a device that can detect the presence of electric charges

Answers

Answer 1

The device used to detect the presence of electric charges on the body is electroscope.

Electroscope along with other devices used to detect the presence and magnitude of electric charge are categorised as electrometers. It finds the potential difference between two points or electric field strength to estimate the results.

The common examples include gold leaf electroscope comprising metal rod and thin gold leaves. The seperation between the leaves in presence of electric charge is indicative of quantity of electric charge.

Learn more about electric charges -

https://brainly.com/question/2373424

#SPJ4


Related Questions

A charge qqq is at the point xxx = 2.0 mm , yyy = 0. Write expressions for the unit vectors you would use in Coulomb's law if you were finding the force that qqq exerts on other charges locate at x1x1x1 = 2, y1y1y1 = 5.0 mm .
Enter your answers numerically separated by a comma.
nx,nynx,ny =
the origin; Enter your answers numerically separated by a comma.
x2x2x2 = 6.0 mm , y2y2y2 = 7.0 mm .
Express your answer using two significant figures. Enter your answers numerically separated by a comma.

Answers

The unit vectors for the force calculation in Coulomb's law are: nx,ny = (0, 1) for charge 1 and nx,ny = (2, 7) for charge 2.

The unit vectors are nx, ny ≈ 0.519, 0.855

nx = (x2 - x) / r

ny = (y2 - y) / r

where (x, y) are the coordinates of the first charge, (x2, y2) are the coordinates of the second charge, and r is the distance between the charges.

(x, y) = (2.0 mm, 0)

(x2, y2) = (2.0 mm, 5.0 mm)

Calculating the distance between the charges:

r = √((x2 - x)² + (y2 - y)²)

r = √((2.0 mm - 2.0 mm)² + (5.0 mm - 0)²)

r = √(0^2 + 5.0 mm²)

r = 5.0 mm

Now we can calculate the unit vectors:

nx = (2.0 mm - 2.0 mm) / 5.0 mm = 0

ny = (5.0 mm - 0) / 5.0 mm = 1

Therefore, the unit vectors are:

nx, ny = 0, 1

For the origin (0, 0), the unit vectors will be:

nx, ny = (x2 - 0) / r, (y2 - 0) / r

nx, ny = (6.0 mm - 0) / √((6.0 mm)² + (7.0 mm)^2), (7.0 mm - 0) / √((6.0 mm)^2 + (7.0 mm)²)

Evaluating the expressions:

nx, ny ≈ 0.519, 0.855

To know more about  unit vectors refer here

https://brainly.com/question/28028700#

#SPJ11

The cosmic microwave background radiation indicates that the early universe
a. was quite uniform
b. varied greatly in density from one place to another
c. varied greatly in temperature from one place to another
d. was shaped differently from the modern universe

Answers

The cosmic microwave background radiation indicates that the early universe was quite uniform.

Hence, the correct option is A.

The cosmic microwave background radiation (CMB) is a form of electromagnetic radiation that permeates the entire universe. It is considered the remnant radiation from the early stages of the universe, specifically from the era known as recombination when the universe became transparent to photons.

The CMB is observed to be highly uniform, meaning it has almost the same intensity and temperature in all directions. This uniformity is one of the key pieces of evidence supporting the Big Bang theory. It suggests that at the time the CMB was emitted, the early universe was in a state of high homogeneity and isotropy, with minimal variations in density or temperature from one place to another.

Therefore, The cosmic microwave background radiation indicates that the early universe was quite uniform.

Hence, the correct option is A.

To know more about cosmic microwave background here

https://brainly.com/question/30416668

#SPJ4

(b) Describe what happens when dislocations of the same signs meet each other and what happens to the mechanical properties of the metal (c) A steel bolt is used to fasten magnesium components on a fighter jet. Will this lead to any in service issues? If yes, what could they be and how can they prevented? (d) A metal component attached to a combustion engine fails catastrophically and with little warning. The investigation shows the bearings in the engine were sticking, leading to vibration. What do you think is the cause of the failure and how would you prove it?

Answers

It exhibits reduced ductility and may be prone to fracture under applied stress.  Proper insulation or protective coatings should be applied to isolate the steel bolt from the magnesium components and minimize the potential for galvanic corrosion.

(b) When dislocations of the same signs meet each other, they form a larger dislocation called a dislocation pile-up. This pile-up creates a barrier for the movement of dislocations, resulting in increased resistance to deformation. This phenomenon is known as dislocation locking. As a result, the mechanical properties of the metal are affected. The material becomes harder and stronger, but also more brittle. It exhibits reduced ductility and may be prone to fracture under applied stress.

(c) Using a steel bolt to fasten magnesium components on a fighter jet can lead to galvanic corrosion, which is a potential in-service issue. Magnesium is more active than steel on the galvanic series, meaning it has a higher tendency to corrode. When the two metals are in contact and exposed to a corrosive environment, such as moisture or saltwater, an electrochemical reaction can occur, accelerating the corrosion of the magnesium components. To prevent this, proper insulation or protective coatings should be applied to isolate the steel bolt from the magnesium components and minimize the potential for galvanic corrosion.

(d) The sticking of bearings in the engine leading to vibrations can cause a phenomenon called "fatigue failure" in the metal component. When the bearings stick, it creates excessive friction and uneven loads on the component, resulting in cyclic loading and stress concentrations. Over time, this can lead to the initiation and propagation of cracks within the material, eventually resulting in catastrophic failure.

To prove that the sticking bearings caused the failure, a thorough investigation should include examining the failed component for signs of crack initiation and propagation, analyzing the material microstructure for any anomalies or stress concentration areas, and conducting a detailed examination of the bearings to determine the root cause of the sticking. Additional techniques such as metallurgical analysis, non-destructive testing, and finite element analysis can also be employed to provide further evidence and support the findings.

Learn more about  dislocation locking here:

https://brainly.com/question/31642564

#SPJ11

A block of mass 21.00 kg sits on a horizontal surface with, coefficient of kinetic friction 0.50 and a coefficient of static friction 0.60. Hpw much force is required to get the block moving?

Answers

To get the block moving, a force of 102.9 N is required.

The force required to get the block moving can be calculated using the equation:

Force = coefficient of static friction * Normal force

First, let's find the normal force acting on the block. The normal force is equal to the weight of the block, which can be calculated as:

Normal force = mass * gravity

where the mass is given as 21.00 kg and the acceleration due to gravity is approximately 9.8 m/s^2.

Normal force = 21.00 kg * 9.8 m/s^2 = 205.8 N

Now, we can calculate the force required to get the block moving:

Force = 0.60 * 205.8 N = 123.5 N

Therefore, a force of 123.5 N is required to overcome the static friction and get the block moving.

To know more about force click here:

https://brainly.com/question/30507236

#SPJ11

The kinematic viscosity of the fluid depends on
1.
None of the above
2.
Vapor pressure
3.
Surface tension
4.
Fluid temperature

Answers

The kinematic viscosity is defined as the absolute viscosity of a liquid divided by its density at the same temperature. It depends on Fluid temperature (option D).

The kinematic viscosity of a fluid is primarily influenced by its temperature. As the temperature of a fluid increases, its kinematic viscosity generally decreases. This is because higher temperatures cause the fluid molecules to move more vigorously, resulting in reduced internal friction and lower resistance to flow. Consequently, the fluid becomes less viscous and exhibits a lower kinematic viscosity.

The other factors mentioned, such as vapor pressure and surface tension, do not directly affect the kinematic viscosity of a fluid.

Vapor pressure refers to the tendency of a substance to vaporize or evaporate at a given temperature. It relates to the transition of the substance from the liquid phase to the gas phase. While vapor pressure can influence the behavior of a fluid, it does not directly impact its kinematic viscosity.

Surface tension is the cohesive force acting at the surface of a liquid, which causes it to behave like a stretched elastic membrane. Surface tension is responsible for phenomena like capillary action and droplet formation. Although surface tension affects the behavior of a fluid, it does not directly determine its kinematic viscosity.

In summary, fluid temperature is the primary factor affecting the kinematic viscosity of a fluid, while vapor pressure and surface tension are not directly related to kinematic viscosity.

Learn more about kinematic viscosity here:

https://brainly.com/question/13087865

#SPJ11


A 87.0 kg cannon at rest contains a 2.2 kg cannonball. When
firing, the bullet leaves the barrel with a velocity of 23 m / s.
What is the recoil or retreat movement velocity of the cannon? Give
your a

Answers

To determine the recoil or retreat movement velocity of the cannon, we can apply the principle of conservation of momentum. According to this principle, the total momentum before firing is equal to the total momentum after firing.

The momentum of an object is given by the product of its mass and velocity. In this case, the momentum of the cannonball before firing is (2.2 kg) × 0 m/s = 0 kg·m/s since it is at rest. The momentum of the cannonball after firing is (2.2 kg) × 23 m/s = 50.6 kg·m/s.

To maintain the conservation of momentum, the cannon must move in the opposite direction with an equal magnitude of momentum. Let's denote the recoil velocity of the cannon as V.

The momentum of the cannon before firing is (87.0 kg) × 0 m/s = 0 kg·m/s. The momentum of the cannon after firing is (87.0 kg) × (-V) kg·m/s.

Setting the total momentum before and after firing equal, we have:

0 kg·m/s = 50.6 kg·m/s + (-87.0 kg) × V kg·m/s.

Simplifying the equation, we find:

V = -0.581 m/s (approximately)

Therefore, the recoil or retreat movement velocity of the cannon is approximately 0.581 m/s in the opposite direction of the cannonball's velocity.

To learn more about recoil or retreat movement velocity, you can visit

brainly.com/question/32839327

#SPJ11.

The Clausius-Clapeyron relation predicts that for every 1 K increase in surface temperature, assuming relative humidity and near-surface wind speeds are fixed, the evaporation from the surface will increase by approximately 7%. If the global average evaporation of water is 100 cm/ year in the original climate (considered in question 7), what would be the new value of evaporation with the value of Ts you obtained in question 9? Express your answer in units of cm/ year rounded to the nearest 1 cm/ year.

Based on your answer to question 9, what are the values of global mean precipitation for the original climate (considered in question 7) and the perturbed climate (considered in question 9)? Express your answers in units of cm/ year rounded to the nearest 1 cm/ year.

Answers

The new value of evaporation, considering a 1K increase in surface temperature, can be calculated using the Clausius-Clapeyron relation. With the given information that for every 1K increase, evaporation increases by approximately 7%, we can determine the new value.

From Question 9, the surface temperature (Ts) was obtained. Let's assume that Ts is the original temperature. To calculate the new evaporation rate, we multiply the original evaporation rate (100 cm/year) by 1 + (0.07 × ΔT), where ΔT is the change in temperature.

For example, if the change in temperature (ΔT) from the original climate is 2K, the new evaporation rate would be:

New evaporation rate = 100 cm/year × {1 + (0.07 × 2)} = 114 cm/year.

Therefore, the new value of evaporation, considering the temperature change, would be 114 cm/year (rounded to the nearest 1 cm/year).

Regarding the precipitation values, the original climate precipitation and the perturbed climate precipitation were not provided in the question. Hence, without those values, it's not possible to provide an accurate answer. However, if the original climate precipitation value is provided, we can apply the same percentage change as the evaporation rate to calculate the perturbed climate precipitation value.

Learn more about the Clausius-Clapeyron relation at:

https://brainly.com/question/33369944

#SPJ11


What capacitance is needed in a series with an 800-µH inductor
to form a circuit that radiates a wavelength of 300 m?
_______ pF

Answers

The capacitance needed in a series with an 800-µH inductor to form a circuit that radiates a wavelength of 300 m is approximately 17.74 pF.

The formula to calculate the capacitance needed for resonance in a series LC circuit is:

Capacitance = 1 / (4π² × Inductance × (Frequency)²).

First, we need to calculate the frequency using the formula:

Frequency = Speed of Light / Wavelength.

Given that the wavelength is 300 m and the speed of light is approximately 3 × 10⁸ m/s, the frequency is 1 × 10⁶ Hz.

Plugging the values into the capacitance formula, we find:

Capacitance = 1 / (4π² × (800 × 10⁻⁶ H) × (1 × 10⁶ Hz)²) ≈ 17.74 pF.

To know more about capacitance, refer here:

https://brainly.com/question/31871398#

#SPJ11

As you saw in a recent reading, objects that are freely moving through the air are subject only to the acceleration due to gravity (as long as air resistance is negligible). Near Earth's surface, this is always an acceleration of magnitude ∣
g

∣=9.8 m/s
2
in the direction toward the center of the Earth. Let's try using that. Suppose I toss a baseball straight up with an initial upward speed of v
0

=29.4 m/s. (a) How high does the ball rise? (Hint: What is the ball's velocity at just the moment when it is reaching its highest point?) (b) How long does it take to reach that height? (c) How long does it take to return to my hand? (Hint: Think carefully about this before just fiddling with equations; you shouldn't have to do much math. How is the ball's path down similar to its path up?) (d) What is the ball's speed as it hits my hand? (Hint: Again, think carefully! This is easier than it seems!)

Answers

The ball rises to a height of approximately 45.31 meters. It takes 3 seconds for the ball to reach its highest point. It takes 6 seconds for the ball to return to your hand. The speed of the ball as it hits your hand is 29.4 m/s.

(a) To find how high the ball rises, we can use the kinematic equation for the vertical motion:

[tex]v_f^2 = v_0^2[/tex] + 2aΔy

Since the ball is tossed straight up, its final velocity at the highest point is 0 m/s ([tex]v_f[/tex]= 0). The initial velocity (v_0) is 29.4 m/s, and the acceleration (a) is -9.8 m/[tex]s^2[/tex] (negative due to the opposite direction of the velocity).

0 = [tex](29.4 m/s)^2 + 2(-9.8 m/s^2)[/tex]Δy

Solving for Δy, we have:

Δy = [tex](29.4 m/s)^2 / (2 * 9.8 m/s^2)[/tex] = 45.31 m

Therefore, the ball rises to a height of approximately 45.31 meters.

(b) The time it takes to reach the highest point can be found using the equation:

[tex]v_f = v_0 + at[/tex]

Since the final velocity is 0 m/s, we can solve for t:

0 = 29.4 m/s - 9.8 m/[tex]s^2[/tex] * t

t = 29.4 m/s / (9.8 m/[tex]s^2[/tex]) = 3 seconds

It takes 3 seconds for the ball to reach its highest point.

(c) The time it takes to return to your hand is equal to twice the time it took to reach the highest point since the motion is symmetrical. Therefore, the total time is:

2 * 3 seconds = 6 seconds

It takes 6 seconds for the ball to return to your hand.

(d) The speed of the ball as it hits your hand can be determined by using the fact that the speed at any point in the motion is equal to the initial speed (v_0) due to the symmetry of the motion.

Therefore, the speed of the ball as it hits your hand is 29.4 m/s.

Learn more about speed

https://brainly.com/question/13943409

#SPJ11

The displacement of a string is given by: y(x,t)=(0.20 mm)sin[(31.4 m
−1
)x−(31.4 s
−1
)t)]. The wave length λ of the wave is a. 20 m b. 2.0 m c. 0.20 m d. 31.4 m e. 1.0 m

Answers

The displacement of a string is given by: y(x,t) = (0.20 mm) sin[(31.4 m⁻¹)x - (31.4 s⁻¹)t]. The wavelength of the wave would be 0.20 m. (option c).

The general equation for a sinusoidal wave is:

y(x, t) = A sin(kx - ωt + φ)

Where:

y = displacement

x = position

t = time

A = amplitude

k = wave number (or wavenumber), which is equal to 2π/λ, where λ is the wavelength.

ω = angular frequency, which is equal to 2πf, where f is the frequency.φ = phase constant

Using the given formula,y(x, t) = (0.20 mm) sin[(31.4 m⁻¹)x - (31.4 s⁻¹)t]

We can say that:

A = 0.20 mm = 0.0002 mk = 31.4 m⁻¹ω = 31.4 s⁻¹

Comparing to the general formula, we have:

kx - ωt + φ = (31.4 m⁻¹)x - (31.4 s⁻¹)tφ = 0 (Since the phase constant is zero)

The wave number k can be determined as follows:

k = 2π/λWhere λ is the wavelength.

Rearranging the equation, we have:

λ = 2π/kλ = 2π/(31.4 m⁻¹)λ = 0.20 m

Therefore, the wavelength of the wave is c. 0.20 m. (option c).

Learn more about wavelength at https://brainly.com/question/31143857

#SPJ11

the primary nuclear reaction providing energy inside the sun's core converts __________.

Answers

The primary nuclear reaction providing energy inside the Sun's core is known as nuclear fusion. This nuclear fusion process converts hydrogen nuclei into helium nuclei.

The fusion reaction that occurs in the Sun's core is the conversion of hydrogen nuclei (protons) into helium nuclei. This fusion process, known as the proton-proton chain, involves a series of steps that result in the release of energy.

In the proton-proton chain, four hydrogen nuclei (protons) undergo a series of fusion reactions to produce one helium nucleus. The steps involved are as follows:

Two protons (hydrogen nuclei) fuse to form a deuterium nucleus (a proton and a neutron), releasing a positron and a neutrino.

The deuterium nucleus then combines with another proton to form a helium-3 nucleus (two protons and one neutron), releasing a gamma-ray photon.

Two helium-3 nuclei further combine to produce a helium-4 nucleus (two protons and two neutrons) and two free protons.

Overall, this nuclear fusion process converts hydrogen nuclei into helium nuclei, releasing a tremendous amount of energy in the form of gamma-ray photons. This energy is what powers the Sun and allows it to emit heat and light.

To know more about nuclear fusion here

https://brainly.com/question/14019172

#SPJ4

A mass of 4kg is attached to a spring with a spring constant of k = 169kg/s². It is then stretched 10cm from the spring-mass equilibrium and set to oscillating with an initial velocity of 130cm/s. Assuming it oscillates without damping, the frequency is: Select one:
a. 5.5
b. 6.5
c. 4.5
d. 3.5

Answers

The frequency of the oscillating mass-spring system is approximately 0.519 Hz. None of the given options (a, b, c, d) match this value, so none of them are correct.

The frequency of an oscillating mass-spring system can be determined using the formula:

f = (1 / 2π) √(k / m)

Where f is the frequency, k is the spring constant, and m is the mass of the object attached to the spring.

In this case, the mass (m) is 4 kg and the spring constant (k) is 169 kg/s². To find the frequency, we substitute these values into the formula:

f = (1 / 2π) √(169 kg/s² / 4 kg)

f = (1 / 2π) √(42.25 / 4)

f = (1 / 2π) √(10.5625)

f ≈ (1 / 2π) * 3.25

f ≈ 1.63 / π

Using an approximation of π ≈ 3.14, we can calculate the approximate value of the frequency:

f ≈ 1.63 / 3.14 ≈ 0.519

Therefore, the frequency of the oscillating mass-spring system is approximately 0.519 Hz. None of the given options (a, b, c, d) match this value, so none of them are correct.

To learn more about oscillating, click here: https://brainly.com/question/30111348

#SPJ11

What is the wavelength of the photon with energy E=3.3×10
−18
J. Use nm (nanometer) for the unit of the wavelength. Question 10 1pts Free electrons that are ejected from a filament by thermionic emission is accelerated by 6.4kV of electrical potential difference. What is the kinetic energy of an electron after the acceleration? Answer in the unit of eV.

Answers

To calculate the wavelength of a photon given its energy, you can use the following formula: E = hc/λ

λ = hc/E

Substituting the given values:

λ = (6.626 × 10^-34 J·s × 3 × 10^8 m/s) / (3.3 × 10^-18 J)

Simplifying the expression:

λ = (6.626 × 3) / 3.3 × 10^(-34 + 8 + 18)

λ ≈ 6.03 × 10^-7 m

To convert this to nanometers, we multiply by 10^9:

λ ≈ 6.03 × 10^(-7 + 9) nm

λ ≈ 603 nm

Therefore, the wavelength of the photon with energy E = 3.3 × 10^-18 J is approximately 603 nm. Moving on to the second question, to calculate the kinetic energy of an electron accelerated by an electrical potential difference.

Kinetic energy (K.E.) = qV

Substituting the given values:

K.E. = (1.6 × 10^-19 C) × (6.4 × 10^3 V)

Simplifying the expression:

K.E. = 10.24 × 10^(-13) eV

K.E. ≈ 10.24 × 10^(-13) eV

Therefore, the kinetic energy of an electron after acceleration by 6.4 kV of electrical potential difference is approximately 10.24 × 10^(-13) eV.

To learn more about wavelength follow:

https://brainly.com/question/32900586

#SPJ11

A projectile of mass m is thrown at an initial speed vo and angle 8 from the ground. The projectile is subjected to air resistance proportional to velocity. Treat the problem in 2 dimesnions. a. Write down Newton's second law describing the motion of the projectile, in componenets form. (4pts) b. Find v₂ (t). (4pts) c. Find vy(t). (6pts) d. Find the terminal speed too. (2pts)

Answers

a. The equation of motion for the projectile in component form is: [tex]\(ma_x = -f_v \cdot v_x\) and \(ma_y = -mg - f_v \cdot v_y\).[/tex]

b. The equation for the x-component of velocity, [tex]\(v_x(t)\)[/tex], as a function of time is: [tex]\(v_x(t) = v_0 \cos(\theta)\left(1 - \frac{2\gamma t}{m \cos^2(\theta)}\right)\).[/tex]

c. The equation for the y-component of velocity, [tex]\(v_y(t)\)[/tex], as a function of time is: [tex]\(v_y(t) = v_0 \sin(\theta) - gt - \frac{\gamma t}{m}v_y(t)\).[/tex]

d. The terminal speed,[tex]\(v_{\text{term}}\)[/tex], is given by: [tex]\(v_{\text{term}} = \sqrt{\frac{mg}{k}}\).[/tex]

a. Newton's second law describes the motion of the projectile in component form as follows:

In the x-direction:

[tex]\[F_{\text{net},x} = ma_x = -f_v \cdot v_x\][/tex]

In the y-direction:

[tex]\[F_{\text{net},x} = ma_x = -f_v \cdot v_x\][/tex]

Where:

m is the mass of the projectile,[tex]\(v_x\)[/tex] is the velocity component in the x-direction,[tex]\(v_y\)[/tex] is the velocity component in the y-direction,[tex]\(f_v\)[/tex] is the air resistance force proportional to velocity,g is the acceleration due to gravity, and[tex]\(a_x\)[/tex] and [tex]\(a_y\)[/tex] are the accelerations in the x and y-directions, respectively.

b. To find [tex]\(v_2(t)\),[/tex] we need to integrate the equation of motion for the x-direction with respect to time:

[tex]\[m \frac{{dv_x}}{{dt}} = -f_v \cdot v_x\][/tex]

Integrating this equation yields:

[tex]\[\int m \frac{{dv_x}}{{dt}} dt = -\int f_v \cdot v_x dt\][/tex]

[tex]\[m \int \frac{{dv_x}}{{dt}} dt = -\int f_v \cdot v_x dt\][/tex]

[tex]\[m v_x = -\int f_v \cdot v_x dt\][/tex]

[tex]\[m v_x = -\int f_v dt \cdot v_x\][/tex]

[tex]\[m v_x = -\int \gamma v_x dt\][/tex] where gamma is the coefficient of air resistance)

Integrating both sides gives:

[tex]\[m \int v_x dv_x = -\gamma \int v_x dt\][/tex]

[tex]\[\frac{1}{2} m v_x^2 = -\gamma t + C_1\][/tex] where [tex]\(C_1\)[/tex] is the constant of integration.

At time[tex]\(t = 0\), \(v_x = v_0 \cos(\theta)\),[/tex] so we can substitute this value in:

[tex]\[\frac{1}{2} m (v_0 \cos(\theta))^2 = -\gamma \cdot 0 + C_1\][/tex]

[tex]\[\frac{1}{2} m v_0^2 \cos^2(\theta) = C_1\][/tex]

Thus, the equation for[tex]\(v_x\)[/tex] as a function of time is:

[tex]\[v_x(t) = v_0 \cos(\theta)\left(1 - \frac{2\gamma t}{m \cos^2(\theta)}\right)\][/tex]

c. To find [tex]\(v_y(t)\)[/tex], we integrate the equation of motion for the y-direction:

[tex]\[m \frac{{dv_y}}{{dt}} = -mg - f_v \cdot v_y\][/tex]

Integrating this equation gives:

[tex]\[m \int \frac{{dv_y}}{{dt}} dt = -\int (mg + f_v \cdot v_y) dt\][/tex]

[tex]\[m v_y = -\int (mg + \gamma v_y) dt\][/tex]

[tex]\[m v_y = -\int mg dt - \int \gamma v_y dt\][/tex]

[tex]\[m v_y = -mgt - \int \gamma v_y dt\][/tex]

Integrating both sides gives:

[tex]\[m \int v_y dv_y = -mg \int dt - \gamma \int v_y dt\][/tex]

[tex]\[\frac{1}{2} m v_y^2 = -mgt - \gamma \int v_y dt\][/tex]

[tex]\[\frac{1}{2} m v_y^2 = -mgt - \gamma t v_y + C_2\][/tex] where [tex]\(C_2\)[/tex] is the constant of integration)

At time[tex]\(t = 0\), \(v_y = v_0 \sin(\theta)\)[/tex], so we can substitute this value in:

[tex]\[\frac{1}{2} m (v_0 \sin(\theta))^2 = -mg \cdot 0 - \gamma \cdot 0 \cdot (v_0 \sin(\theta)) + C_2\][/tex]

[tex]\[\frac{1}{2} m v_0^2 \sin^2(\theta) = C_2\][/tex]

Thus, the equation for [tex]\(v_y\)[/tex] as a function of time is:

[tex]\[v_y(t) = v_0 \sin(\theta) - gt - \frac{\gamma t}{m}v_y(t)\][/tex]

d. The terminal speed is the speed at which the projectile reaches a constant velocity, meaning the acceleration becomes zero. At terminal speed, [tex]\(v_x\)[/tex] and [tex]\(v_y\)[/tex] will no longer change with time.

From the equation of motion in the x-direction, when [tex]\(a_x = 0\)[/tex]:

[tex]\[m \frac{{dv_x}}{{dt}} = -f_v \cdot v_x\][/tex]

[tex]\[0 = -f_v \cdot v_x\][/tex]

Since [tex]\(v_x\)[/tex] cannot be zero (otherwise the projectile won't be moving horizontally), we can conclude that [tex]\(f_v\)[/tex] must be zero at terminal speed.

From the equation of motion in the y-direction, when [tex]\(a_y = 0\)[/tex]:

[tex]\[m \frac{{dv_y}}{{dt}} = -mg - f_v \cdot v_y\][/tex]

[tex]\[0 = -mg - f_v \cdot v_y\][/tex]

[tex]\[f_v \cdot v_y = -mg\][/tex]

Since [tex]\(f_v\)[/tex] is proportional to v, we can write:

[tex]\[f_v = k \cdot v_y\][/tex]

Substituting this into the equation, we have:

[tex]\[k \cdot v_y \cdot v_y = -mg\][/tex]

[tex]\[v_y^2 = -\frac{mg}{k}\][/tex]

The terminal speed [tex]\(v_{\text{term}}\)[/tex] is the absolute value of [tex]\(v_y\)[/tex] at terminal velocity:

[tex]\[v_{\text{term}} = \sqrt{\frac{mg}{k}}\][/tex]

Learn more about Newton law of motion​: https://brainly.com/question/28171613

#SPJ11

A tank contains a two-phase liquid-vapor mixture of Refrigerant 22 at 10 bar. The mass of saturated liquid in the tank is 25 kg and the quality is 60%. Determine the volume of the tank, in m³, and the fraction of the total volume occupied by saturated vapor.

Answers

Refrigerant-22 is a hydrofluorocarbon. The chemical formula for it is CHClF2. It's also known as R-22. It's used as a refrigerant in a variety of applications, including air conditioning and refrigeration systems. The properties of Refrigerant 22 are essential to know when handling it.

First, we will determine the mass of the vapor present in the tank. It's given that the mass of saturated liquid in the tank is 25 kg, and the quality is 60%.

The mass of the vapor present = 25 x 0.6 = 15 kgThe total mass of the two-phase mixture present in the tank is given byMass of the mixture = mass of the saturated liquid + mass of the vapor present= 25 + 15= 40 kgThe specific volume of the saturated liquid is given by v_f = 0.0010047 m³/kg and the specific volume of the saturated vapor is given by v_g = 0.03109 m³/kg.

Now, we can calculate the volume of the tank as follows:V = V_f + V_gV_f = mass of the saturated liquid x specific volume of the saturated liquid= 25 x 0.0010047= 0.02512 m³V_g = mass of the vapor present x specific volume of the saturated vapor= 15 x 0.03109= 0.46635 m³

The volume of the tank is given by V = V_f + V_g= 0.02512 + 0.46635= 0.49147 m³

Now, let's determine the fraction of the total volume occupied by saturated vapor.

The total volume occupied by the two-phase mixture is given by:V_total = mass of the mixture x specific volume of the mixture= 40 x (25 x 0.0010047 + 15 x 0.03109) = 1.18492 m³

The volume occupied by the saturated vapor is given by:

V_g / V_total= 0.46635 / 1.18492= 0.3930

The fraction of the total volume occupied by the saturated vapor is 0.3930

To know more about hydrofluorocarbon visit:

https://brainly.com/question/13120669

#SPJ11

On a planet whose radius is 3.9×10^7m, the acceleration due to gravity is 19 m/s^2. What is the mass of the planet? Express your answer in scientific notation in the provided spaces below.

Answers

Mass of the planet is 3.1×1019

Gravity = GM/r2 . Where G is the universal constant for gravity, which is 6.67 x 10-11 m3kg/-1s-2
r = the radius of the planet
This formula shows that the mass of the planet is a direct proportion to the acceleration of gravity
If the acceleration of gravity is 19 m/s-2, then the mass will be 3.1 x 1019

This equation is known as Newtons law of universal gravity

open end and is used to cause the tube to resonate. (a) What are the wavelength (in in) and the frequency (in Hz ) of the fundaeneatal frequency? Wayelength frequency m. (b) What are the wavelength (i in m) and freauency { in Hz } of the first overtonet wivelenctit frequency

Answers

The wavelength of the first open-end wavelength frequency is 0.75 m.

A tube of length 0.75 m is open ended and is used to cause the tube to resonate.

(a) The fundamental frequency is the first harmonic frequency and can be calculated by using the formula:

f1 = (v/2L)

where,f1 = frequency

v = velocity

L = length

The velocity of sound in air at room temperature is approximately 343 m/s.

Converting the length of the tube from inches to meters: 0.75 m = 29.53 in

Therefore, the fundamental frequency of the tube is:

f1 = (343/2 x 0.75)

f1 = 228.67 Hz

Also, the wavelength can be calculated using the formula:

λ1 = 2L/n

where,λ1 = wavelength

n = harmonic number

For the fundamental frequency:

λ1 = 2 x 0.75/1

λ1 = 1.5 m

(b) The first open-end wavelength frequency is the second harmonic frequency, and can be calculated as:

f2 = (2v/L)

where,f2 = frequency

v = velocity

L = length

The frequency can be calculated as:

f2 = (2 x 343/0.75)= 914.67 Hz

The wavelength can be calculated using the formula:

λ2 = 2L/n

where,λ2 = wavelength

n = harmonic number

For the first open-end wavelength frequency:

λ2 = 2 x 0.75/2

λ2 = 0.75 m

Therefore, the wavelength of the first open-end wavelength frequency is 0.75 m.

Learn more about the wavelength from the given link-

https://brainly.com/question/16051869

#SPJ11

in a standing wave areas of destructive interference are the

Answers

In a standing wave, areas of destructive interference are the locations where the crest of one wave coincides with the trough of another wave, resulting in the cancellation of amplitudes

A standing wave is formed when two waves of the same frequency and amplitude traveling in opposite directions interfere with each other. This interference creates specific patterns of nodes (points of no displacement) and antinodes (points of maximum displacement) along the medium in which the waves are traveling.

In a standing wave, areas of destructive interference occur at the nodes. These are the locations where the crest of one wave coincides with the trough of the other wave. As a result, the positive displacement of one wave cancels out the negative displacement of the other wave, resulting in the amplitude being reduced to zero at these points.

The formation of areas of destructive interference is due to the principle of superposition, which states that when two waves meet, the resulting displacement is the algebraic sum of their individual displacements. In the case of destructive interference, the displacements of the two waves are equal in magnitude but opposite in direction, causing them to cancel each other out.

The positions of the nodes and antinodes in a standing wave depend on the wavelength and the boundary conditions of the medium. These standing wave patterns can be observed in various systems, such as vibrating strings, sound waves in pipes, and electromagnetic waves in resonant cavities.

To know more about antinodes refer here:

https://brainly.com/question/30640087#

#SPJ11

Physical units in mechanics are usually some combination of the dimensions time T, mass M, and length L. Consider the physical quantities m,r,v,a, and t with dimensions [m]=M,[r]=L,[v]=LT−1 ,[a]=LT ^−2 , and [t]=T. Enter the dimensional expression of the quantity on the right-hand side of each equation. Your answers may contain only M, L, T, and exponents. Assume that each of the following equations is dimensionally consistent. L 0 =mvr [L1 W=mar k=− rma

Answers

The dimensional expressions for the quantities on the right-hand side of the given equations are ML²T⁰, ML²T⁻¹, and MLT⁻², corresponding to different physical quantities involved in the equations.

Physical quantities are m, r, v, a, and t with dimensions [m] = M, [r] = L, [v] = LT⁻¹, [a] = LT⁻², and [t] = T. The dimensional expression of the quantity on the right-hand side of each equation is given below:

L0 = mvr

where [L0] = L1[L] = [M]a[L]b[T]c = MaLbTc

By equating the dimensions on both sides, we get

LHS = RHS.

LHS = L0 = L¹

RHS

mvr = [M][L][LT⁻¹] = MaL²T⁻¹

Comparing the exponents of M, L, and T on both sides, we get

M : 1 = aL : 2 = bT : -1 + 1 = c⇒ a = 1, b = 2, and c = 0.

So, the dimensional expression of the quantity on the right-hand side of L0 = mvr is MaL²T⁰ = ML²T⁰W = mar

where [W] = [F][d] = MLT⁻²LT = ML²T⁻¹

By equating the dimensions on both sides, we get

LHS = RHS.

LHS = W = ML²T⁻¹

RHS

mar = [M][LT⁻²][L] = ML²T⁻¹

Comparing the exponents of M, L, and T on both sides, we get

M : 1 = 1

L : 2 = 1

T : -1 - 2 = -3⇒ the dimensional expression of the quantity on the right-hand side of W = mar is ML²T⁻¹.

K = -rma

By equating the dimensions on both sides, we get

LHS = RHS.

LHS = K = [M][L²][T⁻²]

RHS

-rma = -[L][M][T⁻²] = MLT⁻²

Comparing the exponents of M, L, and T on both sides, we get

M : 1 = 1

L : 2 = -1

T : -2 = -2⇒ the dimensional expression of the quantity on the right-hand side of K = -rma is MLT⁻².

Hence, the dimensional expression of the quantity on the right-hand side of each equation is

ML²T⁰, ML²T⁻¹, and MLT⁻².

To know more about dimensional expression, refer to the link below:

https://brainly.com/question/32658827#

#SPJ11

A basketball star covers 2,90 m horizontally in a jump to dunk the ball. His motion through space can be modeled precisely as that of a particle at his center of mass. His center of mass is at elevation 1.02 m when he leaves the floor, It reaches a maximum height of 1.90 m above the floor and is at elevation 0.890 m when he touches down again. (a) Determine his time of firght (his "hang time"). (b) Determine his horizontal velocity at the instant of takeoff. m/s (c) Determine his vertical velocity at the instant of takeoff. m/s (d) Determine his takeoff angle. "above the liorizontal (e) For comparison, determine the hang time of a whitetail deer making a jump with center-of-mass elevations y=1.20 m,y max =2.45 m, and yf =0.700 m.

Answers

The hang time of the deer is 0.508 s and the time of flight is 0.774 s.The takeoff angle is -3.32° and The horizontal velocity is 3.75 m/s.

(a) The time of flight is given b yt = 2(v0 sin θ) / g where v0 is the initial velocity, θ is the angle with the horizontal, and g is the acceleration due to gravity.g = 9.81 m/s², θ = 90°, v0y = ?v0y² = v² - 2gy1.9 = v0 sin θ - (1/2)g(t/2)1.9 = (1/2)g(t/2)t = (2 × 1.9 × 2 / 9.81) st = 0.774 s

(b) The horizontal velocity is given byv0x = x / t where x is the horizontal distance covered by the basketball playerv0x = 2.90 / 0.774v0x = 3.75 m/s

(c) The vertical velocity at the instant of takeoff is given byv0y = (yf - y0) / t where yf is the final elevation, y0 is the initial elevation, and t is the time of flightv0y = (0.890 - 1.02) / 0.774v0y = -0.169 / 0.774v0y = -0.218 m/s

(d) The takeoff angle is given byθ = tan⁻¹(v0y / v0x)θ = tan⁻¹(-0.218 / 3.75)θ = -3.32°

(e) For the whitetail deer:t = 2(v0 sin θ) / gt = (2 × 1.25 × 2 / 9.81) st = 0.508 s.

The hang time of the deer is 0.508 s.

Learn more about velocity here ;

https://brainly.com/question/18084516

#SPJ11

Charge of uniform density (90nC/m
3
) is distributed throughout a hollow cylindrical region formed by two coaxial cylindrical surfaces of radii 1.0 mm and 6.0 mm. Determine the magnitude of the electric field (in N/C ) at a point which is 2.5 mm from the symmetry axis.

Answers

In summary, by considering the charge enclosed by the Gaussian surface and applying Gauss's law, we can determine the magnitude of the electric field at a point 2.5 mm from the symmetry axis of the hollow cylindrical region

To determine the magnitude of the electric field at a point 2.5 mm from the symmetry axis of the hollow cylindrical region, we can use Gauss's law and symmetry arguments.

Gauss's law states that the electric field through a closed surface is proportional to the charge enclosed by that surface. In this case, we can consider a cylindrical Gaussian surface of radius 2.5 mm centered on the symmetry axis.

Since the charge distribution is uniform throughout the cylindrical region, the electric field will also have radial symmetry. This means that the electric field will only have a component in the radial direction and will be independent of the azimuthal angle.

The charge enclosed by the Gaussian surface is the difference between the charge enclosed by the outer cylindrical surface and the charge enclosed by the inner cylindrical surface.

The charge enclosed by the outer surface is given by:

Q_outer = charge density * volume of outer cylindrical region

        = (90 nC/m^3) * π * (6.0 mm)^2 * (2.5 mm)

The charge enclosed by the inner surface is given by:

Q_inner = charge density * volume of inner cylindrical region

        = (90 nC/m^3) * π * (1.0 mm)^2 * (2.5 mm)

The net charge enclosed is then:

Q = Q_outer - Q_inner

Now, we can apply Gauss's law to find the magnitude of the electric field. Gauss's law states that the electric field multiplied by the surface area of the Gaussian surface is equal to the net charge enclosed.

The surface area of the Gaussian surface is:

A = 2πrh, where r is the radius of the Gaussian surface (2.5 mm) and h is the height of the Gaussian surface (which can be chosen appropriately).

Using Gauss's law, we have:

E * A = Q

E * 2πrh = Q

Rearranging the equation, we can solve for the magnitude of the electric field:

E = Q / (2πrh)

Substituting the values of Q, r, and h, we can calculate the magnitude of the electric field at the given point.

In summary, by considering the charge enclosed by the Gaussian surface and applying Gauss's law, we can determine the magnitude of the electric field at a point 2.5 mm from the symmetry axis of the hollow cylindrical region. The result will be obtained by dividing the net charge enclosed by the surface area of the Gaussian surface.

Learn more about electric field here:

https://brainly.com/question/29427458

#SPJ11

Choose the best answer to the following:

The metal detectors people walk through at airports operate via

(a) Ohm's law.

(b) Faraday's law.

(c) Coulomb's law.

(d) Newton's laws.

Answers

The metal detectors people walk through at airports operate via (b) Faraday's law.

The metal detector works on the principles of electromagnetism. Electromagnetic fields are used to detect metal.

The metal detector sends an electromagnetic field through a coil of wire in the metal detector. The electromagnetic field can easily pass through air and most non-metallic materials, but it is disrupted when it comes into contact with metal.

When the electromagnetic field is disrupted, a metal detector can recognize that metal is present. The metal detector also has a receiver coil, which is used to detect the interruption and alert the operator when metal is detected. Furthermore, the level of the disturbance determines the metal's conductivity, which can help identify the type of metal that is present. In this way, the metal detectors people walk through at airports operate via Faraday's law.

Therefore the correct answer is: (b) Faraday's law.

To learn more about Faraday's law follow the given link

https://brainly.com/question/1640558

#SPJ11

________(CE 150) accounted for retrograde motion using epicycles in a geocentric system.

Answers

The model you are referring to is known as the Ptolemaic model or the Ptolemaic system. It was developed by the ancient Greek astronomer Claudius Ptolemy around the 2nd century CE (Common Era).

Ptolemy proposed that the planets moved in small circles called epicycles while they orbited in larger circles around the Earth. The center of each planet's epicycle moved along the larger circle, known as the deferent, which was centered on the Earth. The motion of the planets appeared complex and erratic from Earth's perspective due to the combination of the epicycles and the planets' orbital motion.

By introducing these epicycles, Ptolemy's model could account for the retrograde motion observed in the night sky. Retrograde motion refers to the apparent backward motion of a planet against the background stars. This motion occurs when Earth overtakes and passes the slower-moving outer planets, causing them to appear to move backward temporarily before continuing their regular motion.

The Ptolemaic model with its epicycles was widely accepted for centuries and provided a reasonably accurate representation of planetary positions and motions, considering the limited observational data available at the time.

To learn more about Ptolemaic model follow:

https://brainly.com/question/3405634

#SPJ11

Considering motion with a nonconstant velocity: How does the total distance change as the total time increases; that is, do they both increase at the same rate? Explain the meaning of this observation.

Answers

When an object moves with non constant velocity, the total distance and time will not increase at the same rate.

The object will travel a greater distance in a shorter amount of time when its velocity is higher, and a smaller distance when its velocity is lower. The total distance traveled and the total time taken will increase at different rates.Explanation:The distance traveled by a moving object is calculated by multiplying the speed by the time taken. The rate at which distance increases as time increases is equal to the velocity of the object.

In the case of an object with nonconstant velocity, the velocity is changing over time, meaning the distance traveled and the time taken will not increase at the same rate.If an object moves with a nonconstant velocity, the total distance traveled is determined by calculating the area under the velocity-time curve. This means that the total distance traveled is equal to the sum of the areas of all the small rectangles, or the integral of the velocity-time curve, over a given time interval.

The total time taken is simply the difference between the final and initial times .The significance of this observation is that when an object travels with a non constant velocity, its distance traveled and time taken will not increase at the same rate. This means that the average velocity of the object will be different from the instantaneous velocity at any given moment. Therefore, the concept of average velocity becomes important when analyzing the motion of an object with non constant velocity.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

According to the second law of thermodynamics, energy cannot be created or destroyed. Therefore, both matter and energy are continuously recycled through ecosystems True False

Answers

According to the second law of thermodynamics, energy cannot be created or destroyed. Therefore, both matter and energy are continuously recycled through ecosystems is True.

The second law of thermodynamics states that in any energy transfer or transformation, the total amount of energy in a closed system remains constant, but the quality of the energy decreases. This means that energy cannot be created or destroyed, but it can change from one form to another (such as from chemical energy to heat energy) or be transferred between objects.

In ecosystems, matter and energy are constantly cycling and being recycled. Organisms obtain energy from food sources, convert it into various forms of energy for their own use, and release it back into the environment. Nutrients and other forms of matter are also recycled as they are taken up by organisms, transformed, and returned to the environment through processes like decomposition.

So, both matter and energy are continuously recycled through ecosystems in accordance with the second law of thermodynamics.

To know more about second law of thermodynamics here

https://brainly.com/question/7206767

#SPJ4

A solenoid has a resistance of 49.0Ω and an inductance of 0.170H. If a 100 Hz voltage source is connected across the solenoid, determine the phase angle between the voltage and the current. Part A Does the voltage lead the current or lag the current? (Calculate the phase angle between the voltage and the current.) Express your answer in degrees.

Answers

The voltage leads the current in a solenoid with a resistance of 49.0Ω and an inductance of 0.170H when a 100 Hz voltage source is connected. The phase angle between the voltage and the current is approximately 84.4 degrees.

In an AC circuit containing an inductor, such as a solenoid, the voltage and current can have a phase difference due to the inductive nature of the component. The phase angle between the voltage and current determines whether the voltage leads or lags the current.

To calculate the phase angle, we can use the formula:

θ = arctan((XL - XC) / R)

where θ is the phase angle, XL is the inductive reactance, XC is the capacitive reactance (which is negligible for a solenoid), and R is the resistance.

In this case, the inductive reactance can be calculated as XL = 2πfL, where f is the frequency and L is the inductance. Plugging in the values, we have XL = 2π * 100 Hz * 0.170H ≈ 107.18Ω.

Since the capacitive reactance is negligible, we can ignore it in the calculation. Thus, the formula simplifies to:

θ = arctan(XL / R) = arctan(107.18Ω / 49.0Ω) ≈ 63.5 degrees.

However, this calculation only gives us the phase angle between the inductive reactance and the resistance. To find the phase angle between the voltage and the current, we need to consider that the voltage and the inductive reactance are 90 degrees out of phase. Therefore, we add 90 degrees to the previous result:

θ = 63.5 degrees + 90 degrees ≈ 153.5 degrees.

Hence, the voltage leads the current in the solenoid, and the phase angle between the voltage and the current is approximately 84.4 degrees.

Learn more about solenoid with a resistance here:

https://brainly.com/question/31975414

#SPJ11

aimed at the satellite without need of realignment. is 66.15 degrees. Assuming that all satellite signals travel at the speed of light in vacuum, which is 2.9979×10^8 m/s, determine the following: (a) What is the distance in "kilometers (km)," between SAT-1 and SAT-2, along an "imaginary straight line" connecting them? Answer: Distance = km (b) What is the distance, between SAT-2 and the technician? Give your answer in "km." Answer: Distance = km (c) Let the direction pointing from the technician to SAT-1 be Direction 1. Let the direction pointing from the technician to SAT-2 be Direction 2. What is the angle, in degrees, between Directions 1 and 2? Answer: Angle = degrees

Answers

Assuming that all satellite signals travel at the speed of light in vacuum, which is 2.9979×10^8 m/s, the distance between SAT-1 and SAT-2 is 34,098.11 km. The distance along the horizontal direction is 35,786 km.

(a) To find the distance between SAT-1 and SAT-2 along the imaginary straight line connecting them, we can use the formula:

Distance = Speed × Time

Given:

Speed of light in vacuum = 2.9979 ×[tex]10^8[/tex] m/s

Time taken for the signal to travel between SAT-1 and SAT-2 = 113.74 milliseconds = 113.74 × [tex]10^{-3[/tex] s

Distance = (2.9979 × [tex]10^8[/tex]m/s) × (113.74 × [tex]10^{-3[/tex] s) = 34,098.11 km

Therefore, the distance between SAT-1 and SAT-2 along the imaginary straight line connecting them is approximately 34,098.11 km.

(b) To find the distance between SAT-2 and the technician, we need to consider the geometry of the problem. The technician points his dish towards the East and aims it above the horizon at an angle of 35.2 degrees with respect to the horizontal. This angle forms a right triangle with the distance between SAT-2 and the technician as the hypotenuse.

Using trigonometry, we can calculate the distance:

Distance = (Distance along the horizontal direction) / cos(angle

The distance along the horizontal direction is the same as the distance between SAT-1 and the technician, which is given as 35,786 km.

Distance = (35,786 km) / cos(35.2 degrees) ≈ 43,014.76 km

Therefore, the distance between SAT-2 and the technician is approximately 43,014.76 km.

(c) To find the angle between Directions 1 and 2, we subtract the given angle of 66.15 degrees from 90 degrees since the two directions are perpendicular.

Angle = 90 degrees - 66.15 degrees = 23.85 degrees

Therefore, the angle between Directions 1 and 2 is approximately 23.85 degrees.

Learn more about Speed of light here:

https://brainly.com/question/32276098

#SPJ11

Complete question:

Satellite Dish

A technician is installing a TV satellite dish on a house overseas. The house is located precisely on the Earth's equator. The technician can choose to point the dish to either one of two "geostationary" satellites owned by his TV company. The orbiting speed of these "geostationary" satellites matches the Earth's rotation speed. Hence, when a dish is securely installed pointing to one of these satellites, it will remain permanently aimed at the satellite without need of realignment.

The first satellite (SAT-1) is directly overhead at a distance of 35,786 km from the technician. He can pick up the signal from SAT-1 by pointing his dish vertically upwards at 90 degrees from the horizontal. He picks up the signal from the second satellite (SAT-2) by directing his dish towards the East and aiming it above the horizon at an angle of 35.2 degrees with respect to the horizontal. The technician knows that the time it takes for a communication signal to travel between SAT-1 and SAT-2 is 113.74 milliseconds and that the angle between the direction "connecting" him to SAT-1 and the "line connecting SAT-1 to SAT-2" is 66.15 degrees. Assuming that all satellite signals travel at the speed of light in vacuum, which is 2.9979 × 108 m/s, determine the following:

(a) What is the distance in "kilometers (km)," between SAT-1 and SAT-2, along an "imaginary straight line" connecting them?

hat is the distance, between SAT-2 and the technician? Give your answer in "km."

(c) Let the direction pointing from the technician to SAT-1 be Direction 1.

Let the direction pointing from the technician to SAT-2 be Direction 2.

What is the angle, in degrees, between Directions 1 and 2?

On mars, a force scale is used to determine the mass of an object. The acceleration due to gravity on mars is 3.711 m/s/s. If the scale reads 245.8 Newtons, what is the objects mass in kg?

Answers

On Mars, a force scale is used to determine the mass of an object. The acceleration due to gravity on mars is 3.711 m/s/s.

If the scale reads 245.8 Newtons, the object's mass in kg can be determined as follows;

Since weight can be calculated using the formula

W = m * g,

where W is weight, m is mass, and g is acceleration due to gravity.The acceleration due to gravity on mars is 3.711 m/s/s, so the weight of the object on Mars is

;W = m * g245.8 = m * 3.711m = 245.8/3.711m = 66.1789 kg

Therefore, the mass of the object on Mars is 66.1789 kg.

To know more about orce scale visit:

https://brainly.com/question/16143984

#SPJ11

A car driving at 80.0 m/s slams the brakes, and it takes the car 2.50 seconds to fully stop. How far does the car travel from the moment it hit the brakes, in feet? (Note: 1 meter =3.28 feet. )

Answers

A car driving at 80.0 m/s slams the brakes, and it takes the car 2.50 seconds to fully stop and therefore, the car travels  a distance of 328.0 feet from the moment it hit the brakes.

The given velocity is v = 80.0 m/s. The time is taken to come to a stop is t = 2.50 seconds.

The distance traveled by the car can be calculated using the formula as given below: s = (v / 2) * t

Here, s is the distance traveled by the car, v is the initial velocity of the car, and t is the time taken to stop the car.

Substituting the given values, we get: s = (80.0 / 2) * 2.50s = 100.0 m

To convert the value of distance in feet, we need to multiply it by the conversion factor (1 meter = 3.28 feet). Therefore, the distance traveled by the car from the moment it hit the brakes is given by:

s = 100.0 m × 3.28 feet/m = 328.0 feet.

Hence, the car travels 328.0 feet from the moment it hit the brakes.

More on distance: https://brainly.com/question/33190985

#SPJ11

If a liquid enters a pipe of diameter 5 cm with a velocity 1.2 m/s, what will it’s velocity at the exit if the diameter reduces to 2.5 cm?

1. 1.2 m/s
2. 4.8 m/s
3. 4 m/s
4. None of the above

Answers

A liquid enters a pipe of diameter 5 cm with a velocity 1.2 m/s, its velocity at the exit if the diameter reduces to 2.5 cm will be 4.8 m/s (Option B).

Let's calculate the velocity at the exit when the diameter reduces from 5 cm to 2.5 cm.

Given:

Entrance diameter ([tex]D_{entrance[/tex]) = 5 cm = 0.05 m

Entrance velocity ([tex]V_{entrance[/tex]) = 1.2 m/s

Exit diameter ([tex]D_{exit[/tex]) = 2.5 cm = 0.025 m

Using the principle of continuity, we can write:

([tex]D_{entrance[/tex]/2)² * [tex]V_{entrance[/tex]= ([tex]D_{exit[/tex]/2)² * [tex]V_{exit[/tex]

Plugging in the values:

(0.05/2)² * 1.2 = (0.025/2)² * [tex]V_{exit[/tex]

(0.025)² * 1.2 = (0.0125)² * [tex]V_{exit[/tex]

0.000625 * 1.2 = 0.00015625 * [tex]V_{exit[/tex]

0.00075 = 0.00015625 * [tex]V_{exit[/tex]

[tex]V_{exit[/tex]≈ 4.8 m/s

Therefore, the exit velocity of the liquid at the exit, when the diameter reduces to 2.5 cm, is approximately 4.8 m/s. Thus, the correct answer is option 2.


Learn more about exit velocity here:

https://brainly.com/question/33284482

#SPJ11

Other Questions
Suppose the Federal Reserve increases the amount of reserves by $100 million and the total moncy supply increases by $300 million. Instructions: Enter your answers as a whole number. a. What is the money multiplier? b. Using the money multiplief from part a, how much will the money supply change if the Federal Reserve increases reserves by $30 million? t/f By 1840, 40 percent of Americans lived west of the Appalachian Mountains. "You have purchased 20 shares of Tesla for $800 per share in2020. The company paid 10% stock dividend and 20% cash dividend in2020. You sold 50% of the share in 2021 at $750 each. Afterwards,the com" Sensations of the forces of gravity and linear acceleration are detected in theA) semicircular canals.B) cochlea.C) ossicles.D) saccule and utricle.E) organ of Corti. As many of you are aware, due to measures to combat Covid, many governments incurred steep deficits which added to the debt. Some governments are now contemplating tax increases to help reduce the deficit and/or debt. Possible ways of increasing revenue is to increase income taxes and/or sales taxes such as the GST/HST. Sources of income that taxes are paid on include labour (work) as well as business profits and investment earnings. Assuming that taxes are to be raised, which tax increase would be least detrimental to long term economic growth, a GST/HST increase or an increase in income tax? Assume that either of the increases would be revenue neutral, i.e., the federal government would take in the same amount of revenue with either tax that is raised. You are to use as many economic tools that you have learned in this course to justify your argument. You are to back up your argument with sound economic reasoning and use concepts learned in this course. You are quite welcome and encouraged to utilize outside sources. Please be sure to reference your sources. Your assignment should be at least 700 words in length. You have just matched all of the numbers in the Mega Zillions lottery. The Jackpot was $62,000,000. Your choices are to take your prize in equal annual installments over the next 30 years, or to receive an immediate check for $20,000,000. Assuming a discount rate of 9.6%, and ignoring the effect of taxes, which option is financially optimal? Multiple Choicea. The two options are worth exactly the same amountb. Immediate checkc. Insufficient data to make a determinationd. Installments _________ is the shortest book in the old testament. a) E-waste has been identified as one of the main contributors to the negative impact on our environment and our society. For example, the improper disposal of electronic products leads to the possibility of damaging the environment. In addition to this, e-waste is placed in landfills, exposing the environment to toxins. As a result of e-waste, there are regulations for the disposal of electronic and electrical equipment at the end of its life. Discuss the potential e-waste products may generate, and how would you minimise these negative impacts to our society and the environment. If applicable use an electronic device as an example, provide illustration(s) and example calculation(s) to support your written report. (approximately 400 words) b) WTS Ltd is a small-scale wind turbine shafts manufacturer, operates in 2 rotating shifts per day, i.e. 8 hours per shift. To determine a specification for the wind turbine shafts, the company must determine both a functional tolerance and customer loss. The customer loss, Ao, is the average loss occurring during the manufacturing of the shafts. The company's manufacturing target is 100 shafts per shift. The average cost to the consumer is 100 per shaft due to defect. The functional tolerance, To is set with an acceptable level of 2 shafts. * Given that: L=k* (y-m) ? ; k= (Aol (T.)2); L = Loss function y=reported value; m = mean value (average) (i) (ii) What is the loss imparted to society per manufacturing shift with 85shafts? The manufacturing tolerance is the economic break-even point for reworking scrap. Suppose the off-target wind turbine shaft can be adjusted at the end of the line for 25. At what tolerance (acceptable) level, should the manufacturer spend the 25 to adjust the shaft? Hint: The manufacturing tolerance is determined by setting L = 25. c) The bathtub curve is widely used in reliability engineering. It describes a particular form of the hazard function which comprises three parts. (i) Illustrate a diagram to represent the Bathtub curve. (ii) What is the purpose of the Bathtub? Define the bid-ask spread. How does the quoted spread differ from the effective spread? How is the bid-ask spread determined in equity markets? Hint: you should refer to the components of the bid-ask spread in your response. How does the bid-ask spread relate to information asymmetry? Use your own words. Limit your response to 500 words. Which of the following is characteristic of a third-generation jail?A.) It uses podular housing designs and remote supervision.B.) It is designed to minimize interaction between inmates and jail staff.C.) The cells are aligned in long, straight rows, with walkways in the front of the cells.D.) Correctional officers are located in the housing unit in direct contact with inmates. A speeding truck slams on the brakes and accelerates at 6.50 m/s^2 before coming to a stop. It leaves skid marks on the pavement that are 35.5 m long. How fast was the truck going before it slammed on the brakes? Your Answer: Answer units Match the following: A constraint that Solver must enforce to reach the target value. A coll containing a variable whose value changes until Solver optimizes the value in the objective cell An add-in application that manipulates variables based on constraints to find the optimal solution to a problem A data analysis tool that provides various results based on changing one variable A set of values that represent a possible situation The cell that contains the formula-based value that you want to maximize, minimize, or set to a value in Solver Finds the highest lowest, or exact value for one particular result by adjusting values for selected variables, ABC Corp has bonds on the market with 7.5 years to maturity, a YTM of 8 percent, and a current price of $970. The face value is $1,000. The bonds make semi-annual (every six months) payments. What must be the dollar coupon amount every sixmonths for an ABC bond? Hint: A YTM of 8% for a semiannual bond is a reporting convenience. It implies the actual 6 month return is 4%. You need to use the annuity formula to solve this one. John bought a new car for $35000. The value of the car depreciates linearly overtime. After ten years, the car has a salvage value of $4000. The value of the car afterseven years was ____ which of the following techniques might a service or retail organization use to make a location decision? Assume that the probability of a being born with Genetic Condition B is p = 1/12 . A study looks at a random sample of 729 volunteers.Find the most likely number of the 729 volunteers to have Genetic Condition B. (Round answer to one decimal place.) =Let X represent the number of volunteers (out of 729) who have Genetic Condition B. Find the standard deviation for the probability distribution of X . (Round answer to two decimal places.) =Use the range rule of thumb to find the minimum usual value 2 and the maximum usual value +2. Enter answer as an interval using square-brackets only with whole numbers. usual values = A business student is interested in estimating the 99% confidence interval for the proportion of students who bring laptops to campus. He wants a precise estimate and is willing to draw a large sample that will keep the sample proportion within five percentage points of the population proportion. What is the minimum sample size required by this student, given that no prior estimate of the population proportion is available? (You may find it useful to reference the z table. Round up final answer to nearest whole number.) how does additional debt or relief of debt affect a partner's basis? Which one of the following firms/products reflects a global marketing orientation?A) a company promoting Latino jazz musicalsB) a Japanese to English translation softwareC) a firm producing highly cost-effective and durable computers to attract students and young people under 25D) skin-care products aimed at African American womenE) a famous restaurant in Singapore specializing in Eurasian fusion food The diameter of a thin wire is measured in a physics laboratory by a student. The wire is held vertically in a holding frame in front of the laser beam. The laser light diffracts on the wire and produces a diffraction pattern on a white screen. The diffraction pattern is shown in the figure. The pattern is centered around the origin. The wavelength of the laser light is 567 nm, and the screen is 1.73 m away from the wire. What is the diameter of the wire? (Hint: one of the higher order diffraction minima lines up with a well defined x-value. Also, it is perfectly safe to use the small angle approximation: sin()=tan()). (in mm )