v = -16.00/√2 = -11.31 cm/s

(c) At t = 0, find acceleration of the piston.

The acceleration of the piston is given by the second derivative of the position function with respect to time. Taking the second derivative of x with respect to t, we get:

a = d^2x/dt^2 = -64.00cos(4t + ω/4)

Substituting t = 0 and using the same value of cosine as before, we get:

a = -64.00cos(ω/4)

Since cos(ω/4) = √2/2, the acceleration at t = 0 is:

a = -64.00 * √2/2 = -45.25 cm/s^2

(d) Find the period and amplitude of the motion.

The period of the motion is the time it takes for the piston to complete one full cycle of motion. The period is given by the formula:

T = 2π/ω

where ω is the angular frequency of the motion. From the given equation, we can see that the angular frequency is 4.

Therefore, the period of the motion is:

T = 2π/4 = π/2 seconds

The amplitude of the motion is the maximum displacement of the piston from its equilibrium position. From the given equation, we can see that the amplitude is 4 cm.

Therefore, the amplitude of the motion is:

A = 4 cm

for more such questions on amplitude

https://brainly.com/question/3613222

#SPJ8

A proton starts moving from rest in an electric field of magnitude 6.5x105 V/m. The field points in the positive
X-direction, and under the influence of the field, the proton moves 0.25 m in that direction.
a. What is the change in the proton's electric potential as a result of the displacement?
b. What is the change in the proton's electric potential energy due to the displacement?
c. What is the speed of the proton after it has moved 0.25 m, beginning from rest?

Answers

The magnitude of electric field that proton is subjected to is 6.5×10^5 V/m. Therefore, electric potential of proton at initial position is E₀ = 0. As proton moves in electric field by a distance d = 0.25 m in the direction of the field, its electric potential changes by an amount ΔV.

Proton, being a charged particle, is subjected to electric field when placed in the vicinity of another charged particle. The electric field exerts force on proton, causing it to move in a certain direction. In this question, proton is placed in an electric field of magnitude 6.5x10^5 V/m that points in positive X-direction. The proton moves 0.25 m in the direction of the field due to the influence of the field.The change in the proton's electric potential as a result of displacement is given by V = E x d, where V is change in the electric potential energy of proton, E is the electric field, and d is the displacement of the proton.

Initially, proton's electric potential is 0, as it is at rest, and as it moves by a distance of 0.25 m, its electric potential changes by an amount ΔV = V - E₀ = E x d = 6.5 x 10⁵ V/m x 0.25 m = 1.6 x 10^5 V. Therefore, change in electric potential of proton is 1.6 x 10^5 V.Using the equation, ΔPE = qΔV, we can calculate the change in electric potential energy of proton. Here, q is the charge of proton which is equal to 1.6 x 10⁻¹⁹ C. Hence, ΔPE = 1.6 x 10⁻¹⁹ C x 1.6 x 10^5 V = 2.56 x 10⁻¹⁴ J.

Therefore, change in electric potential energy of proton is 2.56 x 10⁻¹⁴ J.Finally, using the equation, v = √2KE/m, where KE is kinetic energy and m is mass, we can obtain the speed of proton after it has moved by 0.25 m. As proton starts from rest, KE = 0 initially. Therefore, KE = ΔPE = 2.56 x 10⁻¹⁴ J. Mass of proton is 1.67 x 10⁻²⁷ kg. Using these values, we can calculate the speed of proton which is 5.01 x 10⁶ m/s.

Therefore, the change in the proton's electric potential due to displacement is 1.6 x 10^5 V, and change in the proton's electric potential energy due to displacement is 2.56 x 10⁻¹⁴ J. The speed of proton after moving 0.25 m from rest in electric field of magnitude 6.5 x 10⁵ V/m is 5.01 x 10⁶ m/s.

To know more about magnitude visit:

brainly.com/question/30000439

#SPJ11

Please answer all parts
a Problems (25 pts. Each) 1. A charged insulating cylinder of radius a and infinite length has a uniform charge per unit length 2. It is surrounded by a concentric thick conducting shell of inner radi

Answers

A charged insulating cylinder of radius a and infinite length has a uniform charge per unit length of 2. It is surrounded by a concentric thick conducting shell of inner radius b and outer radius c. The electric field inside the cylinder is zero, and the electric field outside the shell is equal to the electric field of an infinite line charge with charge per unit length of 2.

The electric field inside the cylinder is zero because the charge on the cylinder is uniformly distributed. This means that the electric field lines are parallel to the axis of the cylinder, and there are no electric field lines pointing radially inward or outward.

The electric field outside the shell is equal to the electric field of an infinite line charge with charge per unit length of 2. This is because the shell is a conductor, and the charge on the cylinder is distributed evenly over the surface of the shell. The electric field lines from the cylinder are therefore perpendicular to the surface of the shell, and they extend to infinity in both directions.

Learn more about insulated cylinder here:

brainly.com/question/30749236

#SPJ11

Please answer all parts

a Problems (25 pts. Each) 1. A charged insulating cylinder of radius a and infinite length has a uniform charge per unit length 2. It is surrounded by a concentric thick conducting shell of inner radius

The tungsten filament of a light bulb has a resistance of 8.00 22 when no current flows, and its temperature is 20°C. Esti- mate the filament's temperature when a 1.00-A current flows after a 120-V potential difference is placed across the filament

Answers

The temperature of the tungsten filament is approximately 296.15 K when a 1.00-A current flows through it after a 120-V potential difference is placed across the filament.

Resistance of filament when no current flows,R= 8.00Ω

Temperature, T = 20°C = 293 K

Current flowing in the circuit, I = 1.00 A

Potential difference across the filament, V = 120 V

We can calculate the resistance of the tungsten filament when a current flows through it by using Ohm's law. Ohm's law states that the potential difference across the circuit is directly proportional to the current flowing through it and inversely proportional to the resistance of the circuit. Mathematically, Ohm's law is expressed as:

V = IR Where,

V = Potential difference

I = Current

R = Resistance

The resistance of the filament when the current is flowing can be given as:

R' = V / IR' = 120 / 1.00R' = 120 Ω

We know that the resistance of the filament depends on the temperature. The resistance of the filament increases with an increase in temperature. This is because the increase in temperature causes the electrons to vibrate more rapidly and collide more frequently with the atoms and other electrons in the metal. This increases the resistance of the filament.The temperature coefficient of resistance (α) can be used to relate the change in resistance of a material to the change in temperature. The temperature coefficient of resistance is defined as the fractional change in resistance per degree Celsius or per Kelvin. It is given by:

α = (ΔR / RΔT) Where,

ΔR = Change in resistance

ΔT = Change in temperature

T = Temperature

R = Resistance

The temperature coefficient of tungsten is approximately 4.5 x 10^-3 / K.

Therefore, the resistance of the tungsten filament can be expressed as:

R = R₀ (1 + αΔT)Where,

R₀ = Resistance at 20°C

ΔT = Change in temperature

Substituting the given values, we can write:

120 = I (8 + αΔT)

120 = 8I + αIΔT

αΔT = 120 - 8IαΔT = 120 - 8 (1.00)αΔT = 112Kα = 4.5 x 10^-3 / KΔT = α⁻¹ ΔR / R₀ΔT = (4.5 x 10^-3)^-1 x (112 / 8)

ΔT = 3.15K

Filament temperature:

T' = T + ΔTT' = 293 + 3.15T' = 296.15 K

Therefore, the temperature of the tungsten filament is approximately 296.15 K when a 1.00-A current flows through it after a 120-V potential difference is placed across the filament.

Learn more about tungsten filament https://brainly.com/question/30945041

#SPJ11

solve it in a paper please
2 An object is able to move around a circle of radius 10 meters in 19 seconds. What is the frequency of the object's motion?

Answers

The frequency of the object's motion is 1/19 Hz

Given that an object moves around a circle of radius 10 meters in 19 seconds.

We need to find the frequency of the object's motion.

Formula for the frequency of the object's motion

Frequency of the object's motion is defined as the number of cycles completed by an object in one second. It is denoted by "f" and measured in hertz (Hz).

f = 1/Twhere,T is the time taken by the object to complete one cycle.

We have the radius of the circle, not the diameter or circumference of the circle.

Therefore, we need to find the circumference of the circle using the radius of the circle.

Circumference of the circle = 2πr= 2 x π x 10 = 20π

The object completes one full cycle to come back to its original position after it moves around the circle.

So, the time taken by the object to complete one cycle (T) = 19 seconds

Therefore, the frequency of the object's motion,f = 1/T= 1/19 Hz

Let us know more about motion : https://brainly.com/question/12640444.

#SPJ11

Write a brief explanation (paragraph length) of how changes in
gas pressure relates to your ability to breathe.
List your sources

Answers

Changes in gas pressure have a significant impact on breathing. Gas pressure in the lungs must be maintained at a stable level for proper breathing to occur. The muscles in the diaphragm and ribcage work together to change the volume of the chest cavity. When the chest cavity expands, it causes a decrease in pressure that allows air to be drawn into the lungs.

When the chest cavity shrinks, it causes an increase in pressure that forces air out of the lungs. The gas pressure of oxygen and carbon dioxide in the lungs is directly related to the gas pressure in the environment. When the atmospheric pressure is decreased, as occurs at higher altitudes, the pressure of oxygen in the lungs also decreases, making it more difficult to extract oxygen from the air. This makes breathing more difficult. Conversely, when the atmospheric pressure is increased, as occurs in deep sea diving, the pressure of nitrogen in the body increases. This can cause a condition known as decompression sickness or the bends. Nitrogen bubbles can form in the bloodstream, leading to severe pain, organ damage, and even death.

learn more about decompression

https://brainly.com/question/31458323

#SPJ11

A velocity measurement of an a-particle has been performed with a precision of 0.01 mm/s. What is the minimum uncertainty in its position (Ax)? Hint Ax >|| mm.

Answers

The minimum uncertainty in the position of the α-particle (Ax) is greater than or equal to [tex]1.66 x 10^-31[/tex]m.

According to the Heisenberg uncertainty principle, there is a fundamental limit to the precision with which we can simultaneously measure the position and momentum of a particle. The uncertainty principle states that the product of the uncertainties in position (Δx) and momentum (Δp) must be greater than or equal to a certain value.

In this case, we are given the precision in velocity measurement of the α-particle, which is 0.01 mm/s. To determine the minimum uncertainty in its position (Δx), we can use the following relation:

Δx * Δp ≥ h/4π

where h is the Planck constant.

Since we are given the precision in velocity measurement (Δv), we can approximate it to be equal to the uncertainty in momentum (Δp). Therefore, we have:

Δx * Δv ≥ h/4π

To find the minimum uncertainty in position (Δx), we need to rearrange the equation:

Δx ≥ h/(4π * Δv)

Substituting the values:

Δx ≥ (6.626 x [tex]10^-34[/tex] J*s) / (4π * Δv)

Δx ≥ (6.626 x [tex]10^-34[/tex] J*s) / (4π * 0.01 mm/s)

Δx ≥ (6.626 x[tex]10^-34[/tex]  J*s) / (4π * 0.01 x [tex]10^-3[/tex] m/s)

Δx ≥ 1.66 x [tex]10^-34[/tex] m

To know more about Heisenberg uncertainty refer to-

https://brainly.com/question/30402752

#SPJ11

A real battery has an open circuit voltage of 3 V. When it is attached to a 4 ohms load resistor. you treasure 2.1. V across its. terminals. What is the internal resistance of the battery? Enter a decimal number. your answer must be within 5%, do not worry about significant digits.

Answers

The internal resistance of the battery is approximately equal to the load resistor, which is 4 ohms.

To find the internal resistance of the battery, we can use the concept of voltage division. When the battery is connected to a load resistor, the voltage across the terminals of the battery is equal to the voltage across the load resistor plus the voltage drop across the internal resistance of the battery. Mathematically, this can be expressed as:
V_terminal = V_load + V_internal

Given that the open circuit voltage of the battery is 3 V and the voltage across the terminals is 2.1 V, we can substitute these values into the equation: 2.1 V = 4 Ω * I_load + R_internal * I_load

Since the current flowing through the load resistor (I_load) is the same as the current flowing through the internal resistance (assuming negligible internal resistance of the voltmeter used to measure V_terminal), we can rewrite the equation as: 2.1 V = (4 Ω + R_internal) * I_load

Solving for I_load, we get:

I_load = 2.1 V / (4 Ω + R_internal)

We can rearrange this equation to solve for the internal resistance (R_internal): R_internal = (2.1 V / I_load) - 4 Ω

To determine the internal resistance within 5% accuracy, we need to find the range of values. Let's assume the internal resistance is X:
Lower limit: R_internal - 0.05 * R_internal = 0.95 * R_internal

Upper limit: R_internal + 0.05 * R_internal = 1.05 * R_internal

Substituting the lower and upper limits in the equation:

0.95 * R_internal ≤ (2.1 V / I_load) - 4 Ω ≤ 1.05 * R_internal

Now we can calculate the internal resistance by taking the average of the lower and upper limits:
R_internal ≈ (0.95 * R_internal + 1.05 * R_internal) / 2

Simplifying this equation gives: R_internal ≈ 1 * R_internal

Therefore, the internal resistance of the battery is approximately equal to the load resistor, which is 4 ohms.

To learn more about internal resistance:

https://brainly.com/question/30464619

#SPJ11

Question 6 of 12 < - 71 : View Policies Current Attempt in Progress In the figure, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 25 cm. The currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3, and each wire carries 26 A. What is the magnitude of the net magnetic field at the square's center? Number i Units e Textbook and Media Save for Later Attempts: 0 of 3 used Submit Answer

Answers

Given four long straight wires form a square with an edge length of 25 cm. Each wire carries a current of 26 A. The net magnetic field at the center of the square will be zero.

To find the net magnetic field at the center of the square, we need to consider the contributions from each wire. The magnetic field produced by a long straight wire at a distance r from the wire is given by Ampere's law:

B = (μ₀ * I) / (2πr)

where μ₀ is the permeability of free space (4π x [tex](10)^{-7}[/tex]Tm/A) and I is the current in the wire.

For wires 1 and 4, the magnetic fields at the center of the square due to their currents will cancel out since they have opposite directions.

For wires 2 and 3, the magnetic fields at the center of the square will also cancel out since they have equal magnitudes but opposite directions.

Therefore, the net magnetic field at the center of the square will be zero.

To learn more about magnetic fields visit:

brainly.com/question/18651668

#SPJ11

What resistance R should be connected in series with an inductance L = 197 mH and capacitance C = 15.8 uF for the maximum charge on the capacitor to decay to 95.5% of its initial value in 72.0 cycles?

Answers

A resistance of approximately 2.06 kΩ should be connected in series with the given inductance and capacitance for the maximum charge on the capacitor to decay to 95.5% of its initial value in 72.0 cycles.

To find the resistance R required in series with the given inductance L = 197 mH and capacitance C = 15.8 uF, we can use the formula:

R = -(72.0/f) / (C * ln(0.955))

where f is the frequency of the circuit.

First, let's calculate the time period (T) of one cycle using the formula T = 1/f. Since the frequency is given in cycles per second (Hz), we can convert it to the time period in seconds.

T = 1 / f = 1 / (72.0 cycles) = 1.39... x 10^(-2) s/cycle.

Next, we calculate the angular frequency (ω) using the formula ω = 2πf.

ω = 2πf = 2π / T = 2π / (1.39... x 10^(-2) s/cycle) = 452.39... rad/s.

Now, let's substitute the values into the formula to find R:

R = -(72.0 / (1.39... x 10^(-2) s/cycle)) / (15.8 x 10^(-6) F * ln(0.955))

= -5202.8... / (15.8 x 10^(-6) F * (-0.046...))

≈ 2.06 x 10^(3) Ω.

Therefore, a resistance of approximately 2.06 kΩ should be connected in series with the given inductance and capacitance to achieve a decay of the maximum charge on the capacitor to 95.5% of its initial value in 72.0 cycles.

Learn more about circuit from the given link:

https://brainly.com/question/12608516

#SPJ11

A 50 uF capacitor with an initial energy of 1.4 J is discharged through a 8 MO resistor. What is the initial
charge on the capacitor?

Answers

The initial charge on the capacitor is 2 × 10⁻⁴ Coulombs.

Capacitance of capacitor, C = 50 μF = 50 × 10⁻⁶ F

Initial energy of capacitor, U = 1.4 J

Resistance, R = 8 MΩ = 8 × 10⁶ Ω

As per the formula of the energy stored in a capacitor, the energy of capacitor can be calculated as

U = 1/2 × C × V²......(1)

Where V is the potential difference across the capacitor.

As per the formula of potential difference across a capacitor,

V = Q/C......(2)

Where,Q is the charge on the capacitor

.So, the formula for energy stored in a capacitor can also be written as

U = Q²/2C.......(3)

Using the above equation (3), we can find the charge on the capacitor.

Q = √(2CU)Q = √(2 × 50 × 10⁻⁶ × 1.4)Q = 2 × 10⁻⁴ Coulombs

Therefore, the initial charge on the capacitor is 2 × 10⁻⁴ Coulombs.

Learn more about capacitor https://brainly.com/question/21851402

#SPJ11

A rock is dropped at time t=0 from a bridge. 1 second later a second rock is dropped from the same height. The height h of the bridge is 50-m. How long is the rock in the air before it hits the water surface? 3.8 s 4.9 s 3.25 2.2 s

Answers

The time taken for the first rock to hit the water surface will be 4.19 seconds.

The height of the bridge is 50 m, and two rocks are dropped from it. The time when the second rock was dropped is 1 second after the first rock was dropped. We need to determine the time the first rock takes to hit the water surface.What is the formula for the height of a rock at any given time after it has been dropped?

In this case, we may use the formula for the height of an object dropped from a certain height and falling under the force of gravity: h = (1/2)gt² + v₀t + h₀,where: h₀ = initial height,v₀ = initial velocity (zero in this case),

g = acceleration due to gravityt = time taken,Therefore, the formula becomes h = (1/2)gt² + h₀Plug in the given values:g = 9.8 m/s² (the acceleration due to gravity)h₀ = 50 m (the height of the bridge).

The formula becomes:h = (1/2)gt² + h₀h .

(1/2)gt² + h₀h = 4.9t² + 50.

We need to find the time taken by the rock to hit the water surface. To do so, we must first determine the time taken by the second rock to hit the water surface. When the second rock is dropped from the same height, it starts with zero velocity.

As a result, the formula simplifies to:h = (1/2)gt² + h₀h.

(1/2)gt² + h₀h = 4.9t² + 50.

The height of the second rock is zero. As a result, we get:0 = 4.9t² + 50.

Solve for t:4.9t² = -50t² = -10.204t = ± √(-10.204)Since time cannot be negative, t = √(10.204) .

√(10.204) = 3.19 seconds.

The second rock takes 3.19 seconds to hit the water surface. The first rock is dropped one second before the second rock.

As a result, the time taken for the first rock to hit the water surface will be:Time taken = 3.19 + 1.

3.19 + 1 = 4.19seconds .

Therefore, the  answer is option B, 4.9 seconds. It's because the rock is in the air for a total of 4.19 seconds, which is about 4.9 seconds rounded to the nearest tenth of a second.

The height of the bridge is 50 m, and two rocks are dropped from it. The time when the second rock was dropped is 1 second after the first rock was dropped. We need to determine the time the first rock takes to hit the water surface. The first rock is dropped one second before the second rock. As a result, the time taken for the first rock to hit the water surface will be 4.19 seconds.

To know more about acceleration due to gravity visit:

brainly.com/question/13860566

#SPJ11

Using the work-energy theorem, calculate the work needed to bring a car, moving at 200 mph and having a mass of 1200 kg, to rest. Next, if the car's brakes supply a force of 8600 N resisting the motion, what distance will it take to stop? Hint: convert mph in m/s for the first part and use the other work definition for second part.

Answers

Using the work-energy theorem, the work needed to bring a car, moving at 200 mph, to rest can be calculated by converting the speed to meters per second and using the formula for kinetic energy. Next, the distance required to stop the car can be determined using the work definition involving force and displacement.

To calculate the work needed to bring the car to rest, we first convert the speed from mph to m/s. Since 1 mph is approximately equal to 0.44704 m/s, the speed of the car is 200 mph * 0.44704 m/s = 89.408 m/s.

The kinetic energy of the car can be calculated using the formula KE = (1/2) * m * v^2, where KE is the kinetic energy, m is the mass of the car, and v is its velocity. By substituting the given values (mass = 1200 kg, velocity = 89.408 m/s), we can calculate the kinetic energy.

The work required to bring the car to rest is equal to the initial kinetic energy, as per the work-energy theorem. Therefore, the work needed to stop the car is equal to the calculated kinetic energy.

Next, to determine the distance required to stop the car, we can use the work definition that involves force and displacement. The work done by the brakes is equal to the force applied multiplied by the distance traveled.

Rearranging the equation, we can solve for the distance using the formula distance = work / force. By substituting the values (work = calculated kinetic energy, force = 8600 N), we can determine the distance required to bring the car to a stop.

To learn more about kinetic click here brainly.com/question/999862

#SPJ11

What is the wavefunction for the hydrogen atom that is in a
state with principle quantum number 3, orbital angular momentum 1,
and magnetic quantum number -1.

Answers

The wavefunction for the hydrogen atom with principal quantum number 3, orbital angular momentum 1, and magnetic quantum number -1 is represented by ψ(3, 1, -1) = √(1/48π) × r × e^(-r/3) × Y₁₋₁(θ, φ).

The wavefunction for the hydrogen atom with a principal quantum number (n) of 3, orbital angular momentum (l) of 1, and magnetic quantum number (m) of -1 can be represented by the following expression:

ψ(3, 1, -1) = √(1/48π) × r × e^(-r/3) × Y₁₋₁(θ, φ)

Here, r represents the radial coordinate, Y₁₋₁(θ, φ) is the spherical harmonic function corresponding to the given angular momentum and magnetic quantum numbers, and e is the base of the natural logarithm.

Please note that the wavefunction provided is in a spherical coordinate system, where r represents the radial distance, θ represents the polar angle, and φ represents the azimuthal angle.

Read more on Principal Quantum number here: https://brainly.com/question/14019754

#SPJ11

Pole thrown upward from initial velocity it takes 16s to hit the ground. a. what is the initial velocity of pole? b. What is max height? C. What is velocity when it hits the ground

Answers

Pole thrown upward from initial velocity it takes 16s to hit the ground. (a)The initial velocity of the pole is 78.4 m/s.(b) The maximum height reached by the pole is approximately 629.8 meters.(c)The velocity when the pole hits the ground is approximately -78.4 m/s.

To solve this problem, we can use the equations of motion for objects in free fall.

Given:

Time taken for the pole to hit the ground (t) = 16 s

a) To find the initial velocity of the pole, we can use the equation:

h = ut + (1/2)gt^2

where h is the height, u is the initial velocity, g is the acceleration due to gravity, and t is the time.

At the maximum height, the velocity of the pole is zero. Therefore, we can write:

v = u + gt

Since the final velocity (v) is zero at the maximum height, we can use this equation to find the time it takes for the pole to reach the maximum height.

Using these equations, we can solve the problem step by step:

Step 1: Find the time taken to reach the maximum height.

At the maximum height, the velocity is zero. Using the equation v = u + gt, we have:

0 = u + (-9.8 m/s^2) × t_max

Solving for t_max, we get:

t_max = u / 9.8

Step 2: Find the height reached at the maximum height.

Using the equation h = ut + (1/2)gt^2, and substituting t = t_max/2, we have:

h_max = u(t_max/2) + (1/2)(-9.8 m/s^2)(t_max/2)^2

Simplifying the equation, we get:

h_max = (u^2) / (4 × 9.8)

Step 3: Find the initial velocity of the pole.

Since it takes 16 seconds for the pole to hit the ground, the total time of flight is 2 × t_max. Thus, we have:

16 s = 2 × t_max

Solving for t_max, we get:

t_max = 8 s

Substituting this value into the equation t_max = u / 9.8, we can solve for u:

8 s = u / 9.8

u = 9.8 m/s × 8 s

u = 78.4 m/s

Therefore, the initial velocity of the pole is 78.4 m/s.

b) To find the maximum height, we use the equation derived in Step 2:

h_max = (u^2) / (4 × 9.8)

= (78.4 m/s)^2 / (4 × 9.8 m/s^2)

≈ 629.8 m

Therefore, the maximum height reached by the pole is approximately 629.8 meters.

c) To find the velocity when the pole hits the ground, we know that the initial velocity (u) is 78.4 m/s, and the time taken (t) is 16 s. Using the equation v = u + gt, we have:

v = u + gt

= 78.4 m/s + (-9.8 m/s^2) × 16 s

= 78.4 m/s - 156.8 m/s

≈ -78.4 m/s

The negative sign indicates that the velocity is in the opposite direction of the initial upward motion. Therefore, the velocity when the pole hits the ground is approximately -78.4 m/s.

To learn more about velocity visit: https://brainly.com/question/80295

#SPJ11

You decide to "go green" and use an exercise bike to power your home appliances. Assume that your exercise bike is rigged to generate electrical power with 60% efficiency. In other words, only 6/10 of the power you develop
can be used to store electrical energy for later use. Consider your 3500-Watt central AC unit. You need to run this unit for 4 hours each day during the summer. If you can develop a sustained power of 300 Watts on your exercise bike, how long would you have to work out just to keep the AC
running on a summer day?

Answers

The amount of time required to generate energy on the exercise bike is almost impractical, and other sources of energy should be considered.

Let's start with calculating the amount of energy that the AC unit consumes in a day.

Power = Voltage x Current

The power consumption of the AC unit is 3500 Watts.

Time = Power / Voltage x Current (Ohm's Law)

Assuming that your home uses 120 volts AC, the amount of current needed is as follows:

Current = Power / Voltage

= 3500 W / 120 V

= 29.16 A.

The time required to operate the AC unit for four hours per day is:

Time = Power / Voltage x Current

= 3500 W x 4 hr / 120 V x 29.16 A

= 12 hours.

Now, if you can generate a consistent power of 300 watts on the exercise bike, the amount of time you'd need to work out each day to keep the AC unit running for four hours would be:

Time required for the exercise bike = Time for AC Unit x (Power required by AC unit / Power generated by exercise bike)

Time required for the exercise bike = 4 hours x (3500 W / 300 W)

Time required for the exercise bike = 46.7 hours.

Using an exercise bike to generate electricity is a great idea, but it would be difficult to generate enough energy to keep large home appliances running, such as a central AC unit.

In this case, the amount of time required to generate energy on the exercise bike is almost impractical, and other sources of energy should be considered.

To learn more about energy visit;

https://brainly.com/question/1932868

#SPJ11

QUESTION 2 An ideal paratiet plate capacitor with a cross-sectional area of 0.4 cm² contains a dielectric with a dielectric constant of 4 and a dielectric strength of 2x 10 V/m The separation between the plates of the capacitor is 5 mm What is the maximum electric charge in nC) that can be stored in the capacitor before dielectric breakdown?

Answers

The maximum electric charge that can be stored in the capacitor before dielectric breakdown An ideal parallel plate capacitor is an arrangement of two conductive plates separated by a dielectric material.

When charged, the plates store the electrical charge that can be used in different applications. The charge stored by a capacitor is proportional to the capacitance and voltage, i.e., Q = CV, where Q is the charge, C is the capacitance, and V is the voltage. The capacitance of an ideal parallel plate capacitor is given by the formula: C = εA/d where C is capacitance, ε is the permittivity of the dielectric.

A is the surface area of the plates, and d is the distance between the plates. Given, The surface area of the capacitor, A = 0.4 cm² The dielectric constant of the dielectric material, k = 4The dielectric strength of the dielectric material, E = 2 × 10⁶ V/m The separation between the plates of the capacitor, d = 5 mm = 0.5 cm The permittivity of the dielectric material can be calculated.

as follows:ε = ε₀kwhere ε₀ = 8.854 × 10⁻¹² F/m

The capacitance of the capacitor can be calculated

as follows: C = εA/d= 3.5416 × 10⁻¹² × 0.4 × 10⁻⁴ / 0.5 × 10⁻²= 0.002832 F

as follows: Q = CV= 0.002832 × 1000 (V/m) × 2 × 10⁶ (V/m)= 5.664 × 10⁻³ C = 5.664 nC

the maximum electric charge that can be stored in the capacitor before dielectric breakdown is 5.664 nC.

To know more about maximum visit:

https://brainly.com/question/30693656

#SPJ11

A force F=1.3 i + 2.7 j N is applied at the point x=3.0m, y=0. Find the torque about (a) the origin and (b) x=-1.3m, y=2.4m. For both parts of the problem, include a sketch showing the location of the axis of rotation, the position vector from the axis of rotation to the point of application of the force, and the force vector?

Answers

The torque about the origin is [tex]\(-8.1\hat{k}\)[/tex].

The torque about x=-1.3m, y=2.4m is [tex]\(-11.04\hat{k}\)[/tex].

To find the torque about a point, we can use the formula:

[tex]\[ \text{Torque} = \text{Force} \times \text{Lever Arm} \][/tex]

where the force is the applied force vector and the lever arm is the position vector from the axis of rotation to the point of application of the force.

(a) Torque about the origin:

The position vector from the origin to the point of application of the force is given by [tex]\(\vec{r} = 3.0\hat{i} + 0\hat{j}\)[/tex] (since the point is at x=3.0m, y=0).

The torque about the origin is calculated as:

[tex]\[ \text{Torque} = \vec{F} \times \vec{r} \]\\\\\ \text{Torque} = (1.3\hat{i} + 2.7\hat{j}) \times (3.0\hat{i} + 0\hat{j}) \][/tex]

Expanding the cross product:

[tex]\[ \text{Torque} = 1.3 \times 0 - 2.7 \times 3.0 \hat{k} \]\\\\\ \text{Torque} = -8.1\hat{k} \][/tex]

Therefore, the torque about the origin is [tex]\(-8.1\hat{k}\)[/tex].

(b) Torque about x=-1.3m, y=2.4m:

The position vector from the point (x=-1.3m, y=2.4m) to the point of application of the force is given by [tex]\(\vec{r} = (3.0 + 1.3)\hat{i} + (0 - 2.4)\hat{j} = 4.3\hat{i} - 2.4\hat{j}\)[/tex].

The torque about the point (x=-1.3m, y=2.4m) is calculated as:

[tex]\[ \text{Torque} = \vec{F} \times \vec{r} \]\\\ \text{Torque} = (1.3\hat{i} + 2.7\hat{j}) \times (4.3\hat{i} - 2.4\hat{j}) \][/tex]

Expanding the cross product:

[tex]\[ \text{Torque} = 1.3 \times (-2.4) - 2.7 \times 4.3 \hat{k} \]\\\ \text{Torque} = -11.04\hat{k} \][/tex]

Therefore, the torque about x=-1.3m, y=2.4m is [tex]\(-11.04\hat{k}\)[/tex].

Sketch:

Here is a sketch representing the situation:

The sketch represents the general idea and may not be to scale. The force vector and position vector are shown, and the torque is calculated about the specified points.

Know more about torque:

https://brainly.com/question/30338175

#SPJ4

One penny is given a charge -q while another penny is given a charge +2q When the pennies are brought together and touched, the charges redistribute such that the pennies end up
with equal amounts of charge spread out over their respective surfaces.
(a) What is the final charge on each penny?
(b) Calculate the final charge on each penny if q is 30 uC (30 x 10°C).

Answers

(a) The final charge on each penny is 1/3 q.

When the two pennies having charge -q and +2q are brought together and touched, the charges get redistributed, and the pennies end up with equal amounts of charge spread out over their respective surfaces. The final charge on each penny is 1/3 q.

(b) The final charge on each penny is 15 µC.

q = 30 uC (30 × 10⁻⁶ C)

Initial charge on penny 1, q₁ = -q = -30 × 10⁻⁶ C

Initial charge on penny 2, q₂ = +2q = 2 × 30 × 10⁻⁶ C = 60 × 10⁻⁶ C = 6 × 10⁻⁵ C

Charge when the pennies touch = -q + 2q = q = 30 × 10⁻⁶ C

Charge gets distributed such that each penny has equal amount of charge spread over their respective surfaces, so the final charge on each penny is

q/2 = 30 × 10⁻⁶ / 2 = 15 × 10⁻⁶ C = 15 µC

Thus, the final charge on each penny is 15 µC.

Learn more about charge:

https://brainly.com/question/30236242

#SPJ11

A 37μF capacitor is connected across a programmed power supply. During the interval from t=0 to t=3.00 s the output voltage of the supply is given by V(t)=6.00+4.00t−2.00t 2
volts. At t=0.500 s find (a) the charge on the capacitor, (b) the current into the capacitor, and (c) the power output from the power supply.

Answers

Capacitance C = 37 µF, Voltage supply V(t) = 6.00 + 4.00t - 2.00t² for t = 0 to 3.00 s

(a) Charge on the capacitor

Q = C x Vc Charge is defined as the amount of electric charge stored in a capacitor.

Vc is the voltage across the capacitor. It is equal to V(t) at t = 0.5sVc = V(0.5) = 6 + 4(0.5) - 2(0.5)²= 7 V

Charge on the capacitor = 37 x 10⁻⁶ x 7= 0.2594 mC

(b) Current into the capacitor

I = C dVc/dt

Differentiating V(t) w.r.t t, we get

dV(t)/dt = 4 - 4tI = C

dV(t)/dt = 37 x 10⁻⁶ x (4 - 4t)

At t = 0.5 s, I = 37 x 10⁻⁶  x (4 - 4 x 0.5)= 0.074 A

(c) Power output from the power supply

P = V(t) I= (6 + 4t - 2t²) (37 x 10⁻⁶ x (4 - 4t))At t = 0.5 s,P = (6 + 4(0.5) - 2(0.5)²) (37 x 10⁻⁶ x (4 - 4 x 0.5))= 7 x 0.037 x 0.148= 0.039 W

Learn more about capacitors: https://brainly.com/question/21851402

#SPJ11

9. (1 p) Given F-1.21 + (0))+3.4k and F = (0) + 2.3j- 4.1k, determine the torque vector 7.

Answers

The cross product of two vectors produces a vector that is perpendicular to the two original vectors. In the torque vector 7, the formula for cross-product of two vectors will be used.

Here are the steps to determine the torque vector 7:Step 1: Identify the vectors in the equation[tex]F-1.21 + (0))+3.4kF = (0) + 2.3j- 4.1kStep 2: Using the cross product formula  \[\vec A \times \vec B = \begin{vmatrix}i & j & k \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{vmatrix}\]Where i, j, and k are the unit vectors in the x, y, and z direction, respectively.Across B = B X A; B into A = -A X B = A X (-B)Step 3[/tex]: Plug in the values and perform the computation[tex](1.21i + 3.4k) X (2.3j - 4.1k) =  8.83i - 11.223k[/tex]Answer:Therefore, the torque vector 7 is equal to  8.83i - 11.223k.

To know more about vectors visit:

https://brainly.com/question/24256726

#SPJ11

In one example of nuclear fusion, two deuterium (2H) nuclei fuse to form tritium (³H) and a proton. The rest mass energy of the deuterium is 1875.62 MeV, whereas the rest mass energies for the tritium and the proton are 2808.92 MeV and 938.27 MeV, respectively. (a) What is the energy released in this fusion reaction? MeV (b) What is the mass deficit in this reaction? kg Read It Need Help?

Answers

(a)The energy released in this fusion reaction is calculated using the Einstein's formula which states that energy and mass are interconvertible and the formula is given as:

E = Δm × c² where Δm = the change in mass and c = the speed of light.

The change in mass is calculated as follows:Δm = (mass of reactants) - (mass of products)

We have two reactants: deuterium (2H) and deuterium (2H) and two products:

tritium (³H) and a proton (1H)

Mass of deuterium = 2 × 1.007825 amu= 2.014101 amu= 2.014101 u (u = unified mass unit; 1 u = 1.661 × 10⁻²⁷ kg)Mass of tritium = 3.016049 uMass of proton = 1.007276 uMass of reactants = 2.014101 + 2.014101 = 4.028202 uMass of products = 3.016049 + 1.007276 = 4.023325 uΔm = (4.028202 - 4.023325) u= 0.004877 u= 0.004877 × 1.661 × 10⁻²⁷ kg= 8.095 × 10⁻³⁷ kgE = Δm × c²= 8.095 × 10⁻³⁷ kg × (3 × 10⁸ m/s)²= 7.286 × 10⁻²¹ J= 4.547 MeV

Therefore, the energy released in this fusion reaction is 4.547 MeV.

(b)The mass deficit in this reaction is the difference between the mass of the reactants and the mass of the products. This is already calculated as:

Δm = (mass of reactants) - (mass of products)= (2.014101 + 2.014101) - (3.016049 + 1.007276) u= 0.004877 u= 8.095 × 10⁻³⁷ kg

Therefore, the mass deficit in this reaction is 8.095 × 10⁻³⁷ kg.

To know more about interconvertible visit :

https://brainly.com/question/32509221

#SPJ11

If we had these two vectors. Vector a=2i+3j+4k and vector b=4i+6j+8k ,what would be a unit vector perpendicular to the plane of these two vectors? Is our assumption that these two vectors can be perpendicular to the plane correct? Why or why not?

Answers

To find a unit vector perpendicular to the plane of two vectors, we can calculate their cross product. Let's find the cross product of vector a and vector b.

The cross product of two vectors, a × b, can be calculated as follows:

a × b = (a2b3 - a3b2)i + (a3b1 - a1b3)j + (a1b2 - a2b1)k

Given vector a = 2i + 3j + 4k and vector b = 4i + 6j + 8k, we can compute their cross product:

a × b = ((3 * 8) - (4 * 6))i + ((4 * 4) - (2 * 8))j + ((2 * 6) - (3 * 4))k

a × b = 0i + 0j + 0k

The cross product of vector a and vector b results in a zero vector, which means that the two vectors are parallel or collinear. In this case, since the cross product is zero, vector a and vector b lie in the same plane, and there is no unique vector perpendicular to their plane.

Therefore, the assumption that these two vectors can be perpendicular to the plane is incorrect because the vectors are parallel or collinear, indicating that they lie in the same plane.

Therefore, our assumption that these two vectors can be perpendicular to the plane of these two vectors is incorrect.

To know more about vector perpendicular visit:

https://brainly.com/question/30367796

#SPJ11

please explain if answer is vague so its easier to understand.
especially #25, thank you. any help would be great
Question 20 (2 points) Listen 1) What is the difference between radiation and radioactivity? Radioactivity and radiation are synonymous. Radioactive decays include the release of matter particles, but

Answers

Radioactivity and radiation are not synonymous. Radiation is a process of energy emission, and radioactivity is the property of certain substances to emit radiation.

Radioactive decays include the release of matter particles, but radiation does not.

Radiation is energy that travels through space or matter. It may occur naturally or be generated by man-made processes. Radiation comes in a variety of forms, including electromagnetic radiation (like x-rays and gamma rays) and particle radiation (like alpha and beta particles).

Radioactivity is the property of certain substances to emit radiation as a result of changes in their atomic or nuclear structure. Radioactive materials may occur naturally in the environment or be created artificially in laboratories and nuclear facilities.

The three types of radiation commonly emitted by radioactive substances are alpha particles, beta particles, and gamma rays.

Radiation and radioactivity are not the same things. Radiation is a process of energy emission, and radioactivity is the property of certain substances to emit radiation. Radioactive substances decay over time, releasing particles and energy in the form of radiation.

Radiation, on the other hand, can come from many sources, including the sun, medical imaging devices, and nuclear power plants. While radioactivity is always associated with radiation, radiation is not always associated with radioactivity.

To learn more about radiation, refer below:

https://brainly.com/question/31106159

#SPJ11

A 3 kg cannon ball is loaded into a 200 kg cannon. When the
cannon is fired, it recoils at 6 m/s. What is the cannon ball’s
velocity after the explosion?

Answers

 The cannonball's velocity after the explosion is 400 m/s.

To find the cannonball's velocity after the explosion, we can use the principle of conservation of momentum. According to this principle, the total momentum before the explosion is equal to the total momentum after the explosion.

The momentum of an object is calculated by multiplying its mass by its velocity.

Let's assume the initial velocity of the cannonball is v1, and the final velocity of the cannonball after the explosion is v2.

According to the conservation of momentum:

Initial momentum = Final momentum

(3 kg) * (v1) + (200 kg) * (0) = (3 kg) * (v2) + (200 kg) * (-6 m/s)

Since the cannon is initially at rest, the initial velocity of the cannonball (v1) is 0 m/s.

0 = 3v2 - 1200

Rearranging the equation, we find:

3v2 = 1200

v2 = 400 m/s

After the explosion, the cannonball will have a velocity of 400 m/s. This means it will move away from the cannon with a speed of 400 m/s.

To know more about velocity visit:  

https://brainly.com/question/80295

#SPJ11  

6) A solar cell generates a potential difference of 0.23 V when a 4902 resistor is connected across it, and a potential difference of 0.28 V when a 98092 resistor is 1 substituted. What are the (a) internal resistance and (b) emf of the solar cell? (c) The area of the cell is 2.4cm² and the rate per unit area at which it receives energy from light is 6.0mW/cm². What is the efficiency of the cell for converting light energy to thermal energy in the 98022 external resistor?

Answers

The efficiency of the solar cell for converting light energy to thermal energy in the 98022 external resistor is 82%.

a) Calculation of Internal Resistance

In the first case, the potential difference is 0.23 V, and the resistance is 4902Ω.From Ohm's law; the current (I) = V/RI = 0.23/4902I = 0.0000469

For the internal resistance (r); r = (V/I) - Rr

= (0.23/0.0000469) - 4902

r = 4.88 - 4902

r = -4901.87

b) Calculation of emfIn the second case, the potential difference is 0.28 V, and the resistance is 98092Ω.

From Ohm's law;

the current (I) = V/R

V= IRV = 0.28/98092

I = 0.00000285

For the emf (E),

E = V + Ir

E = 0.28 + (0.00000285 × 4902)

E = 0.2926 V

c) Calculation of efficiency

From the data given, the area (A) of the cell is 2.4cm², and the rate per unit area at which it receives energy from light is 6.0mW/cm².

So the rate at which it receives energy is;

P = (6.0 × 2.4) mW

P = 14.4 mW

From the power output in b, the current I can be calculated by;

I = P/VI = 14.4/0.28

I = 51.42mA

The power generated by the solar cell is;

P1 = IV

P1 = (51.42 × 0.23) mW

P1 = 11.82 mW

The power that is wasted in the internal resistance is;

P2 = I²r

P2 = (0.05142² × 4901.87) mW

P2 = 12.60 µW

The power that is dissipated in the external resistance is;

P3 = I²R

Eficiency (η) = (P1/P) x 100%

η = (11.82/14.4) x 100%

η = 81.875 ≈ 82%T

Therefore, the efficiency of the solar cell for converting light energy to thermal energy in the 98022 external resistor is 82%.

To learn more about solar visit;

https://brainly.com/question/28510762

#SPJ11

Mark all the options that are true a. There is only movement when there is force b. The greater the force, the greater the acceleration C. Force and velocity always point in the same direction d. If t

Answers

The true statements among the given options are:

b. The greater the force, the greater the acceleration.

d. If the force is zero, the speed is constant. Option B and D are correct

a. There is only movement when there is force: This statement is not entirely true. According to Newton's first law of motion, an object will remain at rest or continue moving with a constant velocity (in a straight line) unless acted upon by an external force. So, in the absence of external forces, an object can maintain its state of motion.

b. The greater the force, the greater the acceleration: This statement is true. According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force applied to it and inversely proportional to its mass. Therefore, increasing the force applied to an object will result in a greater acceleration.

c. Force and velocity always point in the same direction: This statement is not true. The direction of force and velocity can be the same or different depending on the specific situation. For example, when an object is thrown upward, the force of gravity acts downward while the velocity points upward.

d. If the force is zero, the speed is constant: This statement is true. When the net force acting on an object is zero, the object will continue to move with a constant speed in a straight line. This is based on Newton's first law of motion, also known as the law of inertia.

e. Sometimes the speed is zero even if the force is not: This statement is true. An object can have zero speed even if a force is acting on it. For example, if a car experiences an equal and opposite force of friction, its speed can decrease to zero while the force is still present.

Therefore, Option B and D are correct.

Complete Question-

Mark all the options that are true:

a. There is only movement when there is force

b. The greater the force, the greater the acceleration

c. Force and velocity always point in the same direction

d. If the force is zero, the speed is constant.

e. Sometimes the speed is zero even if the force is not

To know more about acceleration, click here-

brainly.com/question/2303856

#SPJ11

Acar's bumpern designed to withstand a 4.6 km/(11-m/) coin with an immovable object without damage to the body of the All The bumper Cushions the shook thing the one invera distance Calculate the magnitude of the average force on a bumper that collapses

Answers

The magnitude of the average force on the bumper is approximately 166.67 N in the opposite direction of the car's initial velocity.

The magnitude of the average force on the bumper can be calculated using the principle of conservation of momentum. Given that the car has a mass of 100 kg, an initial velocity of 5 m/s, a time of collision of 3 seconds, and collapses the bumper by 0.210 m, we can determine the average force.

Using the equation Favg * Δt = m * Δv, where Favg is the average force, Δt is the time of collision, m is the mass of the car, and Δv is the change in velocity, we can solve for Favg.

The change in velocity can be calculated as the difference between the initial velocity and the final velocity, which is zero since the car comes to a stop. Therefore, Δv = 0 - 5 m/s = -5 m/s.

Substituting the known values into the equation, we have Favg * 3 = 100 kg * (-5 m/s). Rearranging the equation to solve for Favg, we get Favg = (100 kg * (-5 m/s)) / 3.

The magnitude of the average force on the bumper is approximately -166.67 N. The negative sign indicates that the force is in the opposite direction of the initial velocity, representing the deceleration of the car during the collision

learn more about "momentum ":- https://brainly.com/question/1042017

#SPJ11

Acar's bumpern designed to withstand a 4.6 km/(11-m/) coin with an immovable object without damage to the body of the All The bumper Cushions the shook thing the one invera distance Calculate the magnitude of the average force on a bumper that collapses 0.210 m webring a car tot romantilspeed of N  mass of car =100 kg and time of collision=3 sec initial velocity = 5 m/sec

21. A motor on an escalator is capable of developing 12 kW of power. (a) How many passengers of mass 75 kg each can it lift a vertical distance of 9.0 m per min, assuming no power loss? (b) What power, in kW, motor is needed to move the same number of passengers at the same rate if 45% of the actual power developed by the motor is lost to friction and heat loss? 30 A

Answers

The motor can lift 30 passengers of mass 75 kg each a vertical distance of 9.0 m per minute and it needs to develop 18.7 kW of power to move the same number of passengers at the same rate.

(a) The power of the motor is 12 kW. The mass of each passenger is 75 kg. The vertical distance the passengers need to be lifted is 9.0 m. The number of passengers the motor can lift per minute is:

(12 kW)/(75 kg * 9.0 m/min) = 30 passengers/min

(b) The motor loses 45% of its power to friction and heat loss. Therefore, the actual power the motor needs to develop is:

(100% - 45%) * 12 kW = 18.7 kW

To learn more about power developed click here: brainly.com/question/31276923

#SPJ11

Other Questions
change this to possessive form1.lives of men are hard.2.The shoes of these children were stolen Cyber Caf Assignment #1 What is your earliest childhood memory? What age were you? Does your early memory involve a transition (e.g., birth of a sibling), a trauma (e.g., an accident or operation), or trivia (e.g., a certain toy, sitting on the porch)? Is your memory a visual image or does it involve other sensory experiences? Ask the group if they see any patterns to the types of things people tend to have as their first memories. Link to phenomena of infantile amnesia, emotional memory, etc. The motion of a particle is defined by the function x = at-bt - ct + d where x is in centimeters and t is in seconds Determine the position of the particle when its acceleration is 12.5m/s if a = 2.3, b = 3.1, c=5.2, and d = 16? Round off the final answer to two decimal places. 5.07 commercial script worksheet Find the indicated measure. Round to the nearest tenth.The area of a circle is 52 square inches. Find the diameter. Transformational leaders influence those around them and therefore have the potential to alter the culture of a unit or organization. Please address the following topics:Summarize your general beliefs of what makes a good leader.Regarding the transformational leadership skills discussed in our required article reading, how do you think your leadership style is perceived by others?What aspect of the TEACH values discussed in the lesson do you think would most benefit your work environment if adopted? A survey of 1520 Americans adults asked "Do you feel overloaded with too much information?" The results indicate that 88% of females feel information overload compared to 59% of males. The results are given in table. Overloaded Male Female Total Yes 434 687 1121 No 306 93 399Total 740 780 1520 a. Construct contingency tables based on total percentages, row percentages, and column percentages. B. What conclusions can you reach from these analyses? Review. A small object with mass 4.00kg moves counterclockwise with constant angular speed 1.50rad/s in a circle of radius 3.00m centered at the origin. It starts at the point with position vector 3.00 i^m . It then undergoes an angular displacement of 9.00 rad.(d) In what direction is it moving? What is the absolute difference in mass between the two protons and two neutrons? A portfolio is 70% invested in an index fund and 30% in a risk-free asset. The index fund has a standard deviation of returns of 15%. Calculate the standard deviation for the total portfolio returns. *** Chapter 9 Discussion A After reading and reviewing Chapter 9 and watching the video(s), answer the following discussion question. Make sure to include relevant points to your answer and make sure that your information is correctly cited. You must post before you can see the posts of others. Responses should be at least 7-10 sentences. Why should developmental milestones only be used as a general guideline for normal child development? After you post, reply to two peers. In your reply, explain why you agree or disagree and add support to your peer's arguments. Chapter 9 Discussion A After reading and reviewing Chapter 9 and watching the video(s), answer the following discussion question. Make sure to include relevant points to your answer and make sure that your information is correctly cited. You must post before you can see the posts of others. Responses should be at least 7-10 sentences. Why should developmental milestones only be used as a general guideline for normal child development? After you post, reply to two peers. In your reply, explain why you agree or disagree and add support to your peer's arguments. Exercise 1 Complete each sentence with the correct form of the modifier in parentheses.Jorge batted ________________ of all. (badly) Two 0.0000037F capacitors, two 3600k resistors, and a 18 V source are connected in series. Starting from the uncharged state, how long does it take for the current to drop to 30% of its initial value? Determine the components of a vector whose magnitude is 12 units to 56 with respect to the x-negative axis. And demonstrate the components graphically with the parallelogram method.A) -9.95i-6.71jB)9.95i+6.71jC)6.71i+9.95jD)-6.71i+9.95j An investor is examining exchange rates in London and New York. For simplicity, all rates are quoted versus the U.S. dollar. In New York: the British pound rate is $1.35, the euro rate is $0.98, the Canadian dollar rate is 1.34 Canadian dollar, and the Yen rate is 117 Yen.In London: the British pound rate is $1.38, the euro rate is $0.95, the Canadian dollar rate is 1.31 Canadian dollar, and the Yen rate is 115 Yen.If you were looking to buy Yen, where would you buy it?A.New YorkB. LondonC.Either New York or London Trace the flow of data through the data warehouse from beginning to end.Support your answer Using APA format, provide at least two citations with corresponding references, page number and use appropriate in-text citation(s) for your post. ONLY RESPOND TO THE TOPIC CREATED BY THE LECTURER, DO NOT CREATE YOUR OWN TOPIC. FAILURE TO FOLLOW INSTRUCTIONS WILL RESULT IN NO GRADE Initial post length: maximum 200 words1. What is Standard Costing and how is it different from Budgeting? What is the present value of a $1,140 per year annuity for fiveyears at an interest rate of 12 percent? Multiple Choice $7,243.59$4,109.44 $639.53 $3,089.34 I need a 1 1/2-page argumentative paper writing on environmental conservation based on the movie Strange World. I need this done by today otherwise I will fail my English class and I won't be able to graduate. thank you Part:-2 Discussion questions: - Please read Chapter 13 "Leadership; Power and Negotiation" carefully and then give your answers on the basis of your understanding. 4. Which forms of power do you consider to be the strongest? Which types of power do you currently have? How could you go about obtaining higher levels of the forms that you're lacking? (02 Marks ) (Min words 200-300) 5. Who is the most influential leader you have come in contact with personally? What forms of power did they have, and which types of influence did they use to accomplish objectives? (02 Marks ) (Min words 200-300) 6. Think about the last serious conflict you had with a co-worker or group member. How was that conflict resolved? Which approach did you take to resolve it? (02 Marks ) (Min words 200-300) Important Note: - 1. Support your submission with course material concepts, principles, and theories from the textbook and at least three scholarly, peer-reviewed journal articles. 2. References required in the assignment. Use APA style for writing references. Case: GlaxoSmithKline One of Emma Walmsley's biggest challenges when she stepped into the CEO role at GlaxoSmithKline (GSK) was to use her power and influence effectively to start to change the strategic focus of the company. Under the prior CEO, Sir Andrew Witty, GSK had taken an approach rather opposite that of most of its competitors. Instead of selling fewer drugs at obnoxiously high prices, Witty pushed GSK to sell lots of drugs at lower prices throughout the world, including developing and underserved markets. While this approach led to plaudits such as GSK being named number 1 on Fortune's "Change the World" list, it also brought a large amount of criticism from shareholders, who believed that the company was not as focused as it could be on growth and profits. Walmsley set out to make her own mark on the organization and to balance both of those priorities. Even though she had already been with the company for five years, Walmsley was still considered to be an "insider-outsider" when she took the CEO job, given the 17 years she spent with L'Oreal and her marketing background. Walmsley embraced that view and believes that it allowed her to bring in multiple perspectives to a complicated company. Once she was announced, Walmsley spent the next six months on what she refers to as a "GSK listening tour," discussing viewpoints about the organization from both insiders and outsiders. Shortly after taking over as CHAPTER 13 Leadership: Power and Negotiation Final PD CEO, Walmsley gathered all of the top research and development (R\&D) people in the company and made them listen to stock analysts giving their opinion about the company's R\&D performance. One employee said it was a "punch in the nose" but that Walmsley's overall message was, "Everything's on the table here. The world is saying it's broken. Let's see if we can fix it." Although Walmsley is regarded as being a good listener, she is also known for having an honest and urgent approach to leadership with a bias toward rational persuasion. She replaced more than 50 executives throughout the company shortly after taking over to help shake up the culture. She says about her role, "The most important thing I can do is hire people who are aligned with the ambition and challenge of what we have to do and give them the ability to use their expertise to make difficult decisions."* Under Walmsley, meetings always begin pointedly with a "What are we here for?"* When colleagues were asked what would happen if they arrived unprepared for a meeting with her, one responded, "You just wouldn't do it."