Answer:
Explanation:
Given:
Q factor, =1000
natural frequency, [tex]f_n=2000~Hz[/tex]
Damping factor, [tex]\zeta=?[/tex]
Bandwidth, BW=?
We have the relation:
[tex]Q=\frac{1}{2\zeta}[/tex]
[tex]\zeta=\frac{1}{2Q}[/tex]
[tex]\zeta=\frac{1}{2\times 1000}[/tex]
[tex]\zeta=5\times 10^{-4}[/tex]
Bandwidth:
[tex]BW=\frac{f_n}{Q}[/tex]
[tex]BW=\frac{2000}{1000}[/tex]
[tex]BW=2~Hz[/tex]
A stream of oxygen enters a compressor at a rate of 200 SCMH. The oxygen exits at 360 K and 500 bar. Determine the volumetric flowrate exiting the compressor using the compressibility factor equation of state.
Answer:
≈ 0.516 m^3/hr
Explanation:
Inlet of compressor = 200 SCMH
sheer standard conditions = 1 atm and 288.5 K
For oxygen :
critical pressure(Pc) = 49.8 atm
critical temperature Tc = 154.6 K
hence at compressor inlet
Tr = T / Tc = 288.5/154.6 = 1.866
Pr = P / Pc = 1 / 49.8 = 0.0204
Z1 ( from compressibility chart ) = 0.98
at compressor outlet
P2 = 500 bar = 500*0.9869 = 493.45 atm , T2 = 360 k
hence : Pr = P / Pc = 493.45 / 49.8 = 9.91
Tr = T / Tc = 360 / 154.6 = 2.33
Z2 ( from compressibility chart ) ≈ 1
V2( volumetric flow rate ) = V1*(P₁Z₂T₂) / (P₂Z₁T₁)
= 200 ( 1 * 1* 360) / (493.45 *0.98*288.5)
= 0.516 m^3/hr
In an international film festival, a penal of 11 judges is formed to judge the best film. At
last two films FA and FB were considered to be the best where the opinion of judges got
divided. Six judges where in favor of FA whereas five in favor of FB. A random sample
of five judges was drawn from the panel. Find the probability that out of five judges,
three are in favor of film FA.Enunciate demerits of classical probability.
Answer:
International Film Festival
Judging the best best film:
a. The probability that out of five judges (random sample), three are in favor of film FA is:
= 33%.
b. The demerits of classical probability are:
1. Classical probability can only be used with events that have definite numbers of possible outcomes.
2. Classical probability can only handle events where each outcome is equally likely.
3. Classical probability is based on the assumption of linear relationship (which is not always true in real life) between the latent variable and observed scores.
Explanation:
a) Number of judges = 11
Number of judges in favor of FA film = 6
Number of judges in favor of FB film = 5
Probability of judges in favor of FA film = 6/11
Probability of judges in favor of FB film = 5/11
Random sample of judges = 5
Probability that out of five judges, three are in favor of film FA = 3/5 * 6/11
= 18/55
= 33%
b) Classical probability is the simple probability showing that each event has equal chance of happening. It can be contrasted with empirical probability that is obtained from experiments.
A 20-mm-diameter steel bar is to be used as a torsion spring. If the torsional stress in the bar is not to exceed 110 MPa when one end is twisted through an angle of 15°, what must be the length of the bar?
Answer:
1.887 m
Explanation:
(15 *pi)/180
= 0.2618 rad
Polar moment
= Pi*d⁴/32
= (22/7*20⁴)/32
= 15707.96
Torque on shaft
= ((22/7)*20³*110)/16
= 172857.14
= 172.8nm
Shear modulus
G = 79.3
L = Gjθ/T
= 79.3x10⁹x(1.571*10^-8)x0.2618/172.8
= 1.887 m
The length of the bar is therefore 1.887 meters
how does load transfer of space needle
Answer:
The Space Needle is a cut away with minimal residual deflection due to load transfer.
1. A manufacturing cell with two workers is responsible for producing a small frying pan with a required takt time of 496 seconds. The material passes through two processes: a deep drawing process and a trimming process. The average cycle time for the deep drawing process is 450 seconds and average cycle time for trimming is 430 seconds. (2 pts.)
a. Does the work cell have adequate capacity to meet demand? Explain.
b. What is the required daily production capacity of the work cell (in number of frying pans per day)? Assume 480 minutes/workday of available time.
2. What is the total daily idle time for both workers in Problem 1? Report your answer in (a) seconds of idle time and (b) as a percentage of total working time for the cell. (2 pts.)
Answer:
Explanation:
[tex]496=\frac{480\times 60}{demand}[/tex]
demand per day = 58 pans
Due to availability of two workers we can have parallel we can have deep drawing and trimming operations simultaneously.
Hence the cycle time would be the greater time of the two operations.
cycle time = 450 seconds
[tex]\text{capacity of work cell}=\frac{\text{available working time}}{\text{cycle time}}[/tex]
[tex]\text{capacity of work cell}=\frac{480\times 60}{450}[/tex]
[tex]\text{capacity of work cell}=64 ~pans[/tex] (which is greater than the demand of 58 pans)
Therefore the work cell has sufficient capacity and time (496 sec.>cycle time 450 sec) to meet the demand.
b)
Required daily production is 58 pans
1. Add:
(i) 5xy, -2xy, -11xy, 8xy
(iv) 3a - 2b + c, 5a + 8b -70
Answer:
(i) 0
(iv) 8a+6b+c-70
Explanation:
Hope this helps you
A signalized intersection has a sum of critical flow ratios of 0.72 and a total cycle lost time of 12 seconds. Assuming a critical intersection v/c ration of 0.9, calculate the minimum necessary cycle length.
Answer:
[tex]T_o=82.1sec[/tex]
Explanation:
From the question we are told that:
Lost Time [tex]t=12secs[/tex]
Sum of critical flow ratios [tex]X=0.72[/tex]
Generally the Webster Method's equation for Optimum cycle time is is mathematically given by
[tex]T_o=\frac{1.5t+5}{1-x}[/tex]
[tex]T_o=\frac{1.5*12+5}{1-0.72}[/tex]
[tex]T_o=82.1sec[/tex]
Define chart name the different types of charts explain any three types of charts
Answer:
There are several different types of charts and graphs. The four most common are probably line graphs, bar graphs and histograms, pie charts, and Cartesian graphs. They are generally used for, and are best for, quite different things. ... Pie charts to show you how a whole is divided into different parts.
#carryonlearning
Using 1.5 V batteries, a switch, and three lamps, devise a circuit to apply 4.5 V across eitherone lamp, two lamps in series, or three lamps in series with a single-control switch. Draw theschematic.
Answer: the attached picture is the answer.
Explanation:
Assuming:
the switch position connect to 1, hence 4.5V exist at across lamp1
the switch position connects to 2 hence 4.5 V exist across lamp 1 and lamp 2
the switch position connects to 3, hence, 4.5 V exist across lamp 1, lamp 2 and lamp 3.
A circular rod with a gage length of 3.1 m and a diameter of 3 cm is subjected to an axial load of 68 kN . If the modulus of elasticity is 200 GPa , what is the change in length
Answer:
1.49 mm
Explanation:
The modulus of elasticity, Y = stress/strain = σ/ε
σ = F/A where F = load = 68 kN = 68 × 10³ N and A = cross-sectional area of rod = πd²/4 where d = diameter of rod = 3 cm = 3 × 10⁻² m.
ε = ΔL/L where ΔL = change in length of the circular rod and L = length of circular rod = 3.1 ,
So, Y = σ/ε
Y = F/A ÷ ΔL/L
Y = FL/AΔL
making the change in length ΔL subject of the formula, we have
ΔL = FL/AY
substituting the value of A into the equation, we have
So, ΔL = FL/(πd²/4)Y
ΔL = 4FL/πd²Y
Since Y = 200 GPa = 200 × 10⁹ Pa
Substituting the values of the variables into the equation, we have
ΔL = 4FL/πd²Y
ΔL = 4 × 68 × 10³ N × ×3.1 m/[π(3 × 10⁻²m)² × 200 × 10⁹ Pa]
ΔL = 843.2 × 10³ Nm/[9π × 10⁻⁴m² × 200 × 10⁹ Pa]
ΔL = 843.2 × 10³ Nm/[1800π × 10⁵ N]
ΔL = 843.2 × 10³ Nm/5654.87 × 10⁵ N
ΔL = 0.149 × 10⁻² m
ΔL = 1.49 × 10⁻³ m
ΔL = 1.49 mm
The change in length of the circular rod is 1.49 mm
Consider the equation y = 10^(4x). Which of the following statements is true?
A plot of log(y) vs. x would be linear with a slope of 4.
A plot of log(y) vs. log (x) would be linear with a slope of 10.
A plot of log(y) vs. x would be linear with a slope of 10.
A plot of y vs. log(x) would be linear with a slope of 4.
A plot of log(y) vs. log (x) would be linear with a slope of 4.
A plot of y vs. log(x) would be linear with a slope of 10.
Answer: Plot of [tex]\log y[/tex] vs [tex]x[/tex] would be linear with a slope of 4.
Explanation:
Given
Equation is [tex]y=10^{4x}[/tex]
Taking log both sides
[tex]\Rightarrow \log y=4x\log (10)\\\Rightarrow \log y=4x[/tex]
It resembles with linear equation [tex]y=mx+c[/tex]
Here, slope of [tex]\log y[/tex] vs [tex]x[/tex] is 4.
20 friends 6men 14 women are having a tea party
Answer:
what about it?
Explanation:
The propeller shaft of the submarine experiences both torsional and axial loads. Draw Mohr's Circle for a stress element on the outside surface of the solid shaft. Determine the principal stresses, the maximum in-plane shear stress and average normal stress using Mohr's Circle.
Answer: Attached below is the missing detail and Mohr's circle.
i) б1 = 9.6 Ksi
б2 = -10.7 ksi
ii) 10.2 Ksi
iii) -0.51Ksi
Explanation:
First step :
direct compressive stress on shaft
бd = P / π/4 * d^2
= -20 / 0.785 * 5^2 = -1.09 Ksi
shear stress at the outer surface due to torsion
ζ = 16*T / πd^3
= (16 * 250 ) / π * 5^3 = 010.19 Ksi
Calculate the Principal stress, maximum in-plane shear stress and average normal stress
Using Mohr's circle ( attached below )
i) principal stresses:
б1 = 4.8 cm * 2 = 9.6 Ksi
б2 = -5.35 cm * 2 = -10.7 ksi
ii) maximum in-plane shear stress
ζ = radius of Mohr's circle
= 5.1 cm = 10.2 Ksi ( Given that ; 1 cm = 2Ksi )
iii) average normal stress
= 9.6 + ( - 10.7 ) / 2
= -0.51Ksi
Match the test to the property it measures.
a. Rockwell
b. Inston
c. Charpy
d. Fatigue
e. Brinell
f. Izod
1. impact strength
2. stress vs strain
3. hardness
4. Endurance Limit
Answer:
a. Rockwell 3. hardness
b. Instron 2. stress vs strain
c. Charpy 1. impact strength
d. Fatigue 4. Endurance Limit
e. Brinell 3. hardness
f. Izod 1. impact strength
Explanation:
Izod and Charpy are the impact strength testing procedure of a material in which a heavy hammer is attached to an arm is released to impact on the test specimen. In Izod test the specimen with v-notch is held vertical with the notch facing outward while in Charpy test the specimen is supported horizontally with notch facing inward to the impacting hammer.
Instron testing system does universal testing of the material which gradually applies the load recording all the stresses and the corresponding strains until the material fails.
Fatigue is the property of a material due to which it fails under the repeated cyclic loading by the initiation and propagation of cracks. The property of a material resist failure subjected to infinite number of repeated cyclic loads below a certain stress limit.
Rockwell and Brinell are the hardness testing methods. In Rockwell test an intender ball is firstly pressed against the specimen using minor load for a certain time and then a major load is pressed against it for a certain time. After the intender is removed the depth of impression on the surface is measured while in case of Brinell hardness we apply only one load against the intender ball for a certain time and after its removal the radius of impression is measured.
a) Complete the following methods description using the correct tense for the verb in brackets. (This student is using passive voice rather than any human agents at the request of the instructor.) Student Lab Report Identical tensile test procedures were performed on all test specimens. Each of the metal specimens ____1____ [have] an indentation near the center to ensure that the fracture point would occur in this region. Tension tests ____2____ [conduct] as follows. Two pieces of reflective tape ____3____ [place] approximately 1 inch apart in the center of the specimen where the indentation 4 [locate]. The width and the thickness of the specimen at this location _____5_____ [measure] using a Vernier caliper. Then the specimen _____6____ [secure] in the MTS Load Frame. A laser extensometer _____7_____ [place] into position to measure the deformation of the specimen. The laser extensometer ______8_ __ [use] to measure the original distance between the pieces of reflective tape. The MTS ________9____ [set] to elongate the specimen one tenth of an inch every minute.
Answer:
Each of the metal specimens HAS an indentation near the center to ensure that the fracture point would occur in this region. Tension tests WERE CONDUCTED as follows. Two pieces of reflective tape WERE PLACED approximately 1 inch apart in the center of the specimen where the indentation 4 WAS LOCATED. The width and the thickness of the specimen at this location WAS MEASURED using a Vernier caliper. Then the specimen WAS SECURED in the MTS Load Frame. A laser extensometer WAS PLACED into position to measure the deformation of the specimen. The laser extensometer WAS USED to measure the original distance between the pieces of reflective tape. The MTS WAS SET to elongate the specimen one tenth of an inch every minute.
Steam enters an adiabatic turbine at 6 MPa, 600°C, and 80 m/s and leaves at 50 kPa, 100°C, and 140 m/s. If the power output of the turbine is 5 MW, determine (a) the reversible power output and (b) the second-law efficiency of the turbine. Assume the surroundings to be at 25°C.
Answer:
(a) the reversible power output of turbine is 5810 kw
(b) The second-law efficiency of he turbine = 86.05%
Explanation:
In state 1: the steam has a pressure of 6 MPa and 600°C. Obtain the enthalpy and entropy at this state.
h1 = 3658 kJ/kg s1=7.167 kJ/kgK
In state 2: the steam has a pressure of 50 kPa and 100°C. Obtain the enthalpy and entropy at this state
h2 = 2682kl/kg S2= 7.694 kJ/kg
Assuming that the energy balance equation given
Wout=m [h1-h2+(v1²-v2²) /2]
Let
W =5 MW
V1= 80 m/s V2= 140 m/s
h1 = 3658kJ/kg h2 = 2682 kJ/kg
∴5 MW x1000 kW/ 1 MW =m [(3658-2682)+ ((80m/s)²-(140m/s)²)/2](1N /1kg m/ s²) *(1KJ/1000 Nm)
m = 5.158kg/s
Consider the energy balance equation given
Wrev,out =Wout-mT0(s1-s2)
Substitute Wout =5 MW m = 5.158kg/s 7
s1= 7.167 kJ/kg-K s2= 7.694kJ/kg-K and 25°C .
Wrev,out=(5 MW x 1000 kW /1 MW) -5.158x(273+25) Kx(7.167-7.694)
= 5810 kW
(a) Therefore, the reversible power output of turbine is 5810 kw.
The given values of quantities were substituted and the reversible power output are calculated.
(b) Calculating the second law efficiency of the turbine:
η=Wout/W rev,out
Let Wout = 5 MW and Wrev,out = 5810 kW
η=(5 MW x 1000 kW)/(1 MW *5810)
η= 86.05%
bending stress distribution is a.rectangle b.parabolic c.curve d.i section
CO2 enters an adiabatic nozzle, operating at steady state, at 200 kPa, 1500 K, 5 m/s and exits at 100 kPa, 1400 K. The exit area of the nozzle is 10 cm2. Using the PG model, determine the exit velocity
Answer:
[tex]v_2=549.2 m/s\\[/tex]
Explanation:
Given:
[tex]P_1=2500kPa\\T_1=1500 k\\V_1=5 m/s\\P_2=100 kPa\\T_2=1400 k\\A_2=10 cm^2[/tex]
Solution:
For [tex]Co_2[/tex] y=1.4
Since Nozzle is adiababic
So,
[tex]h_1+\frac{V_1^2}{2}=h_2+\frac{V_2^2}{2}\\\frac{v_2^2}{2}=(h_2-h_2)+\frac{r^2}{2}\\v_2^2=2(h_1-h_2)+v_1^2\\v_2=\sqrt{2(h_1-h_2)+v_1^2}[/tex]
Now,
[tex]h_1-h_2=Cp_1T_1-CP_2T_2\\h_1-h_2=(1989-1838.2)*10^3\\ =150.8 * 10^3\\Cp for co_2\\C_{p1}=1.326 kj/kg\\C_{p2}=1.313 kj/kg\\v_2=\sqrt{301600+25}\\ =549.2 m/s[/tex]
The following is a correlation for the average Nusselt number for natural convection over spherical surface. As can be seen in the above, the Nusselt number approaches 2 as Rayleigh number approaches zero. Prove that this situation corresponds to conduction heat transfer and in conduction heat transfer over sphere, the Nusselt number becomes 2. Hint: First step: Write an expression for heat transfer between two spherical shells that share the same center. Second step: Assume the outer spherical shell is infinitely large.
Answer:
Explanation:
[tex]r_2=[/tex]∞
[tex]q=4\pi kT_1(T_2-T_1)\\[/tex]
[tex]q=2\pi kD.[/tex]ΔT--------(1)
[tex]q=hA[/tex] ΔT[tex]=4\pi r_1^2(T_2_s-T_1_s)\\[/tex]
[tex]N_u=\frac{hD}{k} = 2+\frac{0.589 R_a^\frac{1}{4} }{[1+(\frac{0.046}{p_r}\frac{9}{16} )^\frac{4}{9} } ------(3)[/tex]
By equation (1) and (2)
[tex]2\pi kD.[/tex]ΔT=h.4[tex]\pi r_1^2[/tex]ΔT
[tex]2kD=hD^2\\\frac{hD}{k} =2\\N_u=\frac{hD}{k}=2\\[/tex]-------(4)
From equation (3) and (4)
So for sphere [tex]R_a[/tex]→0
If you are driving down to the sleep downgrade and you have reached the speed of 40 mph , you would apply the setrvice break until your speed dropped to below_____mph.
Answer:
35 miles
Explanation:
When you are driving a truck that has an air brake system you have to keep in mind that when driving down a steep downgrade, the truck will automatically accelerate due to the inclination of the road, so in order to keep the speed to a controllable situation, you need to activate the service brake until you've reached the 35 miles per hour mark.
Determine the pressure difference in N/m2,between two points 800m apart in horizontal pipe-line,150 mm diameter, discharging water at the rate of 12.5litres per second. Take the frictional coefficient ,f, as being 0.008
Answer: [tex]10.631\times 10^3\ N/m^2[/tex]
Explanation:
Given
Discharge is [tex]Q=12.5\ L[/tex]
Diameter of pipe [tex]d=150\ mm[/tex]
Distance between two ends of pipe [tex]L=800\ m[/tex]
friction factor [tex]f=0.008[/tex]
Average velocity is given by
[tex]\Rightarrow v_{avg}=\dfrac{12.5\times 10^{-3}}{\frac{\pi }{4}(0.15)^2}\\\\\Rightarrow v_{avg}=\dfrac{15.9134\times 10^{-3}}{2.25\times 10^{-2}}\\\\\Rightarrow v_{avg}=7.07\times 10^{-1}\\\Rightarrow v_{avg}=0.707\ m/s[/tex]
Pressure difference is given by
[tex]\Rightarrow \Delta P=f\ \dfrac{L}{d}\dfrac{\rho v_{avg}^2}{2}\\\\\Rightarrow \Delta P=0.008\times \dfrac{800}{0.15}\times \dfrac{997\times (0.707)^2}{2}\\\\\Rightarrow \Delta P=10,631.45\ N/m^2\\\Rightarrow \Delta P=10.631\ kPa[/tex]
James the Pilot James is a pilot. He is wearing a flight suit. He flies to Paris. He loves flying. 1. James is a a) teacher b) doctor c) pilot. whatisthe 2. He is wearing a a) shirt b) t-shirt c) flight suit. 3. Where does he fly to? a) Italy b) Luxembourg c) Paris http https://whatistheurl.com Please visit our site for worksheets and charts
Answer:
1.c
2.c
3.c
Explanation:
James is a pilot, whistle. He is wearing a flight suit. Paris is the palace where does he fly to. Hence, option C, C, and C are correct.
What is the point of a flight suit?When flying an aircraft, such as a military aircraft, a glider, or a helicopter, one must wear a full-body suit called a flight suit. These outfits are typically meant to keep the user warm and are also functional (they have many of pockets) (including fire ). In most cases, it looks like a jumpsuit.
The G suit, sometimes known as a "anti-G suit," is a one-piece jumpsuit that shields a pilot from the pressure of G forces pressing down on him and causing discomfort or unconsciousness.
The traditional attire for pilots of military and commercial aircraft, helicopters, and even gliders is flight suits or flyers coveralls. In areas where there is a risk of fire, ground personnel—including aircrews—often wear flight suits as well.
Thus, option C, C, and C are correct.
For more information about point of a flight suit, click here:
https://brainly.com/question/12302183
#SPJ2
how many types of lavatory there is?
Answer:
there are generally two types of toilet bowl types- round and elongated.
what are some quality assurance systems
it is a small sharp and printed item for fine worker in trimming scallops clipping threads and cutting large eyelets
Answer:
embroidery scissor
Explanation:
is small, sharp and pointed good for fine work use trimming scallops,clipping threads,and cutting large eyelets.
hope this helps
A venturimeter of 400 mm × 200 mm is provided in a vertical pipeline carrying oil of specific gravity 0.82, flow being upward. The difference in elevation of the throat section and entrance section of the venturimeter is 300 mm. The differential U-tube mercury manometer shows a gauge deflection of 300 mm. Calculate: (i) The discharge of oil, and (ii) The pressure difference between the entrance section and the throat section.Take the coefficient of meter as 0.98 and specific gravity of mercury as 13.6
Answer:
the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Explanation:
Given:
Diameter of the pipe = 100mm = 0.1m
Contraction ratio = 0.5
thus, diameter at the throat of venturimeter = 0.5×0.1m = 0.05m
The formula for discharge through a venturimeter is given as:
Where,
is the coefficient of discharge = 0.97 (given)
A₁ = Area of the pipe
A₁ =
A₂ = Area at the throat
A₂ =
g = acceleration due to gravity = 9.8m/s²
Now,
The gauge pressure at throat = Absolute pressure - The atmospheric pressure
⇒The gauge pressure at throat = 2 - 10.3 = -8.3 m (Atmosphric pressure = 10.3 m of water)
Thus, the pressure difference at the throat and the pipe = 3- (-8.3) = 11.3m
Substituting the values in the discharge formula we get
or
or
Q = 29.28 ×10⁻³ m³/s
Hence, the rate of flow = 29.28 ×10⁻³ m³/s or 0.029 m³/s
Hope This Helps :D
plsssssss help me here
Activity 1. Fill the blank with the correct answer. Write your answer on the blank. 1. ___________________ is a regular pattern of dots displayed on the screen which acts as a visual aid and also used to define the extent of your drawing. 2. Ortho is short for ___________________, which means either vertical or horizontal. 3. Tangent is a point where two _______________________ meet at just a single point. 4. If you want to create a new drawing, simply press ___________________ for the short cut key. 5. There are _______________Osnap that can help you performs your task easier.
Answer:
1. Drawing grid.
2. Orthogonal.
3. Geometries.
4. CTRL+N.
5. Thirteen (13).
Explanation:
CAD is an acronym for computer aided design and it is typically used for designing the graphical representation of a building plan. An example of a computer aided design (CAD) software is AutoCAD.
Some of the features of an AutoCAD software are;
1. Drawing grid: is a regular pattern of dots displayed on the screen of an AutoCAD software, which acts as a visual aid and it's also used to define the extent of a drawing.
2. Ortho is short or an abbreviation for orthogonal, which means either vertical or horizontal.
3. Tangent is a point where two geometries meet at just a single point.
4. If you want to create a new drawing, simply press CTRL+N for the short cut key.
5. There are thirteen object snaps (Osnap) that can help you perform your task on AutoCAD easily. The 13 object snaps (Osnap) are; Endpoint, Midpoint, Apparent intersect, Intersection, Quadrant, Extension, Tangent, Center, Insert, Perpendicular, Node, Parallel, and Nearest.
All of the following safety tips are true EXCEPT Select one: a. It is not acceptable to handle broken glass with your bare hands b. It is acceptable to grasp the electrical cord when removing an electrical plug from its socket c. It is not acceptable to immerse hot glassware in cold water d. It is not acceptable to reuse dirty glassware
Answer:
Explanation:
B. you would grab the plug closest to the outlet
If you don't have enough experience, it's always best to leave socket changing to the experts. If you make a mistake, you might inflict harm and potentially endanger yourself and other people. Read on if you're interested in learning how to change a socket safely. Thus, option D is correct.
What, removing an electrical plug from its socket?Grip the plug, not the electrical cable, when taking an electrical plug out of its socket. Before handling an electrical switch, socket, or outlet, hands must be fully dry.
Reduce the extra so that it rests only on top of the existing plasterboard. If necessary, push it back a little by using your finger. Fill the dent with ready-mixed filler or powdered filler, whichever you want, and bring it flush with the surrounding wall. Allow to dry, then sand off any excess.
Therefore, It is acceptable to grasp the electrical cord when removing an electrical plug from its socket
Learn more about electrical plug here:
https://brainly.com/question/28932892
#SPJ5
g The inside surface of a 17 mm inner diameter tube with a 2.4 mm thick wall indicates a temperature of 46 deg C. The outside temperature is 43 deg C. The tube is 5 m long. If the tube material has a conductivity of 0.15 W/m/K, estimate the heat transfer rate through the tube wall assuming SS 1D conduction. Indicate the direction of heat transfer with a or - sign ( meaning outward and vice versa). Express your answer using two significant digits in W.
Answer:
-50 W
Explanation:
The heat transfer rate Q = kA(T₂ - T₁)/d where k = thermal conductivity of material = 0.15 W/m-K, A = surface area of tube = πdL where d = diameter of tube = 17 mm = 0.017 m and L = length of tube = 5 m, T₁ = inside temperature = 46 °C, T₂ = outside temperature = 43 °C and d = thickness of tube = 2.4 mm = 0.0024 m
Since Q = kA(T₂ - T₁)/d ,
Q = kπdL(T₂ - T₁)/d
substituting the values of the variables into the equation, we have
Q = 0.15 W/m-K × π × 0.017 m × 5 m(43 °C - 46 °C )/0.0024 m
Q = 0.01275π Wm/K(-3 K )/0.0024 m
Q = -0.03825π Wm/0.0024 m
Q = -0.1202 Wm/0.0024 m
Q = -50.07 W
Q = -50 W
So, the heat transfer rate is -50 W meaning heat transfer out of the tube.