A forward contract on a dividend-paying stock was entered into some time ago, it currently has 9 months to maturity. The risk free rate of interest (with continuous compounding) is 5% per annum, the stock price is 65 dirhams and the delivery price is 70 dirhams. The average dividend rate is 2%. (a) Determine the value of the long forward contract. (b) Determine also the value of the short forward contract in this case. (c) What is the relationship between the two values?

Answers

Answer 1

(a) The value of the long forward contract can be calculated using the formula:

Value of Long Forward = (Spot Price - Delivery Price) * e^(-r * T) - Dividend Value

Where:

Spot Price is the current price of the stock (65 dirhams)

Delivery Price is the agreed upon price for the forward contract (70 dirhams)

r is the risk-free interest rate (5% per annum)

T is the time to maturity in years (9 months = 9/12 = 0.75 years)

Dividend Value is the present value of the expected dividends during the life of the contract

To calculate the Dividend Value, we multiply the average dividend rate (2%) by the stock price (65 dirhams) and discount it to present value using the risk-free interest rate and time to maturity.

(b) The value of the short forward contract is the negative of the value of the long forward contract, since the short position takes the opposite position to the long position.

Value of Short Forward = -Value of Long Forward

(c) The relationship between the two values is that they are equal in magnitude but opposite in sign. This is because the long and short positions in a forward contract are essentially taking opposite views on the future price of the underlying asset. The long position benefits from an increase in the price, while the short position benefits from a decrease in the price. Therefore, the value of the long forward contract and the value of the short forward contract offset each other.

Know more about Dividend Value here:

https://brainly.com/question/29742775

#SPJ11


Related Questions

If x, y, z be in HP prove that (y+x)/(y-x)+(y+z)/(y-z) = 2 ​

Answers

If x, y, and z be in Harmonic progression, then the equation (y+x)/(y-x)+(y+z)/(y-z) = 2 ​is satisfied.

The reciprocal of Harmonic progression (HP) is arithmetic progression (AP),

Let d be a common difference,

1/x, 1/y, and 1/z are in AP.

1/y - 1/x = d

1/z - 1/y = d

where d is the common difference,

Evaluating equations.

(y+x)/(y-x) + (y+z)/(y-z)

[(y+x)(y-z) + (y+z)(y-x)] / [(y-x)(y-z)]

[2y² - 2xz] / [(y-x)(y-z)]

Substituting value of d,

[2y² - 2xz] / [(-d)(d)]

[2y² - 2xz] / (d²) = 2

By solving, we get

y² - xz = d²

The common difference in the AP is equal to the difference between two successive terms.

Therefore, d² = xz and d² = y²

y² - xz = xz

y² = 2xz

= 2

Hence, (y+x)/(y-x)+(y+z)/(y-z) = 2.

To learn more about Harmonic progression, here:

https://brainly.com/question/27927304

#SPJ1

In (r, q) coordinates A = (83.0, 344 degrees) and B = (69.0, 2.90E2 degrees). Given R = = A - B A - (a) In polar coordinates the resultant vector is R = (₁ Rr, Re Ro). What is the radial component, Rr?

Answers

To find the radial component, Rr, of the resultant vector R in polar coordinates, we need to subtract the radial components of the vectors A and B. Rr represents the magnitude of the radial displacement in the polar coordinate system.

In polar coordinates, a vector is represented by its radial distance from the origin (Rr) and its angle from the positive x-axis (Re). We are given the coordinates of vectors A and B in (r, q) form.

Vector A is given as A = (83.0, 344 degrees) and vector B is given as B = (69.0, 290 degrees).

To find the resultant vector R = A - B, we subtract the radial components and add the angular components.

Rr = |RrA - RrB|

= |83.0 - 69.0|

= |14.0|

= 14.0

The radial component, Rr, of the resultant vector R is 14.0 in the given polar coordinate system. It represents the magnitude of the radial displacement or distance from the origin.

Learn more about Vector here:

https://brainly.com/question/24256726

#SPJ11

Exercise. For now we focus on the 2nd integral -5x + 1 1₂ dx x² + 4x + 9 It may not be obvious how to proceed. Since the denominator is a quadratic, one path forward is to try trig substitution. First we complete the square on the denominator. x² + 4x +9= x² + 4x +4-4+9= (x+2 )² + 5 I Hence we should use the trig substitution x + 2 = sqrt(5)tan(theta Thus dx = (5)sec^2(theta) do. The integral in terms of 0 is: -5x + 1 S dx ? do = x² + 4x +9 and evaluating this integral, we find: -5√5 tan(0) + 11 √5 do = ? (Leave the result in terms of 0 and use C for the constant of integration)

Answers

The integral of -5x + 1 / (x^2 + 4x + 9) can be evaluated as follows:

Complete the square on the denominator: x^2 + 4x + 9 = (x + 2)^2 + 5.

Substitute x + 2 = sqrt(5) * tan(theta) and dx = sqrt(5) * sec^2(theta) d(theta) in the integral.

The integral becomes -5 * sqrt(5) * tan(theta) + 11 * sqrt(5) / 5.

Integrate this expression with respect to theta to find the antiderivative.

Substitute back theta = tan^(-1)((x + 2) / sqrt(5)) and simplify to express the answer in terms of x.

Unfortunately, without the specific limits of integration or the result of the integration, I cannot provide the final answer.

To know more about Expression visit-

brainly.com/question/14083225

#SPJ11

"Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by y = 0, y = sin(x), and 0 < x < π about the line y = -2. Please also provide a sketch of the region and the line of rotation."

Answers

The integral for the volume generated is V = ∫[0, π] 2π(x + 2) [sin(x)] dx

How to set up the integral for the volume generated

From the question, we have the following parameters that can be used in our computation:

y = 0 and y = sin(x)

Also, we have

The line u = -2

Set the equations to each other

So, we have

sin(x) = 0

When evaluated, we have

x = 0 and x = π

For the volume generated from the rotation around the region bounded by the curves, we have

V = ∫[a, b] 2π(x + 2) [g(x) - f(x)] dx

This gives

V = ∫[0, π] 2π(x + 2) [sin(x) - 0] dx

So, we have

V = ∫[0, π] 2π(x + 2) [sin(x)] dx

Hence, the integral for the volume generated is V = ∫[0, π] 2π(x + 2) [sin(x)] dx

Read more about volume at

brainly.com/question/11942113

#SPJ1

A painter needs to find the area of the gable end of a house. What is the area of the gable if it is a triangle with two sides of 42 ft that meet at a 105° angle?

Answers

The area of the gable end of the house is approximately 868.32 square feet.

To find the area of a triangle, we use the formula:Area = (1/2) x base x Height Where the base is one of the sides of the triangle, and the height is the perpendicular distance from the base to the opposite vertex.

Given that the triangle is the gable end of a house, we assume that the two sides of the triangle are the sides of the roof, and the 105° angle is the angle between the roof and the vertical wall of the house.

Thus, the height of the triangle is the distance between the roof and the wall of the house.Let's draw a diagram to illustrate this:Now we need to find the height of the triangle.

We can do this by using trigonometry, specifically the sine function:

sin 105° = opposite/hypotenuse where the opposite side is the height we want to find, and the hypotenuse is one of the sides of the triangle that we know:

sin 105° = height/42Rearranging,

we get:height = sin 105° x 42

Using a calculator, we find that:height ≈ 40.96 Ft Now we can plug in the values for the base and height into the formula for the area of a triangle:

Area = (1/2) x base x height Area

= (1/2) x 42 x 40.96Area ≈ 868.32 square feet

To learn more about : area

https://brainly.com/question/25292087

#SPJ8

In your answers below, for the variable λ type the word lambda; for the derivative ddxX(x) type X' ; for the double derivative d2dx2X(x) type X''; etc. Separate variables in the following partial differential equation for u(x,t): t2uxx+x2uxt−x2ut=0

Answers

The given partial differential equation is t^2u_xx + x^2u_xt - x^2u_t = 0. In this equation, u(x,t) represents the unknown function of two variables, x and t.

To express the equation in a standardized notation, we replace the partial derivatives with their respective symbols: u_xx represents the second partial derivative of u with respect to x, u_xt represents the mixed partial derivative of u with respect to x and t, and u_t represents the partial derivative of u with respect to t.

The equation can be rewritten as t^2u_xx + x^2u_xt - x^2u_t = 0. This form highlights the differentiating variables and their coefficients. It represents a partial differential equation involving second-order derivatives with respect to x and first-order derivatives with respect to t.

To solve this partial differential equation, various methods such as separation of variables, method of characteristics, or numerical methods can be employed, depending on the specific problem and boundary conditions.

To know more about partial differential equations click here: brainly.com/question/30226743

#SPJ11

what correctly displays a realationship between sets of real numbers

Answers

A relationship between sets of real numbers can be accurately represented through mathematical concepts such as subsets, intersections, unions, and equalities.

When comparing sets of real numbers, various mathematical concepts help express the relationship between them. One fundamental concept is the subset. A set A is considered a subset of another set B if every element in A is also an element in B. This relationship is denoted as A ⊆ B. For example, if A = {1, 2} and B = {1, 2, 3}, then A is a subset of B since all the elements in A are also present in B.

Another useful concept is the intersection of sets. The intersection of sets A and B, denoted as A ∩ B, refers to the set of elements that are common to both sets. For instance, if A = {1, 2, 3} and B = {2, 3, 4}, the intersection of A and B would be {2, 3} since those are the elements shared by both sets.

Furthermore, the union of sets provides a way to combine elements from multiple sets. The union of sets A and B, denoted as A ∪ B, represents the set that contains all the elements from both sets without duplication. For example, if A = {1, 2, 3} and B = {3, 4, 5}, the union of A and B would be {1, 2, 3, 4, 5}.

Lastly, the concept of equality between sets implies that two sets have exactly the same elements. If all the elements of set A are present in set B, and vice versa, then A = B. However, it's important to note that the order of elements within a set is irrelevant for equality.

By utilizing these mathematical concepts, one can accurately represent and analyze the relationship between sets of real numbers.

Learn more about subsets here:

https://brainly.com/question/28705656

#SPJ11

1. y=logb(2x-6) and b>1 what would the domain be in set builder notation?
2. what would be the y-intercept of this graph: f(n)=a^n + b where a is not equal to 1 and a > 0

Answers

The domain of the function y = log_b(2x – 6), where b > 1, is {x | x > 3}.
The y-intercept of the function f(n) = a^n + b, where a is not equal to 1 and a > 0, is the point (0, b).

The domain of the logarithmic function y = log_b(2x – 6), where b > 1, refers to the set of all valid input values for x. In this case, we need to ensure that the argument of the logarithm, 2x – 6, is greater than zero.

This is because the logarithm function is only defined for positive values.
To determine the domain, we solve the inequality 2x – 6 > 0:
2x – 6 > 0
2x > 6
X > 3

Therefore, the domain is expressed in set-builder notation as {x | x > 3}, meaning all values of x greater than 3.

The y-intercept of the function f(n) = a^n + b, where a is not equal to 1 and a > 0, is the point where the function intersects the y-axis, or when n = 0.

To find the y-intercept, we substitute n = 0 into the function:
F(0) = a^0 + b = 1 + b = b

Therefore, the y-intercept of the graph is (0, b), indicating that the y-coordinate is equal to the constant term b.


Learn more about logarithmic function here : brainly.com/question/30339782

#SPJ11




IF I SPEND $6,300 OUT OF $21,000 WHAT PERCENT DID I SPEND

Answers

Answer: 30%

Step-by-step explanation: Solution for 6300 is what percent of 21000: 6300:21000*100 = (6300*100):21000 = 630000:21000 = 30. Now we have: 6300 is what percent of 21000 = 30.

if we take 21000(origin amount) to be the 100%, what's 6300 off of it in percentage?

[tex]\begin{array}{ccll} Amount&\%\\ \cline{1-2} 21000 & 100\\ 6300& x \end{array} \implies \cfrac{21000}{6300}~~=~~\cfrac{100}{x} \\\\\\ \cfrac{10}{3} ~~=~~ \cfrac{100}{x}\implies 10x=300\implies x=\cfrac{300}{10}\implies x=30[/tex]

(b) Find the greatest number that divides 300, 560 and 500 without leaving a remainder. ​

Answers

Greatest number that divides 300, 560 and 500 is 20 .

Given numbers : 300, 560 and 500

First let’s find prime factors of 300,560 and 500

300 = 2^2 *3^1 *5^2

560= 2^4 * 7^1 *5^1

500 = 2^2 * 5^3

So,

Here highest common power of 2 is 2

Here highest common power of 3 is 0

Here highest common power of 5 is 1

Here highest common power of 7 is 0

Thus HCF (300, 560 and 500) = 2^2 * 5^1 * 3 ^0 * 7 ^0

=4*5*1*1

= 20

Know more about HCF,

https://brainly.com/question/26431349

#SPJ1

A dice game involving rolling 2 dice pays 6 units if you roll a
total of 7, pays zero if you roll a 2 or 12, and you lose one unit
otherwise. Find the expected value and standard deviation of a unit
b

Answers

The probability distribution for rolling two dice is as follows:Roll 2: 1/36Roll 3: 2/36Roll 4: 3/36Roll 5: 4/36Roll 6: 5/36Roll 7: 6/36Roll 8: 5/36Roll 9: 4/36Roll 10: 3/36Roll 11: 2/36Roll 12: 1/

The formula for expected value is E(X) = Σ(x * P(x)), where x is the value of the outcome and P(x) is the probability of that outcome occurring.

Using the probability distribution from above, we can calculate the expected value:

Using the same probability distribution, we can calculate the standard deviation:

Standard deviation = ≈ 2.42 units

Summary: The expected value of rolling two dice in the described game is 0.5 units, while the standard deviation is approximately 2.42 units.

Learn more about probability click here:

https://brainly.com/question/13604758

#SPJ11

Problem Three. Evaluate
∫∫Ώ (x + y)² dxdy
where isΏ the parallelogram bounded by the lines 2x + 3y = 1, 2x + 3y - 3 3x - 2y = 0, 3x - 2y = 4.

Answers

The parallelogram bounded by the lines 2x + 3y = 1, 2x + 3y - 3 3x - 2y = 0, 3x - 2y = 4,0 ≠ -4, there is no intersection point between these two lines.

The double integral ∫∫Ώ (x + y)² dxdy over the region Ώ, which is the parallelogram bounded by the lines 2x + 3y = 1, 2x + 3y - 3 = 0, 3x - 2y = 0, and 3x - 2y = 4,  to find the limits of integration for x and y.

To determine the limits of integration,  the intersection points of the given lines.

The intersection of the lines 2x + 3y = 1 and 2x + 3y - 3 = 0:

Subtracting the second equation from the first equation,

(2x + 3y) - (2x + 3y - 3) = 1 - 0

3 = 1

Since 3 ≠ 1, there is no intersection point between these two lines.

find the intersection of the lines 2x + 3y = 1 and 3x - 2y = 0:

Solving the system of equations,

2x + 3y = 1 ...(1)

3x - 2y = 0 ...(2)

Multiplying equation (1) by 3 and equation (2) by 2,

6x + 9y = 3 ...(3)

6x - 4y = 0 ...(4)

Subtracting equation (4) from equation (3),

(6x + 9y) - (6x - 4y) = 3 - 0

13y = 3

Simplifying,

y = 3/13

Substituting this value of y into equation (2),  solve for x:

3x - 2(3/13) = 0

3x = 6/13

x = 2/13

Therefore, the intersection point of the lines 2x + 3y = 1 and 3x - 2y = 0 is (x, y) = (2/13, 3/13).

the intersection of the lines 3x - 2y = 0 and 3x - 2y = 4:

Subtracting the second equation from the first equation,

(3x - 2y) - (3x - 2y) = 0 - 4

0 = -4

To know more about parallelogram  here

https://brainly.com/question/28854514

#SPJ4

The following data show the monthly salaries of a sample of IBM
graduates.
IBM Student
Monthly Salary (in 1,000s Rupees)
A. 78
B. 87
C. 80
D. 100
E. 104
F. 88

Answers

The median monthly salary of the IBM graduates in the given data set is 87.5 thousand rupees.

To find the median of the given data set, the first step is to arrange the given data set in ascending order.

The data set is:{78, 87, 80, 100, 104, 88}

After arranging the data set in ascending order, it becomes:{78, 80, 87, 88, 100, 104}

There are six data points in the given data set.

To find the median, the middle data point must be found. In this case, there are two middle data points because there are an even number of data points.

To find the median of the data set, the two middle data points must be averaged.

The two middle data points are 87 and 88.

To find the average of these two data points, add them together and divide by 2:

(87 + 88)/2 = 175/2 = 87.5

Therefore, the median monthly salary of the IBM graduates in the given data set is 87.5 thousand rupees.

Know more about median here:

https://brainly.com/question/26177250

#SPJ11

A particle moves in a straight line with velocity v(t) = t^2 – 2t – 3 cm/s where t > 0 (a) Determine the point at which the particle has a constant velocity (b) After 2 seconds, the particle is located 3cm to the left of the origin. Determine s(t) (c) Calculate the total distance travelled by the particle in the first 5 seconds of motion

Answers

The particle has a constant velocity at t = 1s. The position function s(t) is s(t) = (t^3)/3 - t^2 - 3t + 7. The total distance travelled by the particle in the first 5 seconds of motion is approximately 11.67 cm.

(a) To determine the point at which the particle has a constant velocity, we need to find when its acceleration is equal to zero. This will allow us to locate the point at which the particle has a constant velocity. The derivative of the velocity function is what determines the acceleration, and it looks like this: a(t) = v'(t) = 2t - 2. After solving for t and setting this equal to zero, we see that t is equal to 1s.

(b) We need to integrate the velocity function in order to determine s(t), which is as follows: s(t) = ∫v(t)dt = (t^3)/3 - t^2 - 3t + C. To solve for C, we can make use of the starting condition that states that after two seconds, the particle will be situated three centimetres to the left of the origin. -3 = (2^3)/3 - 2^2 - 3*2 + C, so C = 7. Therefore, s(t) equals (t3)/3 minus t2 minus 3t plus 7.

(c) In order to determine the entire distance that the particle travelled in the first five seconds of its motion, we need to assess the difference between |s(5)| and |s(0)|, which is equal to |(53)/3 - 52 - 35 + 7 - (03)/3 + 02 + 30 - 7|, which is equal to 11.67 cm.

Learn more about function here:

https://brainly.com/question/30721594

#SPJ11

This problem illustrates what happens to an unbiased estinator when it undergoes a nonlinear transformation. In Example 2.1, if we choose to estimate the unknown parameter 0 = A² by (Σετ) 9 can we say that the estimator is unbiased? What happens as N ?

Answers

In Example 2.1, the estimator (Σε/N)² for estimating A² is unbiased, as its expected value equals the true parameter value. It remains unbiased as the sample size N increases.



In Example 2.1, we are considering estimating the unknown parameter θ = A² using the estimator (Σε/N)², where ε represents the random error and N is the sample size. To determine if the estimator is unbiased, we need to check if its expected value equals the true parameter value.

The estimator can be rewritten as [(Σε)²]/N². Since the errors ε are assumed to be unbiased with zero mean, E(ε) = 0. Therefore, E(Σε) = N * E(ε) = 0, and the expected value of the estimator becomes E([(Σε)²]/N²) = E(0) = 0.

Thus, we can conclude that the estimator (Σε/N)² is unbiased for estimating A² since its expected value equals the true parameter value.

As the sample size N increases, the sum of errors Σε tends to increase in magnitude, resulting in a larger numerator. However, the denominator N² also increases, which compensates for the increase in the numerator, keeping the estimator unbiased. In other words, the bias of the estimator remains zero even as N increases.

It is worth noting that the consistency of the estimator, i.e., whether it converges to the true value as N approaches infinity, is a separate property that should be examined separately.

To learn more about parameter value click here

brainly.com/question/14283309

#SPJ11

the quadratic formula gives which roots for the equation 2x^2 7x=-2

Answers

The quadratic formula gives the roots -7.17 and 0.17 for the equation [tex]2x^2[/tex] + 7x = -2.

To find the roots of the quadratic equation [tex]2x^2[/tex]+ 7x = -2, we can use the quadratic formula, which states that for an equation of form [tex]ax^2[/tex] + bx + c = 0, the roots can be found using the formula:

x = (-b ± √([tex]b^2[/tex] - 4ac)) / (2a)

In the given equation, we have a = 2, b = 7, and c = -2. Plugging these values into the quadratic formula, we get:

x = (-7 ± √([tex]7^2[/tex] - 4(2)(-2))) / (2(2))

= (-7 ± √(49 + 16)) / 4

= (-7 ± √65) / 4

Calculating the square root of 65, we get √65 ≈ 8.06. Substituting this value back into the equation, we have:

x ≈ (-7 ± 8.06) / 4

This gives us two possible solutions:

x ≈ (-7 + 8.06) / 4 ≈ 1.06 / 4 ≈ 0.27

and

x ≈ (-7 - 8.06) / 4 ≈ -15.06 / 4 ≈ -3.76

Therefore, the roots of equation [tex]2x^2[/tex] + 7x = -2 are approximately x = -3.76 and x = 0.27, rounded to two decimal places.

Learn more about quadratic equation here:

https://brainly.com/question/29269455

#SPJ11

Which matrix represents reflection about the ry-plane?

Answers

The matrix that represents reflection about the yz-plane, also known as the ry-plane, is:

[ -1  0  0 ]
[  0  1  0 ]
[  0  0 -1 ]

To understand the matrix that represents reflection about the yz-plane (ry-plane), we need to consider the coordinate system. In a three-dimensional Cartesian coordinate system, the yz-plane is a plane that lies parallel to the x-axis. Reflection about this plane involves flipping the sign of the x-coordinate while leaving the y and z coordinates unchanged.
The matrix representation of this reflection operation can be obtained by considering the effect it has on the standard basis vectors. The standard basis vectors are the vectors that have a single component equal to 1, and all other components equal to 0. In this case, we consider the basis vectors i, j, and k, which represent the unit vectors along the x, y, and z axes, respectively.
When the reflection operation is applied to these basis vectors, the resulting vectors are:i -> -i
j -> j
k -> -k
By arranging these resulting vectors as columns of a matrix, we obtain the reflection matrix for the yz-plane:[ -1  0  0 ]
[  0  1  0 ]
[  0  0 -1 ]
Therefore, this matrix represents reflection about the yz-plane or ry-plane in a three-dimensional Cartesian coordinate system.

learn.more about matrix here

https://brainly.com/question/29132693



#SPJ11

Solve the following system by the method of reduction.
2x - 6z = 24
x - 3y - 3z = 30
x + y -3z = 6
3x + y + z = 0
Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice.
A. x = ___, y = ___, z = ___
(Type integers or fractions.)
B. x=r, y= ___, z= ___
(Type integers or fractions.)
C. There is no solution.

Answers

In order to solve the given system of equations by the method of reduction, we have to use the following steps:Step 1: Convert the given system of equations into an augmented matrix form.Step 2: Apply the row operations to the augmented matrix to obtain a matrix in the row echelon form.Step 3: Find the solution of the system of equations.The augmented matrix form of the given system of equations is:\[\begin{bmatrix} 2 & 0 & -6 & 24 \\ 1 & -3 & -3 & 30 \\ 1 & 1 & -3 & 6 \\ 3 & 1 & 1 & 0 \end{bmatrix}\]Performing the row operation - R1 + (1/2) R2, we get,\[\begin{bmatrix} 2 & -3/2 & -9/2 & 39 \\ 1 & -3 & -3 & 30 \\ 1 & 1 & -3 & 6 \\ 3 & 1 & 1 & 0 \end{bmatrix}\].

Performing the row operation - R1 + (1/2) R3, we get,\[\begin{bmatrix} 2 & -3/2 & -9/2 & 39 \\ 1 & -3 & -3 & 30 \\ 0 & 5/2 & -9/2 & -33/2 \\ 3 & 1 & 1 & 0 \end{bmatrix}\]Performing the row operation - R1 + (3/2) R4, we get,\[\begin{bmatrix} 2 & -3/2 & -9/2 & 39 \\ 1 & -3 & -3 & 30 \\ 0 & 5/2 & -9/2 & -33/2 \\ 0 & 5 & 11 & -117 \end{bmatrix}\]Performing the row operation - R2 + (1/2) R3, we get,\[\begin{bmatrix} 2 & -3/2 & -9/2 & 39 \\ 1 & -2 & -6 & -3 \\ 0 & 5/2 & -9/2 & -33/2 \\ 0 & 5 & 11 & -117 \end{bmatrix}\]Performing the row operation - (2/5) R3 + R4, we get,\[\begin{bmatrix} 2 & -3/2 & -9/2 & 39 \\ 1 & -2 & -6 & -3 \\ 0 & 5/2 & -9/2 & -33/2 \\ 0 & 0 & 1 & -18 \end{bmatrix}\].

To know more about reduction visit :-

https://brainly.com/question/8963217

#SPJ11

Let f(x) = (x + 1)² Give the largest domain on which f is one-to-one and non-increasing. ___
Give the range of f. ___
Find the inverse of f restricted to the domain above. f-¹(x) = ___
Give the domain of f-¹. ___
Give the range of f-¹. ___

Answers

The function f(x) = (x + 1)² is given, and we need to determine its domain on which it is one-to-one and non-increasing, as well as find its range. Additionally, we need to find the inverse of f restricted to its domain, determine the domain of the inverse function, and find its range.

To find the domain on which f is one-to-one and non-increasing, we need to consider the behavior of the function. The function f(x) = (x + 1)² is a quadratic function with a vertex at (-1, 0) and opens upward. Since it is a one-to-one function, it means that it passes the horizontal line test, and each y-value corresponds to a unique x-value. Therefore, the largest domain on which f is one-to-one and non-increasing is the set of all real numbers, (-∞, ∞).

Next, let's find the range of f. Since the function is a quadratic that opens upward, its minimum value occurs at the vertex (-1, 0), and it increases as x moves away from the vertex. Hence, the range of f is [0, ∞), including zero and all positive real numbers. To find the inverse of f restricted to its domain, we interchange the roles of x and y in equation f(x) = (x + 1)² and solve for y. Let's proceed with the steps:

y = (x + 1)²

Swap x and y:

x = (y + 1)²

Take the square root of both sides:

√x = y + 1

Subtract 1 from both sides:

√x - 1 = y

Therefore, the inverse function of f, restricted to its domain (-∞, ∞), is given by f⁻¹(x) = √x - 1. The domain of f⁻¹ is the set of all non-negative real numbers, [0, ∞) since we took the square root, which requires non-negative values. Lastly, the range of f⁻¹ is the set of all real numbers, (-∞, ∞), because as x varies from 0 to ∞, the square root of x produces values from 0 to ∞, and subtracting 1 does not restrict the range. In summary, the largest domain on which f is one-to-one and non-increasing is (-∞, ∞), the range of f is [0, ∞), the inverse function f⁻¹(x) = √x - 1 has a domain of [0, ∞), and its range is (-∞, ∞).

Learn more about square root here:- brainly.com/question/29286039

#SPJ11

suppose that $f(x)$ is a polynomial that has degree $6$ and $g(x)$ is a polynomial that has degree $3$. if $h(x)$ is also a polynomial such that $f(g(x)) g(h(x)) h(f(x))$ is a polynomial of degree $36$, then what is the degree of the polynomial $h$?

Answers

The resulting polynomial will have a degree of is [tex]$g(h(x))$[/tex]a polynomial that results from substituting [tex]$h(x)$ into $g(x)$.[/tex][tex]$(\text{degree of } h(x)) \times 6$.[/tex]

To determine the degree of the polynomial $h(x)$, we need to analyze the degree of the composite polynomial [tex]$f(g(x))g(h(x))h(f(x))$.[/tex]

Let's break down the composite polynomial:

$f(g(x))$ is a polynomial that results from substituting $g(x)$ into $f(x)$. Since $g(x)$ is a polynomial of degree $3$ when substituted into $f(x)$ of degree $6$, the resulting polynomial will have a degree of [tex]$6 \times 3 = 18$.[/tex]

$g(h(x))$ is a polynomial that results from substituting $h(x)$ into $g(x)$. Since $h(x)$ is a polynomial of unknown degree when substituted into $g(x)$ of degree $3$, the resulting polynomial will have a degree of [tex]$3 \times (\text{degree of } h(x))$.[/tex]

$h(f(x))$ is a polynomial that results from substituting $f(x)$ into $h(x)$. Since $f(x)$ is a polynomial of degree $6$ when substituted into $h(x)$ of unknown degree, The resulting polynomial will have a degree of

[tex]$(\text{degree of } h(x)) \times 6$.[/tex]

To know more about degree of the polynomial:- brainly.com/question/31437595

#SPJ11

Find a matrix P, that diagonalize matrix A. Compute B = P-¹AP. Write clean, and clear. Show steps of calculations.
A = [9 -3 3]
[-3 6 -6]
[ 3 -6 6]

Answers

We are given matrix A and we need to find a matrix P that diagonalizes A. We will compute the matrix B = P⁻¹AP, where P is the matrix of eigenvectors of A.

This process involves finding the eigenvectors and eigenvalues of A, constructing P, and then computing B. We will show the step-by-step calculations. To diagonalize matrix A, we need to find a matrix P that consists of eigenvectors of A and compute the matrix B = P⁻¹AP. Let's go through the steps:

Step 1: Find the eigenvalues of matrix A:

To find the eigenvalues, we solve the characteristic equation det(A - λI) = 0, where λ is the eigenvalue and I am the identity matrix.

det(A - λI) = 0

|9-λ -3 3 |

|-3 6-λ -6|

| 3 -6 6-λ| = 0

Expanding the determinant and solving, we get the eigenvalues λ₁ = 0, λ₂ = 6, λ₃ = 15.

Step 2: Find the eigenvectors corresponding to each eigenvalue:

For each eigenvalue, we solve the equation (A - λI)X = 0, where X is the eigenvector.

For λ₁ = 0:

( A - 0I)X = 0

|9 -3 3 |

|-3 6 -6|

|3 -6 6 | X = 0

Solving this system, we find the eigenvector X₁ = [1 1 1].

For λ₂ = 6:

( A - 6I)X = 0

|3 -3 3 |

|-3 0 -6|

|3 -6 0 | X = 0

Solving this system, we find the eigenvector X₂ = [1 -2 1].

For λ₃ = 15:

( A - 15I)X = 0

|-6 -3 3 |

|-3 -9 -6|

|3 -6 -9| X = 0

Solving this system, we find the eigenvector X₃ = [-1 -2 1].

Step 3: Construct matrix P using the eigenvectors:

Matrix P is formed by placing the eigenvectors X₁, X₂, and X₃ as columns.

P = [1 1 -1]

[1 -2 -2]

[1 1 1]

Step 4: Compute matrix B = P⁻¹AP:

B = P⁻¹AP

B = P⁻¹(AP)

We compute P⁻¹ first:

P⁻¹ = (1/3) * [1 -1 0]

[0 1 -1]

[-1 1 1]

Then, we substitute the values into B = P⁻¹AP:

B = P⁻¹AP

B = (1/3) * [1 -1 0] * [9 -3 3]

[0 1 -1] [1 -2 1]

[-1 1 1] [1 1 1]

Multiplying the matrices, we get:

B = [6 0 0]

[0 0 0]

[0 0 15]

Learn more about eigenvectors here:- brainly.com/question/31043286

#SPJ11


Doppler redshift is the redshifting of spectra from objects
moving away from us, and cosmological redshift is the redshifting
of objects moving toward us.
Group of answer choices
True
Ques

Answers

The statement that Doppler redshift is the redshifting of spectra from objects moving away from us, and cosmological redshift is the redshifting of objects moving toward us is false.

Doppler redshift and cosmological redshift are two distinct phenomena related to the observed shift in the wavelength of light emitted by celestial objects. Doppler redshift occurs due to the relative motion between the source of light and the observer. When an object is moving away from the observer, the wavelength of the light it emits appears stretched, resulting in a redshift. Conversely, if the object is moving towards the observer, the wavelength appears compressed, leading to a blueshift.

On the other hand, cosmological redshift is caused by the expansion of the universe. As space itself expands, the wavelengths of light traveling through space also stretch, resulting in a redshift. This redshift is not directly related to the motion of objects towards or away from the observer.

Therefore, the statement that Doppler redshift is associated with objects moving away from us, and cosmological redshift is associated with objects moving towards us is incorrect.

Learn more about redshift here : brainly.com/question/30257423

#SPJ11

Representing a large auto dealer, a buyer attends car auctions. To help with the bidding, the buyer built a regression equation to predict the resale value of cars purchased at the auction. The equation is given below. Estimated Resale Price ($) = 20,000 - 2,050 Age (year), with p = 0.52 and se = $3,200 = Use this information to complete parts (a) through (c) below. (a) Which is more predictable: the resale value of one six-year-old car, or the average resale value of a collection of 16 cars, all of which are six years old? A. The resale value of one six-year-old car is more predictable because only one car will contribute to the error. B. The average of the 16 cars is more predictable by default because it is impossible to predict the value of a single observation. C. The average of the 16 cars is more predictable because the averages have less variation. D. The resale value of one six-year-old car is more predictable because a single observation has no variation. (b) According the buyer's equation, what is the estimated resale value of a six-year-old car? The average resale value of a collection of 16 cars, each six years old? The estimated resale value of a six-year-old car is $ (Type an integer or a decimal. Do not round.) The average resale value of a collection of 16 cars, each six years old is $ (Type an integer or a decimal. Do not round.) (c) Could the prediction from this equation overestimate or underestimate the resale price of a car by more than $2,250? O A. No. Since $2,250 is less than the standard error of $3,200, it is impossible for the regression equation to be off by more than $2,250. B. No. Since $2,250 is greater than the absolute value of the predicted slope, $2,050, it is impossible for the regression equation to be off by more than $2,250. C. Yes. Since $2,250 is less than the standard error of $3,200, it is quite possible that the regression equation will be off by more than $2,250. D. Yes. Since $2,250 is greater than the absolute value of the predicted slope, $2,050, it is quite possible that the regression equation will be off by more than $2,250.

Answers

The estimated resale value of a six-year-old car is $12,200. The prediction from this equation could potentially overestimate or underestimate the resale price of a car by more than $2,250.

(a) The average resale value of a collection of 16 six-year-old cars is more predictable than the resale value of one individual six-year-old car. This is because the average of multiple observations tends to have less variation and is more representative of the overall trend. When taking an average, the individual variations tend to cancel out, resulting in a more reliable estimate.

(b) According to the buyer's equation, the estimated resale value of a six-year-old car is $12,200. The average resale value of a collection of 16 six-year-old cars would be the same, $12,200, since the equation gives a fixed value for each six-year-old car.

(c) Yes, the prediction from this equation could potentially overestimate or underestimate the resale price of a car by more than $2,250. The standard error of the estimate (se) is $3,200, which indicates the typical amount of variation in the predicted values. Since $2,250 is less than the standard error, it is possible for the regression equation to be off by more than $2,250. The absolute value of the predicted slope ($2,050) is not directly related to the potential overestimation or underestimation. The standard error provides a more appropriate measure of the potential variability in the predictions.

Learn more about equation here:

https://brainly.com/question/28243079

#SPJ11

Determine whether the given function is exponential or not. If it is exponential, identify the value of the base a.
x H(x)
-1 8
0 13
1 18
2 23
3 28
a) exponential a = 13
b) exponential a = 5
c) exponential a = 8
d) not exponential

Answers



the correct answer is (d) not exponential. None of the options (a), (b), or (c) are applicable as they indicate an exponential function with a specific base value, but the given function does not exhibit exponential behavior.

ToTo determine whether the given function is exponential or not, we need to check if there is a consistent pattern in the relationship between x and H(x). Let's calculate the differences between consecutive values of H(x):

ΔH(x) = 13 - 8 = 5
ΔH(x) = 18 - 13 = 5
ΔH(x) = 23 - 18 = 5
ΔH(x) = 28 - 23 = 5

The differences between consecutive values of H(x) are constant, which suggests that the function is linear rather than exponential. Therefore, the correct answer is (d) not exponential. None of the options (a), (b), or (c) are applicable as they indicate an exponential function with a specific base value, but the given function does not exhibit exponential behavior.

 To Learn more about exponential form click here: brainly.com/question/28596571

#SPJ11

The inverse of a diagonal matrix is a diag- onal matrix with each element inverted. C 0 0 C2 In other words, if A = ... Сп 0 (1/4 0 then A-1 = 1/C2 1/c, (a) Prove this fact mathematically. (b) Now explain it verbally by saying what effect A and A-1 have as trans- formations of an n-dimensional vector.

Answers

The inverse of a diagonal matrix is obtained by taking the reciprocal of each diagonal element, resulting in a diagonal matrix with inverted values.

(a) To prove this fact mathematically, let A be a diagonal matrix with diagonal elements C1, C2, ..., Cn. The inverse of A, denoted as A-1, can be found by taking the reciprocal of each diagonal element. Therefore, the diagonal elements of A-1 are 1/C1, 1/C2, ..., 1/Cn. Since both A and A-1 are diagonal matrices with the same dimensions, this proves that the inverse of a diagonal matrix is a diagonal matrix with each element inverted.

(b) Geometrically, a diagonal matrix represents a scaling transformation along the coordinate axes. Each diagonal element Ci scales the corresponding coordinate by a factor of Ci. When we take the inverse of a diagonal matrix, A-1, it effectively reverses the scaling by inverting each scaling factor. Therefore, multiplying a vector by A results in scaling its coordinates by Ci, while multiplying the same vector by A-1 scales the coordinates by 1/Ci. In other words, A stretches or shrinks the vector along the coordinate axes, while A-1 performs the opposite scaling, compressing or elongating the vector along the coordinate axes.

Learn more about  matrix here:

https://brainly.com/question/29132693

#SPJ11

Final answer:

The word created diagonally from left to right is FORT.

Explanation:

To find the word created diagonally from left to right, we need to examine the given words: FORM, COMA, FORD, and TALK. By looking at these words, we can see that the letters 'F', 'O', 'R', and 'T' are aligned diagonally from left to right. Therefore, the word created diagonally is FORT.

Learn more about diagonal word formation here:

https://brainly.com/question/32735590

#SPJ14

Determine the vector and parametric equations of the line going through the points P(1,2,4) and Q(1,3,6). Question 17 (3 points) Do the lines L1​:r=(1,7,−5)+s(2,−2,5),s∈R, and the line L2​:r=(−2,3,−6)+s(3,2,6),s∈R, determine a plane?

Answers

The equation of the plane is:r = (1, 7, −5) + s(2, −2, 5) + t(3, 2, 6)

Where s, t ∈ R.

Solution: The vector and parametric equations of the line going through the points P(1, 2, 4) and Q(1, 3, 6) are given below: Vector Equation :We will determine the direction vector by subtracting the coordinates of two points Q and P.

r = OP + t PQ= (1, 2, 4) + t (0, 1, 2)

Here, OP is the position vector of P, and PQ is the vector from P to Q.

The direction vector of the line L is PQ (0, 1, 2).Parametric Equation:

Now we will express the vector equation in parametric form.

x = 1 + 0ty = 2 + t, and z = 4 + 2

t where t ∈ R.  the lines L1​: r = (1, 7, −5) + s(2, −2, 5), s ∈ R, and

the line L2​: r = (−2, 3, −6) + s(3, 2, 6), s ∈ R, determine a plane.

Let us find two points that lie on both of these lines to find the plane of intersection:

Let point A lie on line L1, such that A = (1, 7, −5)Let point B lie on line L2, such that B = (−2, 3, −6)

Equation of line L1 is given as:r1 = (1, 7, −5) + s(2, −2, 5)

Let's find two values of s such that r1 lies on line L2:r1 = (1, 7, −5) + s(2, −2, 5)= (1 + 2s, 7 − 2s, −5 + 5s)

Now we can equate the two vectors r1 and r2:r1 = r2⟹(1 + 2s, 7 − 2s, −5 + 5s) = (−2 + 3t, 3 + 2t, −6 + 6t)From this system of equations,

we can determine the values of s and t such that the two points coincide and lie on both lines.

Now we solve the system of equations:1 + 2s = −2 + 3t7 − 2s = 3 + 2t−5 + 5s = −6 + 6tSolving the system,

we get: s = −1 and t = 1

We can check if the points A and B lie on both lines:L1, s = −1: r1 = (−1, 9, 0)L2, t = 1: r2 = (1, 5, 0)

We can see that the two points A and B both lie on the plane with the equation: r = r0 + s v1 + t v2

Where r0 is the position vector of A, and v1, v2 are the direction vectors of the lines L1 and L2, respectively.

Substituting the values:r0 = (1, 7, −5)v1 = (2, −2, 5)v2

= (3, 2, 6)

To know more about equation visit:

https://brainly.com/question/29538993

#SPJ11

what is the equation of a line that passes through the point (2, −10) and is parallel to 14x 2y=6?

Answers

The equation of line that passes through the point (2, -10) and is parallel to 14x - 2y = 6 is y = -3.5x - 3.

A line parallel to 14x - 2y = 6 will have the same slope as the given line, which can be found by rearranging the equation into slope-intercept form:

14x - 2y = 6-2y = -14x + 6y = 7x - 3y = -3.5x + 1.5

The slope of this line is -3.5,

so the slope of any parallel line will also be -3.5.

We also know that this line passes through the point (2, -10).

Using point-slope form, the equation of the line is:y - y1 = m(x - x1), where m is the slope and (x1, y1) is the given point.

y - (-10) = -3.5(x - 2)y + 10 = -3.5x + 7y = -3.5x - 3

Let's verify that this equation represents a line parallel to the given line:

14x - 2y = 6-2y = -14x + 6y = 7x - 3y = -3.5x + 1.5

The slopes of both lines are -3.5, so they are parallel.

Therefore, the equation of a line that passes through the point (2, -10) and is parallel to 14x - 2y = 6 is y = -3.5x - 3.

Know more about the slope-intercept form

https://brainly.com/question/1884491

#SPJ11

Consider the 2x2 matrix À tè lor ) a. Determine the eigenvalues and the corresponding eigenvectors. B.Show that the eigenvectors are mutually perpendicular, C.Show that they satisfy the completeness relation, d.Find a unitary matrix which diagonalize A.

Answers

For the given 2x2 matrix A, we will determine the eigenvalues and corresponding eigenvectors. We will show that the eigenvectors are mutually perpendicular and satisfy the completeness relation. Finally, we will find a unitary matrix that diagonalizes A.

a) To find the eigenvalues and eigenvectors of matrix A, we solve the characteristic equation det(A - λI) = 0, where λ is the eigenvalue and I is the identity matrix. By solving the equation, we obtain the eigenvalues.
b) The corresponding eigenvectorscan be found by substituting the eigenvalues back into the equation (A - λI)x = 0 and solving for x. The resulting vectors are the eigenvectors.
c) To show that the eigenvectors are mutually perpendicular, we can check if their dot product is zero. If the dot product of two eigenvectors is zero, it indicates that they are orthogonal or mutually perpendicular.
d) The completeness relation states that the eigenvectors of a matrix form a complete set, meaning any vector in the space can be expressed as a linear combination of the eigenvectors.e) To diagonalize matrix A, we need to find a unitary matrix U such that U^(-1)AU = D, where D is a diagonal matrix. This can be achieved by setting the columns of U to be the normalized eigenvectors of A.
By following these steps, we can determine the eigenvalues and eigenvectors, show their orthogonality, verify the completeness relation, and find the unitary matrix that diagonalizes matrix A.

learn more about eigenvalues here

https://brainly.com/question/30357013



#SPJ11








Find the flux of the curl of field F through the shell S. F4yi + 3zj-9xk; S: r(r, 0) = r cos 0i+r sin 0j + (36-r2)k, 0s r s 6 and 0 ≤ 0 ≤ 2π

Answers

The flux of the curl of field F through the given shell S is zero. This means that the net flow of the curl through the shell is negligible.

To find the flux of the curl of field F through the shell S, we need to evaluate the surface integral of the dot product between the curl of F and the outward unit normal vector of the shell S. The curl of F is given as (4y)i + (3z)j - (9x)k.

The shell S is defined by the vector function r(r, θ) = r cos θi + r sin θj + (36 - r^2)k, where r varies from 0 to 6 and θ varies from 0 to 2π. This describes a hollow cylindrical surface centered at the origin with radius 6 and height 72.

The outward unit normal vector to the shell S can be determined using the cross product of the partial derivatives of r with respect to r and θ. By calculating the cross product and normalizing the resulting vector, we obtain the outward unit normal vector n.

Now, we can compute the curl of F, which is (4y)i + (3z)j - (9x)k. Taking the dot product of the curl with the outward unit normal vector n and integrating over the surface S, we find that the flux of the curl through the shell is zero. This indicates that the net flow of the curl through the shell is balanced, resulting in no net flux.

To learn more about flux click here: brainly.com/question/14527109

#SPJ11


from Coding theory
n-1 Let q ≥ 2 and n ≥ 2 be any integers. Show that Aq(n, 2) = qª

Answers

In coding theory, it is proven that Aq(n, 2) = qª, where q is greater than or equal to 2 and n is greater than or equal to 2.

To show that Aq(n, 2) = qª, we consider the scenario where q ≥ 2 and n ≥ 2 are integers. The value Aq(n, 2) represents the maximum number of codewords of length n over an alphabet of size q, with a minimum distance of 2.

In this case, to construct a codeword of length n, we have q choices for each position, resulting in q × q × ... × q (n times), which is equal to q raised to the power of n, denoted as qª.

Furthermore, with a minimum distance of 2, any two distinct codewords must differ in at least two positions. Therefore, the maximum number of codewords is qª.

Hence, we have shown that Aq(n, 2) = qª for any integers q ≥ 2 and n ≥ 2, according to the coding theory result.

Learn more about Coding theory here: brainly.com/question/32339938

#SPJ11

Other Questions
Consider a bank that has assets of 100, capital of 20, and short-term credit of 80. Among the bank's assets are securitized assets whose value depends on the price of houses. These assets have a value of 50. Assets Securitized assets Liabilities Short-term credit S 80 $50 $ 50 Other assets Net Worth Capital $20 Suppose that as a result of a housing price decline, the value of the bank's securitized assets falls by an uncertain amount, so that these assets are now worth somewhere between 25 and 45. Call the securitized assets "troubled assets." The value of the other assets remains at 50. As a result of the uncertainty about the value of the bank's assets, lenders are reluctant to provide any short-term credit to the bank. Given the uncertainity about the value of the bank's assets, the value of the bank's capital will be between 0 and $ . Which is a difference between the old social contract and the new? why is the atomic mass of sodium 22.990 and not 22? assess the management, organization, and technology issues for using social media technology to engage with customers. Homes is an omni-channel local brand that designs and sells household appliances. Currently, Homes has five physical retail stores in Singapore. Homes markets its products via its own website and serves only local customers.Jot Co. (Jot) is Homes sole manufacturer and supplies stock to Homes from two factories in Indonesia. On average, Homes submits new product designs to Jot once a year for production. Jot makes orders once every 3 months on average. Both companies have worked together since the beginning.In recent years, Homes has increasingly experienced frustration dealing with Jot. Homes has received late shipments from Jot on several occasions. Production lines at Jot have been slow to adapt to Homes requests (such as changes in designs and changes to order quantities). Homes feels that Jot should collaborate more to improve the performance of the supply chain. Since 2017, there were a series of labour strikes at major Indonesian ports that severely affected the shipments to Homes.(a) Assume Homes is considering to replace its long-time Indonesian manufacturer with two manufacturers from China. Explain three (3) most important factors that you think the management would have to consider when making this decision.You do not have to make detailed comparisons between the Indonesian manufacturer and the two Chinese manufacturers for each factor, but you should contextualise your answers.(b) Now, Homes has expanded to serve overseas customers. Homes chief executive wants to invest in the latest technologies which can either improve its customer service, collaborate more effectively with its suppliers and/or enhance internal decision-making.Suggest two (2) relevant technologies to the chief executive. In your discussion, indicate how the new technologies may be applied at Homes. Assume no budget restrictions. Joe is using the capital needs (non-liquidating) approach to determine how much life insurance to purchase. Joe would like to provide $65,000 per year to his family, forever, if he dies. The assets that he owns today will provide $20,000 in annual income without liquidation of these assets. If life insurance proceeds can be invested to earn a 5 percent annual return, how much life insurance should Richard purchase to fund the additional income needed to meet the $65,000 annual income goal? Following is information on two alternative investments being considered by Tiger Co. The company requires an 8% return from its investments. (PV of $1, FV of $1, PVA of $1, and FVA of $1) (Use appropriate factor(s) from the tables provided.) Project X1 Project X2 s (98,000)$(156,00e) Initial investment Expected net cash flows in year: 34,000 44,500 69,500 73,500 63,500 53,500 2 a. Compute each project's net present value b. Compute each project's profitability index. Shadee Corp expects to sell 570 sun visors in may and 350 in june.each visor sells for $17. shadees beginning and ending finishedgoods inventories for may are 85 and 50 units, respectively. endingf This is a question with multiple parts but is only one question so please answer all three parts to this question and show all your work and steps to get to the right answer and make sure it is accurate and legible for me to read.Consider the rotation field F = (-y) where r = |r|p (x, y). Show that when p 2, the rotation field F is not conservative. Show that when p = 2, F is conservative on any region which does not contain the origin. Find a potential function for F when p = 2. Which is usually considered to be an advantage of using an ide instead of a text editor for computer programming? discuss the three primary characteristics of a good partner Koo Moshosho is an astute business man who deals in the supply of second-hand clothing bales. He has been doing this business all his life because his father started this business in the 1970s and when he died, Koo Moshosho took over the business. In his father's life time, Koo Moshosho was with him in everything that he did concerning the running of the business. His father had suppliers he bought the bales from to supply to his customers. They owned a big shop in Kantamato where they transacted their business. Five (5) years ago, Koo Moshosho took over the business and transformed the business within a space of time. He stopped buying the bale of clothing from Ghana and started dealing directly with some foreign suppliers in China, UK and USA. Koo Moshosho has built a big warehouse in Kasoa where he keeps his merchandise. He supplies the bales to his customers all around Ghana and the neighbouring countries. He is known for his professionalism and integrity. Not only is Koo Moshosho serious with his business but he is also very spiritual. He is an elder in his church and every year during Harvest, he gives a generous amount to support the work of God. This year's harvest was one of a kind. The church made Joe Boye the chair person for the programme and he contributed a huge amount to support the course of the church. He signed a cheque of GH20,000. Koo Moshosho banks with SG-SSB Bank and he is a very loyal customer. The next morning after the harvest, the church presented the cheque to SG-SSB bank's Head office at Kokomlemle. After going through clearing, the bank refused paying the cheque with the reason of insufficient funds. Apparently, Koo Moshosho issued a cheque of GH35,000 the previous week and after going through clearing, the balance standing in Koo Moshosho's account was Gh19,900. This was what led to the insufficient funds in his account. The church called Koo Moshosho to inform him about the bank's refusal to honour the cheque and Koo Moshosho went mad and stormed the bank. On reaching the bank, he was presented with a copy of his bank statement for his perusal. He realized that his account needed just GH100 to clear the church's cheque. Koo Moshosho questioned the bank as to why they did not add the difference and then debited his account with it. He argued with the bank that it is their responsibility to ensure that every cheque he issues is cleared. He then threatened to sue the bank for defamation of character and failure to perform their required responsibility as a bank. Required Advise Koo Moshosho on the legal position of the matter at stake Find the first three nonzero terms of the Taylor expansion for the given function and given value of a. e2x (a = 5) Choose the correct answer below. a. e2[1+4/3(x-5) + 2(x-5)2 + ... ]b. e10[l+2(x-5)+4(x-5)2 ...] c. e2[l + 8(x - 5) +4(x - 5)2 + ... ] d. e10[l +2(x - 5) +2(x - 5)2 + ...] quick answer pleaseDolan Company's accounting records reflect the following inventories: Dec. 31, 2012 $310,000 300,000 190,000 Dec. 31, 2011 Raw materials inventory $260,000 Work in process inventory 160,000 Finished g time = 0.394secVix= 1.8m/sFinal step: After you have determined the two components turn them into a magnitude and a direction for the velocity. Select a U.S. port of entry and investigate the specific security measures taken by that port. For example, the text highlights the Customs Trade Partnership Against Terrorism and Maritime Transportation Security Act. There are other programs and legislation being implemented in American Ports to ensure their security. In 200 to 250 words, discuss the security measures taken by the port you chose. The U.S. Customs and Border Protections webpage Locate a Port of Entry will be useful in locating a port in the United States. Isabella purchased 100 shares of LULULEMON Stock at $380 per share and sold it at $360 per share one year later. What is her return on investment? Show that |2x 2| |x + 1| + 2 0 for every x R. languages. Some of them appear to be the top global languages. Most people in theworld hear about English, Arabic, and Mandarin. However, English is the most globalspoken language. Then if a man wants to catch a global goal, he has to masterEnglishEveryone recognizes that English is an international language. English is usedin writing and speaking by many people all over the world. It can be either as a firstor second language. We even hear British, American, Australian, and evenSingaporean English. Those various names of English are used as the first languagein those countries. Furthermore, some countries have their own languages, asmother language but also use English mostly in daily communication.Besides the usage in daily interaction, English is also used as a key to opendoors leading to scientific and technical knowledge. No wonder we find manualguides and instruction of many devices written in English. Even if we have a pack ofinstant noodle, we will see the cooking instruction also written in English. Thistransfer of science and technical will include many countries in economic, social andpolitics development.ANSWER THEFOLLOWING QUESTIONS !!!1. The function of language is....2. The most spoken language in the world is....3. The English accent mentioned in the text above....4. English has another function besides communication, which is....5. The main Opinion of the text above is.... A newspaper delivery route is covered by traveling 3.00 blocks west, 4.00 blocks north, and then 6.00 blocks east. What is the resulting displacement in magnitude angle form ,and total distance covere