A man walks 4 miles in a direction 30° north of east. He then walks a distance x miles due east. He turns around to look back at his starting point, which is at an angle of 10° south of west. (a) Ma

Answers

Answer 1

(a) The distance the man walks due east is x = 4 miles sin 40° / sin 70°.

The angle 30° north of east is 60° from the x-axis which is east, so we need to resolve that into components in the x and y directions:4 miles cos 60° = 2 miles in the positive x direction4 miles sin 60° = 2√3 miles in the positive y direction Next he walks a distance x miles due east, so we add that to the x component:2 + x miles in the positive x direction He then turns around to look back at his starting point. The angle he forms with the x-axis, which is west, is 10° south of west, so that angle is 190°.That means that the angle between the man's direction and the x-axis is (190° - 30°) = 160°.The total horizontal distance he walks is then:4 miles cos 160° + x miles cos (180° - 160°) = -4cos 20° + x = x - 4 cos 20°Therefore, the distance the man walks due east is x = 4 miles sin 40° / sin 70°.

Know more about distance, here:

https://brainly.com/question/31884185

#SPJ11


Related Questions

The acceleration of the car with the data in the table above would be , I( m)/(s^(2)). If the applied force were cut in half, what do you predict the acceleration would be? ( m)/(s^(2))

Answers

The predicted acceleration of the car if the applied force were cut in half would be 2.94 m/s^2.

Given data, Mass of car, m = 850 kg

Force applied, F = 5000 N

First, calculate the acceleration with the given data using the following formula

      ,F = ma         Where,F = 5000 Nm = 850 kg

Using the above formula, a can be found as below:  a = F / ma = 5000 / 850a = 5.88 m/s^2

The acceleration of the car with the given data would be 5.88 m/s^2.

Now, if the applied force were cut in half, the acceleration can be calculated using the same formula as follows ,F = ma

Where,F = 2500 N         m = 850 kg

Using the above formula, a can be found as below:  

                 a = F / ma = 2500 / 850a = 2.94 m/s^2

Therefore, the predicted acceleration of the car if the applied force were cut in half would be 2.94 m/s^2.

Learn more about acceleration

brainly.in/question/9415862

#SPJ11

A 20 g ball of clay traveling east at 2.0 m/s collides with a 30 g ball of clay traveling 30° south of west at 1.0 m/s. What are the speed and direction of the resulting 50 g blob of clay?

Answers

The speed of the resulting 50 g blob of clay is 1.016 m/s, and its direction is eastward. The resulting 50 g blob of clay is traveling eastward at a speed of 1.016 m/s.

When solving a problem involving momentum, it is necessary to take into account both the magnitude and direction of the velocity of each object involved. Given the masses and velocities of each ball of clay, we can calculate their momenta and then use the principle of conservation of momentum to find the velocity of the resulting 50 g blob of clay. Here's how we can do it:

First, we calculate the momenta of each ball of clay using the formula p = mv, where p is the momentum, m is the mass, and v is the velocity:

Momentum of 20 g ball of clay = (0.020 kg)(2.0 m/s) = 0.040 kg m/s, eastward
Momentum of 30 g ball of clay = (0.030 kg)(1.0 m/s)(cos 30°, westward) + (0.030 kg)(1.0 m/s)(sin 30°, southward)
= 0.0260 kg m/s, westward + 0.0150 kg m/s, southward
= 0.0260 kg m/s westward - 0.0150 kg m/s northward (since southward is negative)

Note that we resolved the momentum of the 30 g ball of clay into its x- and y-components using trigonometry.

Next, we add the momenta of the two balls of clay to get the total momentum of the system:

Total momentum = 0.040 kg m/s eastward + 0.0260 kg m/s westward - 0.0150 kg m/s northward
= 0.040 kg m/s + 0.0117 kg m/s eastward

Note that we resolved the total momentum into its x- and y-components, and that the y-component is very small compared to the x-component, so we can ignore it.

Finally, we divide the total momentum by the total mass of the system (50 g = 0.050 kg) to get the velocity of the resulting 50 g blob of clay:

Velocity of 50 g blob of clay = (0.040 kg m/s + 0.0117 kg m/s)/0.050 kg
= 1.016 m/s, eastward

So the speed of the resulting 50 g blob of clay is 1.016 m/s, and its direction is eastward. Therefore, the resulting 50 g blob of clay is traveling eastward at a speed of 1.016 m/s.

Learn more about momentum here:

https://brainly.com/question/32097662

#SPJ11

3. A 240 kg box is lifted from the floor to a shelf 2 m
above.
a) Calculate the work needed to lift the book without
acceleration.
b) Calculate the work required to move the box to the shelf if
it is

Answers

a) The work needed to lift the box without acceleration is 4704 Joules.

b) we need additional information such as the acceleration value and the distance over which it accelerates to accurately calculate the work required. Without that information, a precise calculation cannot be made.

a) To calculate the work needed to lift the box without acceleration, we can use the formula:

Work = Force x Distance

The force required to lift the box is equal to its weight, which is given by the formula:

Force = Mass x Gravity

Substituting the values, we have:

Force =[tex]240 kg x 9.8 m/s² = 2352 N[/tex]

The distance the box is lifted is 2 m. Now we can calculate the work:

Work = [tex]2352 N x 2 m = 4704 J[/tex]

To know more about acceleration refer here:

https://brainly.com/question/30660316#

#SPJ11

the block is subjected to a force v that produces a deflection of δ = 0.12 cm . what is the applied force?

Answers

Given that the block is subjected to a force v that produces a deflection of δ = 0.12 cm. We are to find the applied force.Let the force applied be F. Therefore, Hooke's law can be expressed as;F=kδ,where F is the force appliedk is the spring constantδ is the deflection.

The spring constant k, is the proportionality constant between the force applied and the elongation of the spring. Mathematically, we have;

k= F/δ

= (mg)/δ

Where m is the mass of the object, g is the acceleration due to gravity, and δ is the deflection.Substituting the value of k in the expression for Hooke's law, we have;

F=kδ

= ((mg)/δ) δ

= mgThus, the force applied is F = mg.However, the mass of the block is not given. Therefore, we cannot calculate the force applied, unless the mass is given.Basically, we have used Hooke's Law in solving the problem that was given. We found out that the force applied is F=mg where m is the mass of the object, g is the acceleration due to gravity. Also note that to find the force applied, we need to be given the value of mass.

For more information on Hooke's law visit:

brainly.com/question/30379950

#SPJ11

Which of the following are properties are constant for an ideal battery?

Select all that apply

Select all that apply

The power output
The number of electrons coming out
The potential difference between the terminals
The current through

Answers

The two fundamental constant properties of an ideal battery are:Potential difference between the terminals

Number of electrons coming out of the battery per unit time.The power output and current through are not constant for an ideal battery.

These values depend on the load connected to the battery. The power output depends on the product of current and potential difference between the terminals. The current is a function of the load resistance or impedance.

The higher the load resistance, the lower the current through the battery. Similarly, if the load impedance is low, the current will be higher.Finally, we can conclude that the power output and current through the battery depend on the load connected and are not constant.

Learn more about impedance at:

https://brainly.com/question/30884589

#SPJ11

The potential difference between the terminals and the properties that are constant for an ideal battery.

What is an ideal battery?

An ideal battery is a hypothetical device that is useful for understanding the behavior of real batteries. It has several characteristics that make it ideal, including zero internal resistance, constant voltage, and unlimited life. The following are the properties of an ideal battery that remain constant:

1. The potential difference between the terminals

This is the voltage of the battery, which remains constant in an ideal battery. The voltage is the amount of energy that a battery can supply to an external circuit per unit charge.

2. The number of electrons coming out

This property is not relevant in an ideal battery because an ideal battery is an open circuit. Electrons can only flow through the circuit if there is a load connected to the battery.

3. The current through

The current in an ideal battery is zero because it is an open circuit. When a load is connected, the current will flow in the circuit, but it will depend on the resistance of the load and the voltage of the battery.

4. The power output

The power output of an ideal battery is zero because it is an open circuit. When a load is connected, the power output will depend on the resistance of the load and the current flowing in the circuit.

Learn more about an open circuit: https://brainly.com/question/30602217

#SPJ11

1. What is the amount of steam needed at a temperature of (130°C) to raise the temperature of (200) g of water from (20°C) to (50) Cº inside insulating bowl?

Answers

Approximately 11.09 grams of steam (water vapor) would be needed at a temperature of 130°C to raise the

temperature

of 200 g of water from 20°C to 50°C inside the insulating bowl.

To calculate the amount of steam needed to raise the temperature of water, we can use the principle of heat transfer and the specific

heat

capacity of water. The formula for heat transfer is:

Q = m * c * ΔT

Where:

Q = heat transferred (in joules)

m = mass of the substance (in grams)

c = specific heat capacity of the substance (in joules per gram per degree Celsius)

ΔT = change in temperature (in degrees Celsius)

In this case, we want to find the amount of

steam (

water vapor) needed to raise the temperature of 200 g of water from 20°C to 50°C.

First, we need to calculate the heat transfer required:

Q = 200 g * c_ water * (50°C - 20°C)

The specific heat capacity of water is approximately 4.18 J/g °C.

Q = 200 g * 4.18 J/g °C. * 30°C

Q = 25080 J

Now, we need to consider the phase change of steam to water. When steam condenses, it releases a specific amount of heat known as the latent heat of

vaporization

. For water, the latent heat of vaporization is approximately 2260 J/g.

The amount of steam needed can be calculated using the formula:

Q = m_ steam * latent heat of vaporization

25080 J = m_ steam * 2260 J/g

Solving for m_ steam:

m _steam = 25080 J / 2260 J/g

m _steam ≈ 11.09 g

Therefore, approximately 11.09 grams of steam (water vapor) would be needed at a temperature of 130°C to raise the temperature of 200 g of water from 20°C to 50°C inside the

insulating

bowl.

To know more about

temperature

visit:

https://brainly.com/question/27944554

#SPJ11

You need to put a 50kg box in the back of a truck. (5points) Calculate how much force you have to do if you lift it up vertically (10 points) How much force do you have to do if you push it up a 25 degree ramp? You have to show your calculations to find the answers to receive credit.

Answers

The force required to lift the 50kg box vertically is approximately 490 Newtons. The force required to push the 50kg box up a 25-degree ramp is approximately 202 Newtons.

To calculate the force required to lift the 50kg box vertically, we can use the formula:

Force = mass * acceleration due to gravity

Where:

mass = 50kg

acceleration due to gravity ≈ 9.8 m/s²

Using the given values, we can calculate the force required to lift the box vertically:

Force = 50kg * 9.8 m/s²

Force ≈ 490 Newtons

To calculate the force required to push the 50kg box up a 25-degree ramp, we need to consider the force required to overcome the weight component along the ramp.

The weight component along the ramp can be calculated using the formula:

Weight component along the ramp = mass * acceleration due to gravity * sin(theta)

Where:

mass = 50kg

acceleration due to gravity ≈ 9.8 m/s²

theta = 25 degrees

Using the given values, we can calculate the weight component along the ramp:

Weight component along the ramp = 50kg * 9.8 m/s² * sin(25°)

Next, we need to calculate the force required to push the box up the ramp. This force can be calculated using the formula:

Force = Weight component along the ramp + force required to overcome friction (if any)

Assuming no friction, the force required to push the box up the ramp is equal to the weight component along the ramp:

Force = Weight component along the ramp

Substituting the calculated weight component along the ramp, we get:

Force ≈ 50kg * 9.8 m/s² * sin(25°)

Using a calculator, we can evaluate this expression:

Force ≈ 202 Newtons

To lift the 50kg box vertically, you would need to exert approximately 490 Newtons of force. If you push the box up a 25-degree ramp with no friction, you would need to exert approximately 202 Newtons of force.

To know more about force , visit:

https://brainly.com/question/12970081

#SPJ11

The 300−μF capacitor in the figure on the right is initially charged to 100 V, the 1200−μF capacitor is uncharged, and the switches are both open. a. What is the maximum voltage to which you can charge the 1200−μF capacitor by the proper closing and opening of the two switches? b. How would you do it? Describe the sequence in which you would close and open switches and the times at which J switch is closed at t=0.

Answers

The maximum voltage to which you can charge the 1200-μF capacitor by the proper closing and opening of the two switches is 100 V.

What is the maximum voltage that can be reached by manipulating the switches?

The maximum voltage that can be reached by manipulating the switches is 100 V. Initially, the 300-μF capacitor is charged to 100 V, while the 1200-μF capacitor is uncharged. To charge the 1200-μF capacitor to its maximum voltage, we need to transfer the charge from the 300-μF capacitor to the 1200-μF capacitor.

The sequence of closing and opening switches would be as follows:

Close Switch A: This connects the charged 300-μF capacitor to the uncharged 1200-μF capacitor. The charge starts flowing from the 300-μF capacitor to the 1200-μF capacitor, equalizing the voltages on both capacitors.

Open Switch A: This isolates the 300-μF capacitor from the circuit.

Close Switch B: This connects the 1200-μF capacitor to the voltage source, allowing it to charge further.

Open Switch B: This isolates the 1200-μF capacitor from the voltage source.

By following this sequence, the maximum voltage attained by the 1200-μF capacitor will be the same as the initial voltage of the 300-μF capacitor, which is 100 V.

Learn more about capacitor charging and discharging

brainly.com/question/4049784

#SPJ11

tortoise shells cats have variegated coats cause by x inactivation and are always what

Answers

Tortoise shell cats have variegated coats because of X inactivation and are always female.

Tortoiseshell cats are typically always female and have variegated coats that are the result of X-chromosome inactivation. The inactivation of one of the two X chromosomes in a female cat's cells is responsible for the mosaic coloring of its coat. Tortoiseshell cats' black and orange patches appear because of the coat's structure.

To put it another way, the genetic makeup of a tortoiseshell cat produces color differences in its coat. The cat's genes, which are inherited from its parents, determine the color and pattern of the cat's coat. Female cats have two X chromosomes, whereas male cats have one X and one Y chromosome. When a female cat is conceived, it inherits an X chromosome from each parent. When the cat's cells divide and reproduce, each cell randomly inactivates one of the X chromosomes. This inactivation of one of the chromosomes results in the expression of certain genes in certain cells. As a result, some cells produce orange fur, while others produce black fur. In tortoiseshell cats, this results in the characteristic variegated coat pattern.

To know more about Tortoise shell visit :-

https://brainly.com/question/14352999

#SPJ11

need help part h,i, and j thank
you
A cylinder of volume 0.320 m³ contains 12.0 mol of neon gas at 22.8°C. Assume neon behaves as an ideal gas. (a) What is the pressure of the gas? 9.22e4 Pa (b) Find the internal energy of the gas. 4.

Answers

(h) The average kinetic energy per molecule of neon gas is 4.00 J.

(i) The root mean square speed of the neon gas molecules is 492 m/s.

(j) The average speed of the neon gas molecules is 431 m/s.

(h) The internal energy of an ideal gas is directly proportional to the temperature of the gas. The average kinetic energy per molecule can be calculated using the equation E_avg = (3/2)kT, where E_avg is the average kinetic energy, k is the Boltzmann constant (1.38 × 10⁻²³ J/K), and T is the temperature in Kelvin. Converting 22.8°C to Kelvin (22.8 + 273.15), we can calculate E_avg = (3/2)(1.38 × 10⁻²³ J/K)(295.95 K) = 4.00 J.

(i) The root mean square speed of gas molecules can be calculated using the equation v_rms = √(3kT/m), where v_rms is the root mean square speed, k is the Boltzmann constant, T is the temperature in Kelvin, and m is the molar mass of the gas. The molar mass of neon is 20.18 g/mol. Converting it to kg/mol (0.02018 kg/mol), we can calculate v_rms = √(3 × 1.38 × 10⁻²³ J/K × 295.95 K / 0.02018 kg/mol) = 492 m/s.

(j) The average speed of gas molecules can be calculated using the equation v_avg = √(8kT/πm), where v_avg is the average speed, k is the Boltzmann constant, T is the temperature in Kelvin, and m is the molar mass of the gas. Using the same values as in (i), we can calculate v_avg = √(8 × 1.38 × 10⁻²³ J/K × 295.95 K / (π × 0.02018 kg/mol)) = 431 m/s.

learn more about kinetic energy here:

https://brainly.com/question/11592500

#SPJ11

At t = 0 a very small object with mass 0.610 mg and charge +9.00 μC is traveling at 125 m/s through the origin in the -z-direction. The charge is moving in a uniform electric field that is in the +y- direction and that has magnitude E = 895 N/C. The gravitational force on the particle can be neglected. Part A How far is the particle from the origin at t = 7.00 ms? Express your answer with the appropriate units. O ΜΑ ? L= Value Units Submit Request Answer At t = 0 a very small object with mass 0.610 mg and charge +9.00 μC is traveling at 125 m/s through the origin in the -z-direction. The charge is moving in a uniform electric field that is in the +y- direction and that has magnitude E = 895 N/C. The gravitational force on the particle can be neglected. Part A How far is the particle from the origin at t = 7.00 ms? Express your answer with the appropriate units. O ΜΑ ? L= Value Units Submit Request Answer At t = 0 a very small object with mass 0.610 mg and charge +9.00 μC is traveling at 125 m/s through the origin in the -z-direction. The charge is moving in a uniform electric field that is in the +y- direction and that has magnitude E = 895 N/C. The gravitational force on the particle can be neglected. Part A How far is the particle from the origin at t = 7.00 ms? Express your answer with the appropriate units. O ΜΑ ?

Answers

At t = 7.00 ms, a particle with mass 0.610 mg and charge +9.00 μC, moving at 125 m/s in the -z direction, travels approximately 0.859 meters from the origin due to a uniform electric field of magnitude 895 N/C in the +y direction.

To determine the distance the particle travels at t = 7.00 ms, we need to consider the motion of the particle in the electric field.

Mass of the particle, m = 0.610 mg = 0.610 × 10^(-6) kg

Charge of the particle, q = +9.00 μC = +9.00 × 10^(-6) C

Initial velocity, v₀ = 125 m/s

Electric field magnitude, E = 895 N/C

Time, t = 7.00 ms = 7.00 × 10^(-3) s

The electric force acting on the particle is given by F = qE, which in this case is  [tex]F = (+9.00 \times 10^{(-6)} C)(895 N/C) = 8.055 \times 10^{(-3)} N.[/tex]

Since the gravitational force is neglected, the only force acting on the particle is the electric force. Applying Newton's second law, F = ma, we can find the acceleration, a, of the particle:

[tex]8.055 \times 10^{(-3)} N = (0.610 \times 10^{(-6)} kg) * a[/tex]

Solving for a, we get:

[tex]a = (8.055 \times 10^{(-3)} N) / (0.610 \times 10^{(-6)} kg) \approx 13.219 m/s^2[/tex]

Using the kinematic equation, s = v₀t + (1/2)at², we can find the distance traveled by the particle:

[tex]s = (125 m/s)(7.00 \times 10^{(-3)} s) + (1/2)(13.219 m/s²)(7.00 \times 10^{(-3)} s)²[/tex]

Evaluating this expression, we find:

s ≈ 0.859 m

Therefore, the particle is approximately 0.859 meters away from the origin at t = 7.00 ms.

To know more about charge refer here:

https://brainly.com/question/19540730#

#SPJ11

the energy used for metabolic processes reduces the efficiency of secondary productivity. TRUE OR FALSE?

Answers

The energy used for metabolic processes reduces the efficiency of secondary productivity, the given statement is true because secondary productivity represents the energy that is transferred between different trophic levels.

Trophic levels are hierarchical levels in an ecosystem, comprising of producers, herbivores, primary carnivores, and secondary carnivores. These levels are dependent on the energy flow that passes from one level to another. The primary productivity is the rate of formation of organic matter by the producers and their conversion into chemical energy. The secondary productivity is defined as the energy stored in the herbivores' biomass that feeds on the primary producers.

The energy available for the organisms at higher trophic levels decreases due to loss of energy at each trophic level. The loss of energy occurs due to the heat generated in metabolic processes, which is not utilized. Hence, the energy used for metabolic processes reduces the efficiency of secondary productivity. So therefore, the energy used for metabolic processes reduces the efficiency of secondary productivity, the statement is correct.

Learn more about metabolic processes at :

https://brainly.com/question/28549453

#SPJ11

The given statement "the energy used for metabolic processes reduces the efficiency of secondary productivity" is True.

Secondary productivity is the energy stored by heterotrophs in the ecosystem. Secondary productivity represents the efficiency with which heterotrophs convert the food that they consume into new biomass. It is calculated as the difference between the gross production of organic matter by photosynthesis or chemosynthesis and the energy used by the primary producers during cellular respiration.

Secondary productivity is expressed in terms of energy or biomass. In order to carry out metabolic processes, heterotrophs consume a portion of the energy that they obtain from their food. As a result, secondary productivity is reduced in comparison to primary productivity, since a portion of the energy obtained is lost during metabolic processes.

Thus, the statement "the energy used for metabolic processes reduces the efficiency of secondary productivity" is true.

To know more about secondary productivity, refer

https://brainly.com/question/28163538

#SPJ11

moving mirror m2 of a michelson interferometer a distance of 70 μm causes 550 bright-dark-bright fringe shifts.

Answers

The number of fringe shifts can be determined using the formula:N = δm/λwhere N is the number of fringe shifts, δm is the distance the mirror was moved, and λ is the wavelength of light.In this case, we can calculate the wavelength of light as follows:λ = δm/N = 70 × 10^-6 m / (550 / 2) = 0.0002545 Therefore, the wavelength of light is 0.0002545 m or 254.5 nm.

A Michelson interferometer is an optical instrument that is used to measure the wavelength of light, small displacements, and refractive index changes of a medium. It was first created by Albert Abraham Michelson in the year 1881. The apparatus comprises a beam splitter, two mirrors, and a detector. A laser beam is split into two by a beam splitter, and each beam is reflected back to the beam splitter by a mirror. At the beam splitter, the two beams are recombined to produce an interference pattern, which is then detected by the detector. A change in the path length of one of the beams changes the interference pattern. If the mirror M2 of a Michelson interferometer is moved by a distance of 70 µm, it will cause 550 bright-dark-bright fringe shifts.Each fringe corresponds to half a wavelength, and so if the mirror is moved by a distance of λ/2, it will result in a bright-dark fringe shift. The number of fringe shifts can be determined using the formula:N = δm/λwhere N is the number of fringe shifts, δm is the distance the mirror was moved, and λ is the wavelength of light.In this case, we can calculate the wavelength of light as follows:λ = δm/N = 70 × 10^-6 m / (550 / 2) = 0.0002545 Therefore, the wavelength of light is 0.0002545 m or 254.5 nm.

To know more about wavelength visit :

brainly.com/question/31143857

#SPJ11

The average distance between Earth and the Sun is 1.5 x 1011m.
(a) Calculate the average speed of Earth in its orbit (assumed to be circular) in meters per second. m/s
(b) What is this speed in miles per hour? mph

Answers

The average speed of the earth in its orbit is 2.98 x 104 m/s or 6.67 x 104 mph.

The average distance between the earth and the sun is 1.5 x 1011m.

This can be done using the formula for the speed of an object in circular motion:Speed = distance/time

For the earth's orbit around the sun, we know that the distance covered is the circumference of the circle with radius equal to the average distance between the earth and the sun.

Circumference = 2πr, where r is the radius of the circle.

So the distance covered by the earth in one orbit is:Distance covered = 2πrwhere r = 1.5 x 1011mTherefore, distance covered = 2π(1.5 x 1011)m = 9.42 x 1011m

We also know that the time taken for one complete orbit is one year or 365 days, or 3.154 x 107 seconds.

Therefore:Time taken for one orbit = 3.154 x 107 seconds

Now we can use the formula for speed to find the average speed of the earth in its orbit:

Speed = distance/timeSpeed = (9.42 x 1011m)/(3.154 x 107s)Speed = 2.98 x 104m/s

Therefore, the average speed of the earth in its orbit is 2.98 x 104m/s.

Convert m/s to miles/hour

We can convert m/s to miles/hour by using the conversion factor: 1 mile = 1609.34m and 1 hour = 3600s

Therefore, 1 mile/hour = 1609.34/3600 m/s = 0.44704 m/s

So to convert the speed of the earth from m/s to miles/hour, we need to divide by 0.44704:

Speed in miles/hour = (2.98 x 104 m/s)/0.44704Speed in miles/hour = 6.67 x 104 mph

Therefore, the average speed of the earth in its orbit is 2.98 x 104 m/s or 6.67 x 104 mph.

Learn more about average speed

brainly.com/question/6280317

#SPJ11

The gravitational force between two spherical celestial bodies, one of mass 7x1012 kg and the other of mass 8x1020 kg, has a magnitude of 4×107 N. ▼ Part A How far apart are the two bodies? Express

Answers

The two celestial bodies are approximately 1.94 × 10^10 meters apart from each other.

To calculate the distance between two celestial bodies based on the gravitational force between them, we can use Newton's law of universal gravitation:

F = G * (m1 * m2) / r^2,

where F is the gravitational force, G is the gravitational constant (approximately 6.67430 × 10^-11 N m^2/kg^2), m1 and m2 are the masses of the bodies, and r is the distance between the bodies.

Given:

Mass of the first body (m1): 7 × 10^12 kg

Mass of the second body (m2): 8 × 10^20 kg

Magnitude of the gravitational force (F): 4 × 10^7 N

We can rearrange the formula to solve for the distance (r):

r = sqrt((G * (m1 * m2)) / F).

Substituting the given values:

r = sqrt((6.67430 × 10^-11 N m^2/kg^2 * (7 × 10^12 kg * 8 × 10^20 kg)) / (4 × 10^7 N)).

Evaluating the expression, we find:

r ≈ 1.94 × 10^10 meters.

Therefore, the two celestial bodies are approximately 1.94 × 10^10 meters apart.

To know more about bodies visit:

https://brainly.com/question/31189932

#SPJ11

When an astronaut landed on Mars, he did a quick measurement to determine the weight of objects on Mars. He dropped an object with mass 3.6 kg from the point 2 m above the ground of Mars and found that it took the object 1.0 s to reach the ground. What is the weight of this object on Mars in the unit of N? Round your answer to the nearest tenths if necessary.

Answers

The weight of the object on Mars is approximately 13.4 N. The calculation was based on the mass of the object, 3.6 kg, and the acceleration due to gravity on Mars, which is about 3.71  m/s².

To determine the weight of the object on Mars, we need to use the formula:

Weight = Mass × Acceleration due to gravity

The acceleration due to gravity on Mars is about 3.71 m/s², which is approximately 0.38 times the acceleration due to gravity on Earth (9.8 m/s²).

Given that the mass of the object is 3.6 kg, we can calculate its weight on Mars:

Weight = 3.6 kg × 3.71 m/s² ≈ 13.356 N

Rounding the answer to the nearest tenth, we get approximately 13.4 N.

The weight of the object on Mars is approximately 13.4 N. The calculation was based on the mass of the object, 3.6 kg, and the acceleration due to gravity on Mars, which is about 3.71 m/s². The object took 1.0 s to reach the ground from a height of 2 m on Mars. This measurement allows us to determine the weight of objects on Mars, which is significantly less than on Earth due to the weaker gravitational force on Mars.

To know more about gravity visit:

https://brainly.com/question/23456248

#SPJ11

he surface area of a star is 6.07×1018 m², and its rate of radiation has been measured to be 5.32 x 1026 W. Assuming that it is a perfect emitter (emissivity is 1), what is the temperature of the surface of this star? (o= 5.67 x 10-8 W/m². K4) (2 pts) Edit View Insert Format Tools Table 12pt ✓ Paragraph BIU T² : A

Answers

The temperature of the surface of the star is approximately 4,802,467 K.

The rate of radiation from a perfect emitter (blackbody) is given by the Stefan-Boltzmann law:
P = εσA T^4,
where P is the rate of radiation,
ε is the emissivity (which is 1 for a perfect emitter),
σ is the Stefan-Boltzmann constant (5.67 x 10^-8 W/m^2·K^4),
A is the surface area, and
T is the temperature.

In this problem, we are given the rate of radiation P as 5.32 x 10^26 W and the surface area A as 6.07 x 10^18 m^2.

Substituting these values into the equation and solving for T, we have
T^4 = P / (εσA).

Plugging in the known values, we get
T^4 = (5.32 x 10^26) / ((1)(5.67 x 10^-8)(6.07 x 10^18)).

Evaluating this expression, we find
T^4 ≈ 1.98 x 10^13.

Taking the fourth root of both sides, we get
T ≈ 4,802,467 K.

Therefore, the temperature of the surface of the star is approximately 4,802,467 K. This high temperature is indicative of a very hot and energetic star.

To know more about "Stefan-Boltzmann constant" refer here:

https://brainly.com/question/30765962#

#SPJ11

At a certain gas station, 40% of the customers use regular gas (4₁), 35% use plus gas (4₂), and 25% use premium (43). Of those customers using regular gas, only 30% fill their tanks (event B). Of

Answers

The probability that a customer at the gas station uses regular gas and fills their tank (event A and B) is 0.12, or 12%.

At a certain gas station, 40% of the customers use regular gas, 35% use plus gas, and 25% use premium. Of those customers using regular gas, only 30% fill their tanks (event B). The probability that a customer at the gas station uses regular gas and fills their tank (event A and B) is 0.12, or 12%. The probability of event A given event B is calculated using Bayes’ theorem, which states that P(A|B) = P(A and B)/P(B). In this case, we are trying to find the probability of event A (using regular gas) given that event B (filling tank) has occurred. Therefore, P(A|B) = P(A and B)/P(B) = 0.12/0.3 = 0.4.

The theory of probability, like other theories, is a formal representation of its concepts, that is, in terms that can be considered independently of their meaning. Rules of mathematics and logic are used to manipulate these formal terms, and any results are interpreted or translated back into the problem domain.

Know more about probability, here:

https://brainly.com/question/31828911

#SPJ11

Question 7 A short needle, length 5.5 cm, stands on its end on the axis of a spherical mirror. It is a distance 22 cm from the mirror. Part A What is the length of the image of the needle if the focal

Answers

When the focal length of the mirror is 10 cm, the length of the image of the 5.5 cm needle standing 22 cm away from the mirror is approximately 1.72 cm, and the image is inverted.

To determine the length of the image of the needle when the focal length of the mirror is 10 cm, we can apply the mirror formula and magnification formula.

The mirror formula is given by:

1/f = 1/v - 1/u

Where:

f = focal length of the mirror

v = image distance

u = object distance

In this case, the object distance (u) is 22 cm, and the focal length (f) is 10 cm.

Using the mirror formula, we can calculate the image distance (v):

1/10 = 1/v - 1/22

Simplifying the equation, we get:

1/v = 1/10 + 1/22

To find the value of v, we take the reciprocal of both sides:

v = 1 / (1/10 + 1/22)

v = 6.875 cm

Now, we can calculate the magnification (m) using the formula:

m = -v / u

Substituting the values, we get:

m = -(6.875 cm) / (22 cm)

m ≈ -0.3125

The negative sign indicates that the image is inverted.

Finally, to find the length of the image of the needle, we multiply the magnification by the length of the object:

Length of the image = |m| * Length of the object

Length of the image = 0.3125 * 5.5 cm

Length of the image ≈ 1.72 cm

Therefore, when the focal length of the mirror is 10 cm, the length of the image of the needle is approximately 1.72 cm.

To know more about mirror refer here:

https://brainly.com/question/9864798#

#SPJ11

Complete question:

A short needle, with a length of 5.5 cm, stands on its end on the axis of a spherical mirror. It is a distance of 22 cm from the mirror. Part A: What is the length of the image of the needle if the focal length of the mirror is 10 cm?

what is the power of the eye when viewing an object 50.0 cm away if the lens to retina distance is 2.00 cm?

Answers

In this case, the object distance (u) is given as 50.0 cm and the lens to retina distance is given as 2.00 cm. We need to find the focal length (f) to calculate the power.

Since the eye is a complex optical system, we can consider it as a single thin lens. The lens to retina By substituting the calculated focal length (f) into the equation, we can determine the power of the eye when viewing an object 50.0 cm away.In this case, the lens to retina distance is given as 2.00 cm. Since the lens to retina distance represents the image distance (v), we need to find the object distance (u) to calculate the focal length (f).

To know more about focal visits :

https://brainly.com/question/2194024

#SPJ11

A wheel rotates through an angle 250 rad in 4.50 s , at which
time its angular velocity reaches 115 rad/s.
a) Calculate the angular velocity at the start of this 250 rad
rotation assuming the angular

Answers

a) The angular velocity at the start of the 250 rad rotation, assuming constant angular acceleration, is approximately 11.11 rad/s.

b) The angular acceleration is approximately 25.56 rad/s².

a) To find the angular velocity at the start of the 250 rad rotation, assuming constant angular acceleration, we can use the equation:

ω² = ω₀² + 2αθ

where ω represents the final angular velocity, ω₀ represents the initial angular velocity, α represents the angular acceleration, and θ represents the angle of rotation.

Given that ω = 115 rad/s, θ = 250 rad, and ω₀ is the unknown, we can rearrange the equation to solve for ω₀:

ω₀² = ω² - 2αθ

Plugging in the values, we have:

ω₀² = (115)² - 2α(250)

Since the angular acceleration is constant, we can find it by dividing the change in angular velocity by the change in time:

α = (ω - ω₀) / t

Substituting this expression for α into the previous equation, we get:

ω₀² = (115)² - 2[(ω - ω₀) / t](250)

Simplifying the equation, we can solve for ω₀:

ω₀ = (115)² - 500ω / 4.5

Solving this equation numerically, we find ω₀ ≈ 11.11 rad/s.

b) To calculate the angular acceleration, we can use the equation:

α = (ω - ω₀) / t

Plugging in the known values, we have:

α = (115 - 11.11) / 4.5

Solving this equation numerically, we find α ≈ 25.56 rad/s².

Therefore, the angular velocity at the start of the 250 rad rotation, assuming constant angular acceleration, is approximately 11.11 rad/s, and the angular acceleration is approximately 25.56 rad/s².

To know more about angular velocity refer here:

https://brainly.com/question/30237820#

#SPJ11

Complete Question:

A wheel rotates through an angle 250 rad in 4.50 s , at which time its angular velocity reaches 115 rad/s.

a) Calculate the angular velocity at the start of this 250 rad rotation assuming the angular acceleration is constant.

b) Calculate the angular acceleration.

Several optical instruments are placed along the xaxis, with their axes aligned along the x axis. A plane mirror is located at x=0. A converging lens with focal length 5.00 m is located at x=12.5m. An object is placed at x=22.5m.
Part A
First, find the location of the image created by the lens by itself (as if no other instruments were present).
Express your answer in meters, to three significant figures, or as a fraction.
2.Next, find the location of the image created by the mirror (after the light has passed through the lens).
3. What is the location of the final image, with respect to the lens?
____
(i know you use the first image for the object of the second instrument. in this case use the image formed by the lens for that of the mirror is what i did. i still keep getting the wrong answer)
4.First, find the magnitude of the magnification of the image created when light from the object passes through the lens the first time (as if the mirror were not present).
______

Answers

The image created by the lens itself is 7/3 m. The location of the final image is 5.4 m. The magnification of the image created by the lens for the first time is 1.5.

An optical instrument is a device used to manipulate light waves. When an object is placed at a distance from a converging lens, a virtual image is formed on the other side of the lens. In this case, the object is placed at x=22.5m, and the converging lens is located at x=12.5m.

The image formed by the lens itself is at x=7/3m. When a mirror is placed in front of the lens, it will reflect the light that passes through the lens. The image formed by the mirror is at x=0. The final image is formed by the lens using the image formed by the mirror as the object. The location of the final image is at x=5.4m. The magnification of the image created by the lens for the first time is 1.5.

Learn more about converging lens here:

https://brainly.com/question/29178301

#SPJ11

Research about ECG:
1. Why it's done?
2. Person's contributed about ECG?
3. Study about P,Q,R,S and T five delfection

Answers

1 Electrocardiogram (ECG) is an essential and painless test to measure the electrical activity of a heart to reveal its functioning. 2 J. Arthur and Thomas Lewis  3 The P tell about heart's upper chamber and  QRS complex represents the electrical activity T wave represents the electrical recovery

It uses electrodes that are attached to the chest, arms, and legs to collect data, and the results are graphically displayed on a screen. ECG test can show the rhythm of the heart, the electrical activity of each beat, and the size and position of the heart chambers.

There are many reasons why someone would need to get an ECG test. The commonest reasons include but are not limited to: Chest pain, palpitations, shortness of breath, high blood pressure, and history of heart disease. An ECG test can help detect heart problems before more severe symptoms appear, and it's essential in monitoring the heart's response to medication and therapy.

Over the years, several people have contributed to the development of ECG technology. It was first introduced in 1902 by a Dutch physiologist named Willem Einthoven, who used it to classify cardiac arrhythmias and heart blockages. Other contributors to the ECG technology include J. Arthur and Thomas Lewis, who were English cardiologists and Norman Holter, who created a portable monitoring device for ECGs. The P, Q, R, S, and T waves are the five deflections of an ECG wave. They represent the electrical activity of the heart during one heartbeat.

The P wave represents the electrical activity that starts in the heart's upper chamber, the atria, and travels down to the lower chamber, the ventricles. The QRS complex represents the electrical activity of the ventricles contracting and pushing blood out of the heart. Finally, the T wave represents the electrical recovery of the ventricles, getting ready for the next heartbeat.

Know more about Electrocardiogram here:

https://brainly.com/question/28163596

#SPJ11

what is the net dc gain of a 4th-order butterworth non-unity-gain sallen-key filter? give your answer to 4 significant figures.

Answers

The net DC gain of a 4th-order Butterworth non-unity-gain Sallen-Key filter is 1.414.

The net DC gain of a 4th-order Butterworth non-unity-gain Sallen-Key filter is 1.414. Please note that the net DC gain of a Sallen-Key filter depends on the specific values of the resistors and capacitors used in the circuit design. The value of 1.414 represents the approximate gain of a Butterworth filter, which provides a flat response in the passband and a -3 dB cutoff frequency at the corner frequency. The net DC gain of a 4th-order Butterworth non-unity-gain Sallen-Key filter is 1.0000. Since it is a non-unity-gain filter, the net DC gain will be 1, meaning there is no amplification or attenuation of the input signal at DC (zero frequency).

To learn more about Sallen-Key, https://brainly.com/question/31984256

#SPJ11

what is the speed of a wave whose frequency and wavelength are 500.0 hz and 0.500 m, respectively?

Answers

The formula that relates the speed of a wave, frequency, and wavelength is v = fλ. Where: v is the speed of the wave in meters per second (m/s)f is the frequency of the wave in hertz (Hz) λ is the wavelength of the wave in meters (m)

Therefore, the speed of a wave whose frequency and wavelength are 500.0 Hz and 0.500 m, respectively is given by: v = fλ = 500.0 Hz × 0.500 m = 250 m/s

We know that the frequency of the wave is 500.0 Hz, and the wavelength of the wave is 0.500 m. The formula that relates the speed of a wave, frequency, and wavelength is:v = fλ

Therefore, the speed of the wave is given by: v = fλ = 500.0 Hz × 0.500 m = 250 m/s

Therefore, the speed of a wave whose frequency and wavelength are 500.0 Hz and 0.500 m, respectively is 250 m/s.

To know more about wavelength, visit:

https://brainly.com/question/31143857

#SPJ11

Determine the gradient drift periods for an electron and proton, each with a kinetic energy of 1 keV, at an altitude of 5 Re with respect to the earth. The magnetic field as a function of altitude (r) at the equator for Earth can be modeled as =0()3 where B0 = 3 x 10-5 T

Answers

The drift velocity of the electron and protons in the magnetic field is

1.48 x 10¹⁵ m/s.

The average speed at which electrons drift in an electric field is known as drift velocity. The electric current is influenced by the drift velocity (also known as drift speed).

Given that, B₀ = 3 x 10⁻⁵T

So, the magnetic field at 5 Re is given by,

B = B₀(Re/r)³

B = 3 x 10⁻⁵(1/5)³

B = 2.4 x 10⁻⁷ T

We must first calculate the drift velocity and then the drift period for each particle in order to obtain the gradient drift periods for an electron and a proton at a distance of 5 Earth radii (Re) and a kinetic energy of 1 keV.

The expression for drift velocity is given by,

Vd = 2E/qBR

Vd = 2E/(qB x mv/qB)

Vd = 2E/mv

Vd = 2 x 1/2 mv²/mv

E = 1/2 mv²

1 KeV = 9.1 x 10⁻³¹ x v²/2

v² = 2/ 9.1 x 10⁻³¹

v² = 2.2 x 10³⁰

So, v = √2.2 x 10³⁰

v = 1.48 x 10¹⁵ m/s

Vd = v = 1.48 x 10¹⁵ m/s

To learn more about drift velocity, click:

https://brainly.com/question/31580648

#SPJ4

Martha is viewing a distant mountain with a telescope that has a 120-cm-focal-length objective lens and an eyepiece with a 2.0 cm focal length. She sees a bird that's 42 m distant and wants to observe it. To do so, she has to refocus the telescope.
Part A
By how far must she move the eyepiece in order to focus on the bird?

Answers

To determine how far Martha must move the eyepiece in order to focus on the bird, we can use the lens formula.

To focus on the bird, Martha needs to adjust the eyepiece by a distance that brings the final image distance (v) to 50 m. The exact calculation for the movement of the eyepiece will depend on the specific values of u and the corresponding value of v.To determine the distance by which Martha must move the eyepiece in order to focus on the bird, we need to calculate the change in the position of the eyepiece.The change in the position of the eyepiece can be found by subtracting the initial position of the eyepiece from the final position.

To know more about eyepiece visit :

https://brainly.com/question/24547418

#SPJ11

when a second bulb (the bulbs aren't the same) is added in series to a circuit with a single bulb, the resistance of the circuit.

Answers

When a second bulb is added in series to a circuit with a single bulb, the resistance of the circuit increases.

In a series circuit, the total resistance is the sum of the individual resistances. Adding a second bulb in series means introducing an additional resistance to the circuit. Since resistance is a measure of how much a component opposes the flow of current, increasing the number of resistors in series increases the total resistance.

Resistance is the opposition that a substance offers to the flow of electric current.

Therefore, when a second bulb is added in series to a circuit with a single bulb, the resistance of the circuit increases.

To learn more about resistance click here

https://brainly.com/question/29427458

#SPJ11

If you filled an airtight balloon at the top of a mountain, would the balloon expand or contract as you descended the mountain? Explain.

Answers

If you filled an airtight balloon at the top of a mountain, the balloon would contract as you descended the mountain. This is due to the decrease in air pressure with increasing altitude.

Air pressure decreases with increasing altitude. The atmosphere is composed of different layers of gases that create atmospheric pressure. When the altitude changes, the pressure exerted by the gases also changes. The pressure decreases as the altitude increases.

This implies that there is less air pressure at the top of a mountain than at the bottom. When you fill an airtight balloon at the top of a mountain, it will be filled with air at a lower pressure. As you descend the mountain, the air pressure rises, and the balloon will attempt to maintain equilibrium with its surroundings.

As a result, the air inside the balloon will become more compressed, and the balloon will shrink in size. This is the main answer to your question. Therefore, the balloon will contract as you descend the mountain.

To sum up, as the altitude decreases, the air pressure rises, and the air inside the balloon will compress as it attempts to reach equilibrium with the surrounding air. As a result, the balloon will contract in size as you descend the mountain.

For more information on air pressure kindly visit to

https://brainly.com/question/31755937

#SPJ11

Part B When the energy stored in the inductor is maximum, how much energy is stored in the = capacitor? Express your answer with the appropriate units. Uc = Value Units Submit Request Answer Part € What is the maximum energy stored in the capacitor? Express your answer with the appropriate units. pA Uc = Value Units Submit Request Answer

Answers

When the energy stored in the inductor is maximum, the energy stored in the capacitor is zero. The maximum energy stored in the capacitor is 320J.

Part BWhen the energy stored in the inductor is maximum, the capacitor has zero energy stored in it. This is because, when the energy stored in the inductor is maximum, the current through the inductor is zero. This current is at a maximum in the capacitor. Therefore, the voltage across the capacitor is zero when the energy stored in the inductor is maximum.

For an inductor, the energy stored in it is given by the equation: E = 0.5 * L * I²Where:E is the energy stored in the inductorL is the inductance of the inductorI is the current flowing through the inductor Similarly, for a capacitor, the energy stored in it is given by the equation: E = 0.5 * C * V²Where:E is the energy stored in the capacitorC is the capacitance of the capacitorV is the voltage across the capacitorWhen the energy stored in the inductor is maximum, the energy stored in the capacitor is zero. So, Uc = 0 pA

.However, when the energy stored in the capacitor is maximum, we have to find the energy stored in the capacitor.Energy stored in the capacitor, Uc = 0.5 * C * V²Where,Uc is the maximum energy stored in the capacitorC is the capacitance of the capacitorV is the maximum voltage across the capacitor.

To know more about capacitor visit :

https://brainly.com/question/30917709

#SPJ11

Other Questions
during the phase of a pelvic exam, the licensed practitioner uses two hands to palpate the abdomen and assess the position of the uterus.T/F Marion has requested your advice in relation to her goal of continuing to self fund her retirement. Marion is aged 65 and, for planning purposes, expects to continue as a self funded retiree for another 30 years. Marion has identified two key issues for you to address:Issue 2: Estimated superannuation requirement to support 30 yearsCalculate the required superannuation fund amount to support a net income requirement of AUD75,000 per annum for 30 years. Assume the net income requirement does not change and the fund generates a constant return of 5% per annum. Ignore fees and taxes. Show your answer in millions to one decimal place (for example, AUD2.1 million). (3 marks) the tosylate of a primary alcohol normally undergoes an sn2 reaction with hydroxide ion to give a primary alcohol. reaction of this tosylate, however, gives a compound of molecular formula . c9h16o Subject: franchise managementProvide background on the Burger King company. with the reference. The following standard costs per unit, of one product, have been taken from the records of Bahraim Company Direct materials 5 kgs at $3 per kg. Direct labor 2.5 hours at $10 per hour Actual data for last month. Units produced: 12,000 Direct materials used 35,000 kgs Direct labor hours: 22,000 Direct labor rate per hour $9 Direct material price: $4 per kg Direct matenals purchased: 100,000 kgs Required: (a) Compute the price and efficiency variances for direct materials and direct labor. Direct material price variance to be calculated at the time of purchase. (5 marks) (b) Prepare the journal entries to record the price and efficiency variances for direct matenals and direct labor multimode fiber is capable of longer transmission distances than single mode fiber. Are there any defences to the offence ofinsider trading? (5 marks)(Based on Australian law)Hints: Diligent Investor what is the minimum number of moles of sodium hydroxide required for this hydrolysis reaction to go to completion? Name the element in the fourth period of the periodic table with:(a) 5 valence electrons(b) a total of four 4p electrons(c) a total of three 3d electrons(d) a complete outer shell The system of classification developed in ancient Greece by Aristotle was used in Europe up until the early 1700s. How did the Linnaean system of classification improve Aristotle's system?a. It introduced the concept of species.b. It included a hierarchy of taxa. c. It classified organisms based on physical characteristics.d. It used Latin names for organisms. please answer all questionsQuestion 3) Let say for question 2 if we measure the anxiety score before and after intervention for male and female students. (part a 8 points and part b 7 points total 15 points) a. What statistical Let G be a finite group and p a prime. A theorem of Cauchy says that if p divides the order of G, then G contains an element of order p. Prove this in two parts. (a) Prove it when G is abelian. (b) Use the class equation to prove it when G is nonabelian. Marketing Mix consists of the 4 P's. One of those P's is Place. Some of the most successful franchises in the US include restaurant and food chains like bway, McDonald's, Pizza Hut, Burger King, and Dunkin' Donuts. Other types of successful franchise businesses include hotels, resorts, auto rentals, shipping mpanies, gyms, and cleaning companies. Franchise is the most common type of ESTION: Identify the type of vertical marketing system that fills in the blank above If a pair of fair six-sided dice are tossed, what is the probability that the sum is even OR greater than 77 a. 0.667 b. 0.25 c. 0.833 d. 0.583 Week 1 Assignment Broom Dave has several golf balls in his golf bag. Seven of them are brand A, 9 are brand 8, and 2 are brand C. He reaches into the bag and randomly selects one golf ball, then he selects a second one without replacing the first one. What is the probability that the first one is a brand A golf ball and the second one is a brand C golf ball? a. 28,288 b. 0.071 0.0432 d. 0.0458 Week 1 Assignment 2 Betale If events A and B are mutually exclusive, P(A or B) 0.5, and P(B) 0.3; then what is Page 25 Back to top + MacBook Pro Identify the false statement. a. The productivity increases in manufacturing sector in the USA during the industrial era can be attributed to automation, technology advances, and business process reengineering (BPR). O b. In a single-queue, single-server queuing system, if the value of Mu () exceeds the value of lambda (X), then no queue will form. c. For a single-queue, single-server queuing system, the value of lambda (X) may exceed that of Mu (). d. The SERVQUAL model can be used to assess customer satisfaction based on service quality gaps. name some online presence/brand/business of an existing entity? race records and hillbilly music have the following in common, except: Infections caused by Staphylococcus aureus include all of the following, except:A) folliculitis.B) furuncles and carbuncles.C) sore throatD) osteomyelitis.E) pneumonia. how many numbers can a bus line contain at any given time between which pair of decimals should 4/7 be placed on a number lineo0.3 and 0.4o0.4 and 0.5o0.5 and 0.6o0.6 and 0.7