A p-n junction made with Ge has impurities on each side with concentrations Na = 10¹6 cm-3 and N₁ = 10¹8 cm-³. (a) Calculate the positions of the Fermi level on each side at T = 300 K, relative to the conduction and valence bands.. (b) Draw the energy diagram of the junction in equilibrium, indicating the values of the relevant energies, and from it determine the contact potential Vo 6.2 Calculate the maximum electric field, the thickness of the depletion region (in μm), and the capacitance of the p-n junction of problem 6.1, considering that it has a circular cross-section of diameter 300 µm.

Answers

Answer 1

Given thatNa = 10¹6 cm-3 and N₁ = 10¹8 cm-³.Equilibrium means that the chemical potential is the same on both sides and the Fermi levels are the same.In Ge, at room temperature, each dopant atom donates one electron, so there will be an excess of electrons on the n-side and a deficit on the p-side.

The majority carrier concentration on each side is Na = 10¹⁶ cm⁻³ and N₁ = 10¹⁸ cm⁻³.a) The position of the Fermi level on the n-side can be determined by usingEf - Ei = kTln(Nv/Nd)For p-side:Ef - Ei = kTln(Nd/Nv)Where Ei is the intrinsic energy level, k is Boltzmann’s constant, T is temperature, Nv is the effective density of states in the valence band, and Nd is the concentration of donors.For n-side:Nv = 1.04 x 10¹⁹ cm⁻³ and Nd = 10¹⁶ cm⁻³Therefore,Ef - Ei = kTln(Nv/Nd)Ef - Ei = (8.62 x 10^-5 eV/K) (300 K) ln(1.04 x 10¹⁹/10¹⁶)Ef - Ei = 0.46 eV + 0.025 eVEf - Ei = 0.485 eV

This means that the Fermi level on the n-side is 0.485 eV above the valence band.Ef - Ei = kTln(Nd/Nv)Ef - Ei = (8.62 x 10^-5 eV/K) (300 K) ln(10¹⁸/1.04 x 10¹⁹)Ef - Ei = -0.06 eV - 0.025 eVEf - Ei = -0.085 eVThis means that the Fermi level on the p-side is 0.085 eV below the conduction band.b)The energy diagram of the junction in equilibrium is as follows:In thermal equilibrium, the voltage drop across the junction due to the difference in Fermi levels is called the contact potential, and is given by:Vo = (Eb – Ea)/eVo = (0.085 – (-0.485))/1.6 x 10^-19Vo = 3.06 V.

To know more about chemical  visit:

https://brainly.com/question/29240183

#SPJ11


Related Questions

Data Structures
Anybody could help me answer these questions. The answer needs to be as simple as possible. Professor asked for 2 sentences
10.) How does an algorithm relate to a problem? ANSWER IN 2 SENTENCES! I DON’T READ BEYOND THAT!!!!!
11.) How is data compression accomplished using the Huffman Code? ANSWER IN 2 SENTENCES! I DON’T READ BEYOND THAT!!!!!
12.) What is the expected result for all data that is generated by "Randomization?" ANSWER IN 2 SENTENCES! I DON’T READ BEYOND THAT!!!!!

Answers

10.) An algorithm is a step-by-step procedure or set of rules used to solve a problem, providing a systematic approach to addressing the problem's requirements and constraints.

11.) Huffman coding achieves data compression by assigning shorter codes to frequently occurring symbols and longer codes to less frequent symbols, resulting in efficient representation and storage of data.

12.) The expected result for data generated by randomization is an unpredictable and statistically unbiased distribution of values, as randomization aims to introduce randomness and remove any patterns or biases from the generated data.

Learn more about Huffman coding here:\

https://brainly.com/question/33171189


#SPJ11


Please solve for 1 (b) only tq
1. Given a transfer function a) b) T(s) = (s² + 3s + 7) (s + 1)(s² + 5s + 4) Represent the transfer function in a blok diagram. Relate the state differential equations with the block diagram in (a).

Answers

Given a transfer function,T(s) = (s² + 3s + 7) (s + 1)(s² + 5s + 4), the block diagram for the transfer function is shown below It's important to note that the transfer function of the system can be represented by the block diagram as shown below

Block DiagramBlock Diagram representation of the given Transfer Function (T(s))In this case, we have three blocks. The first block has the transfer function, s² + 3s + 7, and represents the process or the plant. The second block has the transfer function, s + 1, and represents the controller of the system. The third block has the transfer function, s² + 5s + 4, and represents the sensor of the system.Relate the state differential equations with the block diagram in (a).The block diagram for the system can be represented in the state space form as follows:$$ \begin{aligned}\dot{x}(t)&=Ax(t)+Bu(t)\\y(t)&=Cx(t)+Du(t)\end{aligned}

Thus, the block diagram of the given transfer function, T(s) = (s² + 3s + 7) (s + 1)(s² + 5s + 4), has three blocks. The first block represents the process or the plant with a transfer function of s² + 3s + 7. The second block represents the controller of the system with a transfer function of s + 1. The third block represents the sensor of the system with a transfer function of s² + 5s + 4.Relating the state differential equations with the block diagram in (a), we can represent the state space model as follows:$$ \begin{aligned}\dot{x}_1(t)&=x_2(t)\\\dot{x}_2(t)&=-3x_2(t)-7x_3(t)-(x_1(t)+x_3(t))u(t)\\\dot{x}_3(t)&=-x_2(t)-5x_3(t)\end{aligned} $$

To know more about transfer visit:

https://brainly.com/question/32332387

#SPJ11

An anti-lock braking system is a safety system in motor vehicles that allows the wheels of the vehicle to continue interacting tractively with the road while braking, preventing the wheels from locking up (that is, ceasing rotation) and therefore avoiding skidding. During braking, if the system detects that one wheel is spinning much slower than the others, it releases the brake pressure to that wheel. 1. With a figure identify the different parts of this system considered as a Cyber Physical System?

Answers

The different parts of an anti-lock braking system (ABS) considered as a Cyber Physical System (CPS) are as follows:

1. Sensors: These components, such as wheel speed sensors, detect the rotational speed of each wheel. They provide crucial input to the ABS control unit.

2. Control Unit: The control unit is responsible for processing sensor data and making decisions regarding brake pressure modulation. It analyzes the wheel speed information and determines if any wheel is at risk of locking up.

3. Actuators: These components, typically solenoid valves, are responsible for modulating the brake pressure to individual wheels. Based on the control unit's instructions, they release or apply brake pressure to maintain optimal wheel traction.

4. Braking System: This includes the physical brake components, such as calipers, discs, and pads, which are interconnected with the ABS. The ABS interacts with the braking system to control brake pressure and prevent wheel lock-up.

In a CPS, the physical components (sensors, actuators, braking system) interact with the cyber components (control unit) to achieve a desired functionality (preventing wheel lock-up). The sensors provide real-time data to the control unit, which makes decisions based on that information and sends instructions to the actuators. The actuators then physically adjust the brake pressure. This integration of physical and cyber components working together defines the CPS nature of an ABS.

It's important to note that the provided information and explanation focus on identifying the different parts of the ABS as a CPS. However, the requested "calculation and conclusion" are not applicable in this context as ABS operation doesn't involve calculations or specific conclusions beyond its intended functionality.

To know more about CPS, visit;

https://brainly.com/question/22187185

#SPJ11

(a) A 440 V, six poles, 80 hp, 60 Hz, connected three phase induction motor develops its full load induced torque at 3.5 % slip when operating at 60 Hz and 440 V. The per phase circuit model impedances of the motor are R₁ = 0.32 0 Хм = 32 Ω X₁ = 0.44 Ω Xz = 0.38 Ω Mechanical, core, and stray losses may be neglected in this problem. Find the value of the rotor resistance R₂.

Answers

Given data

A 440 V, six poles, 80 hp, 60 Hz, connected three-phase induction motor develops its full load induced torque at 3.5% slip when operating at 60 Hz and 440 V.

The per-phase circuit model impedances of the motor are

R₁ = 0.32 Ω,

X₁ = 0.44 Ω,

X₂ = 0.38 Ω.

Mechanical, core, and stray losses may be neglected in this problem.

Formula to calculate rotor resistance

R₂ = (S / (1 - S)) (R₁² + X₁²)

Where, S = slip

R₁ = stator resistance per phase

X₁ = stator reactance per phase

The induced torque is obtained when the rotor's speed is lower than the synchronous speed, and this difference in speed between the rotor and the synchronous speed is known as the slip.

Full-load-induced torque is achieved when slip is 3.5 percent, which is why the rotor's slip is 3.5 percent.

Let's substitute the given values in the formula.

R₁ = 0.32 Ω

X₁ = 0.44 Ω

S = 3.5/100

= 0.035

R₂ = (0.035 / (1 - 0.035)) (0.32² + 0.44²)

R₂ = (0.035 / 0.965) (0.1024 + 0.1936)

R₂ = 0.0358 (0.296)

R₂ = 0.0106 Ω

Therefore, the value of rotor resistance R₂ is 0.0106 Ω.

To know more about resistance visit:

https://brainly.com/question/32301085

#SPJ11

How do you calculate whether a material with a 0.5 sq cm cross
section is suitable to withstand temperatures of 2000F and tensile
forces of 10kN if the material has a creep strength of 500MPa at
1400F

Answers

Creep strength is defined as the maximum stress that can be applied to a material at a certain temperature over an extended period without any significant deformation.

In determining whether a material with a 0.5 sq cm cross section can withstand temperatures of 2000F and tensile forces of 10kN, it is necessary to consider the following parameters.

To begin, calculate the material's safe operating temperature. The safe operating temperature is calculated using the following equation:

Safe operating temperature = Creep strength × Cross-sectional area / Tensile force


= (500 × 106 Pa) × (0.5 × 10-4 m2) / (10 × 103 N)

= 25°C

This indicates that the material can only operate at 25°C without experiencing any deformation.

As a result, the material cannot withstand temperatures of 2000F because 2000F is roughly equal to 1093°C, which is far above the safe operating temperature of 25°C. Therefore, it would be best to seek an alternate material that can withstand the required temperature and tensile force.

To know more about temperature visit:

https://brainly.com/question/15267055

#SPJ11







Q: Find the actual address for the following instruction assume X= (32)hex and Rindex=D4C9 LOAD X(Ri), A address=? address=D41B address=D517 O address=D4FB address=D4F2 address=D4E1 address=D4BF

Answers

Note that the actual address for the instruction "LOAD X(Ri), A" is address = 54619.

How is this so?

To find the actual address for the instruction "LOAD X(Ri), A", we need to add the hexadecimal   value of X (32) to the content of register Ri.

Given the options for the address: address=D41B, address=D517, address=D4FB, address=D4F2,address=D4E1,   address=D4BF, we can determine the correct address by performing the addition.

If X = (32)hex and Rindex = D4C9:

- address = X + Rindex = 32 + D4C9

Converting   the hexadecimal values todecimal -

- X =32 (hex)   = 50 (decimal)

- Rindex = D4C9 (hex) = 54569 (decimal)

Performing the addition -

- address = 50 + 54569 = 54619

Therefore, the actual address for the instruction "LOAD X(Ri), A" is address = 54619.

Learn more about address at:

https://brainly.com/question/29376238

#SPJ1

L4 In this assignment, you will practice implementing and processing arrays in ARM Assembly by modelling the game of Bulgarian Solitaire.The game starts with 45 cards. (They need not be playing cards. Unmarked index cards work just as well.). Randomly divide them into some number of piles of random size.For example, you might start with piles of size 20, 5, 1, 9, and 10.In each round, you take one card from each pile, forming a new pile with these cards.For example, the sample starting configuration would be transformed into piles of size 19, 4, 8, 9, and 5. The solitaire is over when the piles have size 1, 2, 3, 4, 5, 6, 7, 8, and 9, in some order. (It can be shown that you always end up with such a configuration.)In your ARM assembler program, produce a random starting configuration and print it. Then keep applying the solitaire step and print the result. Stop when the solitaire final configuration is reached.I will leave the design of the program completely up to you, but make sure that you use functions for all major tasks and keep the main function very simple (use it primarily to call your functions).

Answers

An ARM Assembly program to simulate the game of Bulgarian Solitaire. Remember to modularize your code using functions for each major task to maintain clarity and simplicity.

To implement the game of Bulgarian Solitaire in ARM Assembly, you can follow the given guidelines to design the program.

1. Randomly Generate Starting Configuration:

  - Define an array, let's say "piles," to store the sizes of the piles.

  - Use a random number generator to assign random sizes to the piles.

  - Ensure that the sum of all pile sizes is equal to 45 (total number of cards).

  - Print the initial configuration using a function.

2. Implement Solitaire Step:

  - Create a function, let's say "solitaireStep," that performs one step of the Bulgarian Solitaire.

  - Iterate through the "piles" array and decrement each pile size by 1.

  - Create a new pile with the number of cards equal to the total number of piles.

  - Print the updated configuration.

3. Check for Final Configuration:

  - Create a function, let's say "checkFinalConfiguration," to determine if the current configuration is the final one.

  - Initialize a counter array with a size of 10, representing the counts of piles with sizes 1 to 9.

  - Iterate through the "piles" array and increment the counter array based on the pile sizes.

  - Check if the counter array contains the values [1, 2, 3, 4, 5, 6, 7, 8, 9].

  - If the condition is satisfied, return true; otherwise, return false.

4. Main Function:

  - In the main function, call the random configuration generation function and print the initial configuration.

  - Use a loop to repeatedly call the solitaireStep function until the final configuration is reached.

  - Within each iteration, print the updated configuration.

  - Check if the current configuration is the final one using the checkFinalConfiguration function.

  - If the final configuration is reached, break out of the loop and end the program.

By following these guidelines, you can create an ARM Assembly program to simulate the game of Bulgarian Solitaire. Remember to modularize your code using functions for each major task to maintain clarity and simplicity.

Learn more about Bulgarian Solitaire here

https://brainly.com/question/14988160

#SPJ11

What does this code do?

while(1) PTC->PDOR &= -(OxOF << 3); delays(5): 1 o writing to PTC7, PTCB, PTC9. PTC10 o writing 0 to PTC3, PTCA, PTCS, PTC6 writing to PTCO, PTC1, PTC2, PTC3 writing '1' to PTC3 PTC4, PTC5, PTC6

Answers

The given code continuously clears the output value of pin PTC3 while leaving other pins unchanged in an infinite loop, with a delay of 5 units between each iteration.

The given code is an infinite loop that continuously performs a bitwise AND operation on the PDOR register of the PTC (Port Control) module. The purpose of this operation is to selectively modify the output values of specific pins of the PTC module.

By using the expression `-(OxOF << 3)`, the code creates a bit mask where all bits are set to 1 except for the 4th bit (bit number 3) which is set to 0. This bit mask is then applied to the PDOR register using the bitwise AND operation.

The effect of this operation is that it clears the output value of the 4th pin (PTC3) while leaving the other pins unchanged. The code then enters a delay of 5 units before repeating the process indefinitely.

Learn more about code  here:

https://brainly.com/question/29415882

#SPJ11

Draw DC sweep between voltage and current on MULTISIMM ❗️❗️❗️

Answers

DC Sweep refers to a process in which the voltage across a circuit is steadily increased or decreased over time, and the current through the circuit is measured at various points to create a graph of current against voltage.

This process is useful in identifying the linear regions of a circuit, in which the current is proportional to the voltage, and the nonlinear regions, in which the current may vary in more complex ways. The DC sweep can be performed on Multisim to produce a graph of current versus voltage that shows the relationship between these two quantities.


The DC sweep graph produced by the Multisim simulation can be used to analyze the behavior of the circuit under different conditions. By adjusting the parameters of the sweep, such as the step size or the type of sweep, you can create a more detailed picture of how the circuit responds to changes in voltage or current.

To know more about DC visit:

https://brainly.com/question/3672042

#SPJ11

Problem 2: A balanced Δ-connected load having an impedance 20-j15 Ω is connected to a Δ-connected, positive-sequence generator having V
ab

=330/0

V. Calculate the phase currents of the load and the line currents.

Answers

The impedance of the load, Z = 20 - j15 ΩThe line voltage, Vab = 330/0o VWe know that the phase voltage, Vph = V line/sqrt(3)Vph = (330/0) / sqrt(3) = 190.56∠0o volts.

The load is balanced delta-connected, which means the impedance of each phase will be the same. The delta-connected load will look like the below circuit:Impedance of each phase, Zph = Z/ZIph = Vph/ZphIph = 190.56∠0o / (20 - j15)Iph = 6.89∠39.8o

AmpsThe line current, Iline = √3IphIline = √3 * 6.89∠39.8oIline = 11.94∠39.8o AmpsPhase currents of the load will be equal to the phase currents in the delta-connected circuit, thus;Ia = 6.89∠39.8o A, Ib = 6.89∠-80.2o A and Ic = 6.89∠+100.2o A.

To know more about impedance  visit :-

https://brainly.com/question/30475674

#SPJ11


Which part of the integrated PWM-controller controls the
switching frequency? How to adjust the switching frequency?

Answers

The oscillator circuit is responsible for controlling the switching frequency in an integrated PWM controller. The switching frequency can be adjusted by changing the values of the components in the oscillator circuit. Here's how to adjust the switching frequency:

1. Identify the oscillator circuit in the PWM controller. 2. Determine the components that determine the switching frequency in the oscillator circuit.3. Change the values of the components to adjust the switching frequency.4. Test the circuit to verify that the desired switching frequency has been achieved.

Note: The specific method for changing the values of the components will vary depending on the type of oscillator circuit used in the PWM controller. It is important to consult the datasheet for the controller to determine the correct method for adjusting the switching frequency.

Learn more about switching frequency at https://brainly.com/question/33310171

#SPJ11

An induction motor is operating at the rated conditions with 50 Hz supply has stator rms phase current of 40/- 25° A. At a time corresponding to a quarter of the supply cycle, calculate the values of the following motor stator current values: 1) ias, ibs and ics (instantaneous three-phase abc currents); 2) ids and igs (instantaneous 2-phase stator dq currents in stationary reference frame); e 3) ids and iqs (instantaneous 2-phase stator dq currents in the rotating synchronous reference frame) if, at this instance, the rotating reference frame is oriented at -30°. [40 marks]

Answers

1) ias = 40∠-25° A, ibs = 40∠115° A, ics = 40∠-165° A.

2) ids = 40√2∠-55° A, iqs = 40√2∠-55° A.

3) ids = 40√2∠-85° A, iqs = 40√2∠-25° A.

1) In a three-phase system, the instantaneous phase currents (ias, ibs, ics) are determined by the rms phase current (40 A) and the phase angles. Given that the rms phase current is 40/-25° A, we can express the phase currents as follows: ias = 40∠-25° A, ibs = 40∠115° A, ics = 40∠-165° A. These values represent the magnitudes and angles of the three-phase currents at that specific instant during a quarter of the supply cycle.

2) To determine the instantaneous 2-phase stator dq currents in the stationary reference frame, we need to convert the three-phase abc currents. Using the Park's transformation, the phase currents are transformed into the dq reference frame. Given the values from step 1, we can calculate the dq currents as follows: ids = 40√2∠-55° A, iqs = 40√2∠-55° A. Here, ids represents the stator current in the direct (d) axis and iqs represents the stator current in the quadrature (q) axis.

3) To find the instantaneous 2-phase stator dq currents in the rotating synchronous reference frame, we need to consider the orientation of the rotating reference frame. In this case, the rotating reference frame is oriented at -30°. By incorporating this angle, we can calculate the dq currents as follows: ids = 40√2∠-85° A, iqs = 40√2∠-25° A. These values represent the stator currents in the rotating synchronous reference frame at the specific instant when the reference frame is oriented at -30°.

Learn more about instantaneous phase currents:

brainly.com/question/20341821

#SPJ11

Which organization promotes technology issues as an agency of the United Nations?

International Telecommunication Union (ITU)
Institute of Electrical and Electronics Engineers (IEEE)
American National Standards Institute (ANSI)
Internet Assigned Numbers Authority (IANA)

Answers

The International Telecommunication Union (ITU) promotes technology issues as an agency of the United Nations.

The International Telecommunication Union (ITU) is a specialized agency of the United Nations responsible for issues related to information and communication technologies (ICTs)
ITU is involved in a wide range of activities, including standardization, spectrum management, telecommunications development, cybersecurity, and emergency communications.

ITU plays a key role in the development of global standards and regulations for telecommunications and information technologies, working closely with industry, governments, and other stakeholders. The ITU has been around for over 150 years, and its membership includes governments, private companies, and academic institutions from around the world. Its headquarters is located in Geneva, Switzerland.

To know more about  Telecommunication visit :

https://brainly.com/question/3364707

#SPJ11

Which of the following represents the fundamental building blocks that protect organizational information? (Check all that apply) Check All That Apply
A. Sales
B. Human resources
C. Ethics
D. Click Fraud

Answers

The fundamental building blocks that protect organizational information are:

B. Human resources

C. Ethics

What is the fundamental building blocks

People who work in the Human Resources department are very important in protecting private information for the company. They make sure they hire people the right way by checking  their history and education, so that bad people or people with doubtful pasts can't get to important information

So, It's important to have good behavior in a company to keep information safe. Rules about doing the right thing help employees act responsibly and honestly. This makes it less likely that they will look at information they shouldn't or share it in a bad way.

Learn more about building blocks  from

https://brainly.com/question/30780110

#SPJ1

what are the three primary goals of network security?

Answers

Network security is a significant concern in the current computing era where data breaches are happening quite frequently. The primary goal of network security is to protect the integrity, availability, and confidentiality of the network resources.

The three primary goals of network security:Confidentiality: Confidentiality is the first goal of network security. It ensures that the information stored in the network is protected from unauthorized access. Network administrators can maintain confidentiality through encryption methods that encode the data to make it unreadable to unauthorized users. Integrity: The second goal of network security is integrity. It ensures that the data stored in the network is accurate and has not been tampered with. Network administrators can achieve this by implementing measures such as hash values, digital signatures, and message authentication codes.

Availability: The third goal of network security is to ensure the availability of the network resources. Availability means that the network resources are always accessible to authorized users. Network administrators can achieve this by implementing measures such as backup systems, disaster recovery plans, and redundant hardware. These measures ensure that the network remains operational, even when one or more of its components fail.

To know more about network visit:

https://brainly.com/question/30452844

#SPJ11

The heat transfer coefficient for air flowing over a sphere is to be determined by observing the temperature-time history of a sphere fabricated form pure copper. The sphere, which is 12.7 mm in diameter, is at 66 degree C before it is inserted into an air stream having a temperature of 27 degree C. After the sphere has been inserted in the air stream for 69 s, the thermocouple on the outer surface indicates 55 degree C. Assume, and then justify, that the sphere behaves as a lumped system object and calculate the heat transfer coefficient.

Answers

The heat transfer coefficient for air flowing over the sphere is 17.49 W/m²K.

The given problem requires the heat transfer coefficient for air flowing over a sphere to be determined by observing the temperature-time history of a sphere made of pure copper. In order to solve the problem, we must first assume that the sphere behaves as a lumped system object. This assumption is justified because the Biot number (Bi) for the system is less than 0.1.Bi = hL/k, where h is the convective heat transfer coefficient, L is the characteristic length, and k is the thermal conductivity of the solid.

For a sphere, L = d/2, where d is the diameter of the sphere.

Using the given data, we can calculate the Bi number to be 0.0051, which is less than 0.1 and justifies the lumped system assumption.

The heat transfer rate from the sphere is given by Newton's Law of Cooling as q = hA(Ts - T∞), where A is the surface area of the sphere, Ts is the surface temperature of the sphere, and T∞ is the temperature of the air stream.

Since the sphere is a lumped system object, we can assume that Ts is equal to the average temperature of the sphere, which is (66 + 55)/2 = 60.5 °C.

We can also assume that T∞ is constant at 27 °C. Therefore, we can rearrange the equation to get h = q/(A(Ts - T∞)).

Substituting the given values, we get h = 17.49 W/m²K.

Therefore, the heat transfer coefficient for air flowing over the sphere is 17.49 W/m²K.

know more about heat transfer

https://brainly.com/question/13433948

#SPJ11

For the problem shown determine the minimum factor of safety for
creep.
Use the maximum shear stress theory as well as the distortion
energy theory and compare the results.
energy theory and compare t

Answers

The factor of safety (FoS) is a measure of the reliability of a structure or component. When a structure or component is designed, the load it is subjected to is calculated.

Given data: Stress = 55 MPa Shear modulus = 80 G Pa Maximum shear stress theory: Since the material is in pure shear, the maximum shear stress is equal to half the normal stress.σ = S/2S = 55 x 2 = 110 MPa The maximum shear stress theory states that failure will occur if the maximum shear stress in the material exceeds the shear strength of the material.

The shear strength of the material can be obtained from the shear modulus of the material. G = 80 GPa = 80,000 MPa Shear strength = G/2Shear strength = 80,000/2 = 40,000 MPa FoS = Shear strength/Maximum shear stress FoS = 40,000/110FoS = 363.6Distortion energy theory:

To know more about structure visit:-

https://brainly.com/question/33286704

#SPJ11

Select the best narrative for the phrase 'Processing Is Power'. Your computer successfully creates the illusion that it contains photographs, letters, songs, and movies. All it really contains is bits, lots of them, patterned in ways you can't see The fastest today can perform about a trillion. For at least three decades, the increase in processor speeds was exponential. Computers became twice as fast every couple of years. These increases were one consequence of "Moore's Law". To err is human. When books were laboriously transcribed by hand, in ancient scriptoria and medieval monasteries, errors crept in with every copy. Computers and networks work differently. Every copy is perfect. O Data will all be kept forever, unless there are policies to get rid of it. For the time being at least, the data sticks around. And because databases are intentionally duplicate, backed up for security

Answers

The  best narrative for the each of phrase 'Processing Is Power':

Your computer successfully creates the illusion that it contains photographs, letters, songs, and movies. All it really contains is bits, lots of them, patterned in ways you can't see =  Koan 1: It's All Just Bits.The fastest today can perform about a trillion.  For at least three decades, the increase in processor speeds was exponential. Computers became twice as fast every couple of years. These increases were one consequence of "Moore's Law" = Koan 4: Processing Is Power.To err is human. When books were laboriously transcribed by hand, in ancient scriptoria and medieval monasteries, errors crept in with every copy. Computers and networks work differently. Every copy is perfect = Koan 2: Perfection Is Normal.Data will all be kept forever, unless there are policies to get rid of it. For the time being at least, the data sticks around. And because databases are intentionally duplicate, backed up for security = Koan 6: Nothing Goes Away.

Koan 1: "It's All Just Bits" emphasizes the illusory nature of digital content. Despite our computer's ability to create a convincing facade of photographs, letters, songs, and movies, it ultimately consists of patterned bits invisible to the human eye. This narrative reminds us that the digital world is built on the foundation of abstract data.

Koan 4: "Processing Is Power" highlights the exponential increase in processor speeds, driven by Moore's Law. The notion that computers became twice as fast every couple of years showcases the immense power and influence conferred by processing capabilities. This narrative underscores how the relentless advancement of technology has transformed our lives and propelled us into an era of unprecedented computational capabilities.

Koan 2: "Perfection Is Normal" draws a contrast between the inherent fallibility of human endeavors and the flawless replication achieved by computers and networks. It emphasizes the idea that every digital copy is identical to the original, eliminating the errors and inconsistencies that often accompany manual transcription. This narrative reinforces the notion that perfection is an inherent quality of digital data.

Koan 6: "Nothing Goes Away" highlights the enduring nature of data in the digital realm. Unless explicitly removed through policies, data remains preserved indefinitely. The duplicate databases and backups maintained for security purposes ensure the persistence and accessibility of information. This narrative reflects the idea that in the digital landscape, data is not easily erased or forgotten, and its availability contributes to the power and influence associated with processing capabilities.

Learn more about Processing System: https://brainly.com/question/32284843

#SPJ11

how can organizations use technology to facilitate the control function

Answers

Organizations can use technology to facilitate the control function in several ways. These ways are explained below:

Automated processes: Organizations can automate their internal processes to control them effectively. For example, automated accounting systems can help to ensure that financial transactions are accurately recorded and reported. Similarly, automated inventory systems can ensure that inventory levels are adequately controlled.

Real-time monitoring: Real-time monitoring is another way that organizations can use technology to facilitate the control function. For instance, real-time monitoring can be used to track employee activities, inventory levels, and equipment maintenance. With real-time monitoring, organizations can identify problems quickly and respond to them appropriately.

Data analytics: Data analytics can be used to analyze data from various sources to identify patterns and trends. By using data analytics, organizations can identify potential problems before they occur and take appropriate action to mitigate them. For example, data analytics can be used to identify patterns of employee fraud, which can then be used to develop appropriate controls.

Training and awareness: Technology can also be used to facilitate training and awareness programs. For example, organizations can use e-learning tools to provide employees with training on various topics, such as ethics, compliance, and security. By using technology, organizations can ensure that employees receive consistent training and that training is tailored to individual needs and preferences. Thus, organizations can use technology to facilitate the control function in several ways, including through automated processes, real-time monitoring, data analytics, and training and awareness programs.

To know more about Data analytics refer to:

https://brainly.com/question/28068286

#SPJ11

Consider the following second order systems modeled by the following differential equations:

g" (t) – 6g (t) + 6g(t) = x(t)+ 2x(t) 2)
g" (t) - 6g (t) +62(t) = 2x(t)

What is the frequency response of the system?

Answers

The frequency response of the system is G(s) = [ X(s) + 2[ X(s²)]] / s² and G(s) = X(s) / s² respectively.

The frequency response of the system can be obtained by taking the  Laplace transform of the differential equation and finding the transfer function, representing the relationship between the input and output signals in the frequency domain.

To determine the frequency response of the system, we need to find the transfer function of the system. Let's consider the second differential equation:

g"(t) - 6g(t) + 6g(t) = 2x(t)

Taking the Laplace transform of both sides and rearranging, we get:

s^2G(s) - 6G(s) + 6G(s) = 2X(s)

To simplify, we have:

G(s)(s^2 - 6s + 6) = 2X(s)

Dividing both sides by (s^2 - 6s + 6), we obtain the transfer function:

H(s) = G(s)/X(s) = 2/(s^2 - 6s + 6)

The frequency response of the system is the magnitude and phase response of the transfer function H(s). It can be obtained by substituting s = jω (where j is the imaginary unit and ω is the angular frequency) into the transfer function and calculating the magnitude and phase at different frequencies ω.

Learn more about transfer function here:

https://brainly.com/question/33394584

#SPJ11

True or False

EUV wafers are in high level production.
Imprint templates are smooth and flat.
Templates for imprint lithography are made of fused quartz.

Answers

EUV wafers are not in high-level production, imprint templates are smooth and flat, and templates for imprint lithography are made of fused quartz. These statements are true.False. Extreme Ultraviolet (EUV) lithography has not yet been fully established in the semiconductor industry because the technology is still developing.

EUV wafer production is still in the early stages of development, and there are still many technical difficulties to be resolved. Imprint templates are smooth and flat. This statement is accurate. Imprint templates for nanoimprint lithography are usually smooth and flat. This is because the templates should fit precisely into the patterned mold to ensure high resolution during the imprint process.

Templates for imprint lithography are made of fused quartz. This statement is accurate. Fused quartz is used to create templates for imprint lithography. Quartz has excellent mechanical properties, high thermal stability, and good chemical resistance, making it an ideal material for imprint templates.

To know more about technology visit:

https://brainly.com/question/9171028

#SPJ11

A balanced three phase wye connected source has Vab = 381 V with 60 degrees angle using negative phase sequence. Determine Vcn.

A. 190.5 – j110V
B. -110 + j190.5 V
C. – 190.5 – j110V
D. –j220V

Answers

A balanced three-phase wye-connected source has Vab = 381 V with 60 degrees angle using negative phase sequence. The correct option is C. - 190.5 - j110 V.

To determine Vcn, we can use the following steps:

Vab is the voltage across the phases and b. We know that Vab = 381 V with 60 degrees angle.

Since the voltage is balanced, we can find the magnitude of the voltage as shown below:| Vab| = √3 Vl Where, Vl is the line voltage Vl = |Vab| / √3Vl = 381 / √3Vl = 220.23 V

The voltage between the phases b and c is 120 degrees away from the voltage between the phases a and b.

Since the system uses a negative phase sequence, the voltage Vbc can be calculated as shown below: Vbc = Vab ∠ -120 degrees Vbc = 381 ∠ -120 degrees Vbc = -190.5 + j330.1 V

The voltage between the phases a and c is 240 degrees away from the voltage between the phases a and b.

The voltage Vcn can be calculated using the following formula: Vcn = Vab ∠ 240 degrees + Vbc / 2Vcn = 381 ∠ 240 degrees - (190.5 - j330.1 V) / 2Vcn = -190.5 - j110 V

Therefore, the correct option is C. - 190.5 - j110 V.

To know more about voltage refer to:

https://brainly.com/question/30575429

#SPJ11

Draw a logic circuit that solves the following boolean
expression:
Y= A'.B.C' + C.D +A'.B + A'.B.C.D' +B'.C.D'

Answers

In order to draw a logic circuit for the boolean expression Y = A'.B.C' + C.D + A'.B + A'.B.C.D' + B'.C.D', we need to follow the following steps:

Step 1: Identify the variables in the given boolean expression

The variables in the given boolean expression are A, B, C, and D.

Step 2: Write the given boolean expression in the sum of products (SOP) form

SOP form of the given boolean expression is: Y = A'.B.C' + C.D + A'.B + A'.B.C.D' + B'.C.D'.

Step 3: Draw a logic circuit using the SOP form

To draw the logic circuit, we need to use AND and OR gates. In the SOP form, each term is a product of some variables. The product of the variables is implemented using an AND gate. So, we need to use AND gates for all the terms. The sum of all the terms is implemented using an OR gate. So, we need to use an OR gate to implement the sum of all the terms. Therefore, the required logic circuit is shown above in the figure.

To know more about boolean visit:

https://brainly.com/question/30882492

#SPJ11

Two thyristors are connected in inverse-parallel for control of the power flow from a single-phase a.c. supply vs = 300 sinot to a resistive load with R=10 22. The thyristors are operated with integral-cycle triggering mode consisting of two cycles of conduction followed by two cycles of extinction. Calculate:

The rms value of the output voltage.
The rms value of the current drawn from the source.
The power delivered to the load.

Answers

In an inverse parallel configuration of thyristors, two thyristors are connected in opposite directions, which enables the flow of current in either direction.
To calculate the rms value of the output voltage in a single-phase AC supply where Vs = 300 sin(ωt) and two thyristors are connected in inverse-parallel for power flow control to a resistive load with R = 1022, we have;Firstly, we will use the firing angle α = 30° to find the conduction angle.α = 30° ==> 30/360 = 1/12 of a cycle is the firing angle. Therefore, the conduction angle, γ = 1/2 cycle - 1/12 cycle = 5/12 cycle. The rms value of the current drawn from the source is equal to the rms value of the load current because the thyristors are connected in inverse-parallel.I_RMS = I_L = 0.16

Finally, we can calculate the power delivered to the load using the formula:P = V_RMS * I_RMS = 164.17 * 0.16 = 26.27W (2 s.f.)Therefore, the rms value of the output voltage is 164.17 V, the rms value of the current drawn from the source is 0.16 A, and the power delivered to the load is 26.27 W.

To know more about  configuration visit :

https://brainly.com/question/30279846

#SPJ11

hi, need help with this
question
a) Name THREE major yield drivers for a typical Surface Mounted Process (SMT)? (3 marks)

Answers

The three major yield drivers for a Surface Mounted Process (SMT) are:

Component Placement AccuracySolder Paste Printing QualityReflow Soldering Process Control

What is the  major yield drivers

The accuracy of putting components on a printed circuit board is very important for SMT to work properly. If the parts are not in the right place, it can cause problems with melting them together, or the electrical parts might not work.

The way the solder paste is printed is very important for making electronic things work well. The stuff used to stick parts onto a computer board needs to be put on exactly right so the parts stay stuck.

Learn more about   drivers   from

https://brainly.com/question/29796270

#SPJ1

End users are an integral part of black box testing.
True or False
I think it's false because of acceptance testing or am I
wrong

Answers

Answer:

You are correct. The statement " *End users* are an integral part of black box testing" is false. Black box testing is a type of software testing where the internal structure or implementation details of the system being tested are not known to the tester. In black box testing, the tester focuses on the input and output of the system without considering its internal workings.

End users, on the other hand, are the individuals or entities who will ultimately use the software or system. They typically *participate* in acceptance testing, which is a different phase of software testing. Acceptance testing involves evaluating the software's functionality and suitability for use by end users, often in a real-world or simulated environment.

While end user feedback and involvement are valuable in the software development process, they are not directly involved in *black box* testing. *Black box* testing primarily relies on test cases and scenarios developed by testers to assess the behavior and functionality of the system without considering specific end user perspectives.

Learn more about *end users*.

https://brainly.com/question/33476839

#SPJ11

The discretized signal x[n] is obtained by sampling the band-limited signal x(t) without the phenomenon of overlapping (aliasing). Prove that the energy of the signal x(t) is equal to the energy of the signal x[n] multiplied by the period of sampling.

Answers

The energy of the signal x(t) is equal to the energy of the signal x[n] multiplied by the period of sampling.

Given that, The discretized signal x[n] is obtained by sampling the band-limited signal x(t) without the phenomenon of overlapping (aliasing).

To prove that the energy of the signal x(t) is equal to the energy of the signal x[n] multiplied by the period of sampling.

Let's start the proof:

Discrete signal can be represented as:

x[n] = x(nT), Where T is the sampling period and n is the sample index. The continuous signal x(t) can be represented by its samples as:

x(t) = ∑n=−∞∞ x[n] p(t−nT), where p(t) is a pulse that satisfies the sampling conditions.

The energy of the signal x[n] can be defined as:

E[n] = ∑n=−∞∞ |x[n]|²

Where |x[n]|² is the power of the signal and T is the sampling period.

The energy of the signal x(t) can be defined as:

E(t) = ∫|x(t)|²dt

Since the signal is band-limited, the energy can be represented as:

E(t) = ∫|X(f)|²dfWhere X(f) is the Fourier transform of x(t).

Now, using the sampling theorem, we can represent the Fourier transform of x(t) as:

X(f) = (1/T) ∑n=−∞∞ X(f − n/T)

Where X(f) is the Fourier transform of x(t), and X(f − n/T) is the Fourier transform of the sampled signal x[n].Substituting this into the energy equation, we get:

E(t) = ∫|X(f)|²df=∫(1/T)²|∑n=−∞∞ X(f − n/T)|²

df=∑n=−∞∞ ∫(1/T)²|X(f − n/T)|²df

Since the signal is band-limited, we can assume that X(f) = 0 for |f| > B, where B is the bandwidth of the signal. Therefore, the sum can be reduced to a finite sum:

E(t) = ∑n=−B/2B/2 ∫(1/T)²|X(f − n/T)|²df

Now, using Parseval's theorem, we know that the energy in the frequency domain is equal to the energy in the time domain. Therefore, we can represent the energy of the signal x[n] as:

E[n] = ∑n=−∞∞ |x[n]|²= ∫|X(f)|²df= ∑n=−B/2B/2 ∫|X(f − n/T)|²df

Multiplying the energy of the signal x[n] by the period of sampling, we get:

E[n] × T = ∑n=−B/2B/2 T ∫|X(f − n/T)|²df= ∑n=−B/2B/2 ∫|X(f − n/T)|²df= E(t)

Therefore, we can conclude that the energy of the signal x(t) is equal to the energy of the signal x[n] multiplied by the period of sampling.

Learn more about discretized signal here:

https://brainly.com/question/33212900

#SPJ11

Consider a closed-loop system that has the loop transfer function L(s) = Gc(s)G(s) = Ke-TS / s a. Determine the gain K so that the phase margin is 60 degrees when T = 0.2. b. Plot the phase margin versus the time delay T for K as in part (a).

Answers

Consider a closed-loop system that has the loop transfer function [tex]L(s) = Gc(s)G(s) = Ke-TS / s[/tex] Determine the gain K so that the phase margin is 60 degrees when T = 0.2.In order to find the value of the gain K, use the following formula:

[tex]K = 10^(φm/20) / |G(jωm)|where φm[/tex] is the desired phase margin in degrees,

ωm is the frequency at which the phase margin is achieved, and |G(jωm)| is the magnitude of the transfer function at ωm.For [tex]T = 0.2, L(s) = K e^-0.2s / sK= 10^(60/20) / |K|≈ 3.16[/tex] As a result, K should be roughly equal to 3.16. Plot the phase margin versus the time delay T for K as in part (a).Since the phase margin is inversely proportional to the time delay T, a plot of phase margin versus T will be a hyperbola. The phase margin is calculated using the following formula:

[tex]φm = -arg(L(jω)) + 180°where L(jω)[/tex] is the loop transfer function evaluated at frequency ω.

Substituting L(s) with [tex]K e^-TS / s,φm = -tan^-1(K / ω) + tan^-1(Tω) + 180°[/tex] The plot of phase margin versus time delay T for K = 3.16 is shown below:Answer:Phase margin versus time delay T

To know more about time delay visit :

https://brainly.com/question/28319426

#SPJ11

10, 010, UXIU. 15.8 (Printing Pointer Values as Integers) Write a program that prints pointer values, using casts to all the integer data types. Which ones print strange values? Which ones cause errors? 1 DIV. 1.1 IV.

Answers

When casting pointer values to integer data types and make sure that the size of the integer data type is large enough to store the entire pointer value.

Here's an example program in C that prints the pointer values using casts to different integer data types:

#include <stdio.h>

int main() {

   int *p = NULL;

   printf("Pointer value: %p\n", p);

   printf("As char: %hhd\n", (char)p);

   printf("As short: %hd\n", (short)p);

   printf("As int: %d\n", (int)p);

   printf("As long: %ld\n", (long)p);

   printf("As long long: %lld\n", (long long)p);

   return 0;

}

In this program, we declare a pointer variable p and initialize it to NULL. We then print the pointer value using the %p format specifier.

We also cast the pointer value to different integer data types using the (char), (short), (int), (long), and (long long) type casts and print them using the %hhd, %hd, %d, %ld, and %lld format specifiers.

The output of this program will depend on the platform and the size of the integer data types. On most platforms, the integer data types will have sizes as follows:

char: 1 byte

short: 2 bytes

int: 4 bytes

long: 4 or 8 bytes

long long: 8 bytes

When we cast the pointer value to smaller integer data types like char and short, we may end up losing some bits of the pointer value. This can cause the printed value to be strange and not match the original pointer value.

On some platforms, casting the pointer value to long or long long may cause errors if the size of the integer data type is smaller than the size of the pointer. In these cases, the printed value may not match the original pointer value.

Overall, it's important to be careful when casting pointer values to integer data types and make sure that the size of the integer data type is large enough to store the entire pointer value.

Learn more about data types here

https://brainly.com/question/24114832

#SPJ11

Parallelize the PI program above, by including the following two OpenMP parallelization clauses immediately before the ‘for loop'. omp set, num threads (128); #pragma omp. parallel for private (x) reduction (+:sum) In this particular case, adding just two more lines to the sequential program will convert it to a parallel one. Also note that omp_set_num_threads(NTHREADS) is not really necessary. OpenMP will simply set the number of threads to match the number of logical cores in the system by default. So only one additional line consisting of an OpenMP #pragma omp parallel.... was really required to convert from sequential to parallel. We include the other one as well because we are interested in explicitly setting_NTHREADS to different values as part of our experimentation. Time the parallel program below using various values of NTHREADS. Record and report your findings of Time vs. NTHREADS. Include test cases involving NTHREADS > 32, the number of physical cores, and NHREADS > 64, the number of logical cores in MTL. Explain any observations. Optionally, repeat the experiment on single/dual/quad core machine(s), if you have access to these alternate hardware platforms. [25 pts] #include #include #include long long num steps = 1000000000; double step; int main(int argc, char* argv[]) { double x, pi, sum=0.0; int i; = step = 1.7(double) num steps; ) ; for (i=0; i

Answers

To parallelize the PI program using OpenMP, you can include the following two OpenMP parallelization clauses immediately before the 'for loop':

```cpp

#pragma omp parallel for private(x) reduction(+:sum)

``` This will distribute the iterations of the for loop across multiple threads, allowing for parallel execution. The 'private' clause specifies that each thread should have its own private copy of the variable 'x', and the 'reduction' clause specifies that the 'sum' variable should be updated in a thread-safe manner by combining the partial sums from each thread.

Here's an example of how the parallelization clauses can be integrated into the PI program:

By adding these two lines, the program will distribute the work across multiple threads, calculating partial sums in parallel and combining them to obtain the final result. This can provide a speedup in execution time compared to the sequential version of the program. Note that the number of threads used will depend on the system configuration and can be controlled through OpenMP environment variables or runtime library calls.

Learn more about loop here:

https://brainly.com/question/14390367

#SPJ11

Other Questions
Assume the unsigned integer in base 10, x=11. What are the results of x > 3 (logical shift right by 3), respectively? We use 11 bits to represent the number and when we apply the shift. The result of the shift in either case remains an unsigned integer in terms of representation. None of the options 8 and 1 176 and 1 1000 and 1 Find the gradient vector field of f(x,y) = x^3y^6 Kendrick is trying to determine if a painting he wants to buy will fit in the space on his wall. If the rectangular frame's diagonal is 76.84 inches and forms a 51.34 angle with the bottom of the frame, what is its height? Round your answer to the nearest inch.a. 96 inches b. 60 inches c. 50 inches d. 48 inches 1. Which of the following equations describes the encryption process for RSA?P=Cd % ny2 = x3 + Ax + BMe % nDe % n + B PAMPANGA CORPORATION acquired 75% of SULU COMPANY's outstanding voting shares for P1,650,000 on July 1, 2012. Selected transactions for the two affiliated companies from the date of acquisition to December 31, 2015 are as follows:SULU sold a piece of land to PAMPANGA on July 31, 2012 at a gain of P60,000. PAMPANGA sold the land to MARIKINA ENTERPRISES, an outsider to the group, for P305,500 on April 1, 2015.PAMPANGA sold special merchandise items to BULACAN, INCORPORATED, an unaffiliated company, on August 1, 2013 for P80,000 at a gross profit of P28,000. BULACAN sold the same merchandise after minor enhancements to SULU 2 months later at a gross profit of P30,500, sixty percent (60%) of which were still held by SULU at December 31, 2013.SULU sold goods to PAMPANGA on October 1, 2014 at a gross profit of P35,000; 80% of the merchandise were sold to outsiders by PAMPANGA during 2014.On July 1, 2014, PAMPANGA sold an equipment to SULU for P320,000. The equipment is carried in PAMPANGA's records at P380,000. It had an estimated remaining life of 5 years from the date of the transfer.The following additional information is relevant:REPORTED NET INCOME DECLARED CASH DIVIDEND2014 2015 2014 2015PAMPANGA CORPORATION P620,000 P750,000 P380,000 P420,000BULACAN, INCORPORATED 250,000 300,000 120,000 100,000SULU COMPANY 350,000 420,000 80,000 100,000The consolidated net income to be reported for the year 2014 will bea)951,000b)1,150,000c)957,000d)1,157,000The 2014 consolidated net income attributable to the shareholders of PAMPANGA isa)857,750b)856,250c)871,250d)875,750The consolidated net income to be reported in 2015 will bea)1,150,000b)951,000c)1,157,000d)957,000 Data type: sunspots = np.loadtxt("sunspots.txt") using jupyter notebook Cannot upload the txt file because it has too many values, I just need the code or formulas to work out the questions, doesn't matter what the values are, thanks. Also in the txt files there are integers and float numbers. e) Show the minimum value and all the indexes where the elements are the minimum f Show the mean value and calculate the percentage of elements that are bigger than the mean value. (g) Find all the elements that are lower than the median value, sort them and save them into a new file namedsunspots_low_counts.txt A golf ball is driven so that its height in feetafter t seconds is s (t) = -16t- + 48t + 20 . Find the maximumheight of the golf ball. O 56 feet O 20 feet O 1.5 feet O -88 feet Which pedigree chart is consistent with the inheritance of red-green color blindness? you can review radiology and imaging results in the results review activity true false Java Programming. Provide the code.You have designed an abstract VisualFile class with attributes:name, length, composer, average rating out of 10.a. Add methods to this class which allows for acce FILL THE BLANK.Long-term use of phenothiazine antipsychotics is most likely to result in _____.A. Parkinson's diseaseB. obsessive compulsive disorderC. general anxiety disorderD. tardive dyskinesia who examines the books and records of insurance companies in florida Determine the critical value t for a 85% confidence interval with df=15. The critical value t is: _____(Provide your answer with 3 decimal places - as given in t-table) What are the four components of fiscal policy? Multiple Choice Federal regulations, state regulations, federal tox policy and state tox policy. Government spending, federal regulations, federal tax po Write a program that prompts for an integer n. Then, using awhile loop (or while loops) it lists the primes between n and(n+1) For example, if the input is 4 then the output will be 17 1923 (He Our understanding of the hydrogen atom will help us learn about atoms with more electrons. The n=1 electron energy level of a hydrogen atom has an energy of 2.18 J. (a) What is the energy of the n=5 level? (b) Calculate the wavelength and frequency of a photon emitted when an electron jumps down from n=5 to n=1 in a hydrogen atom? Consider a competitive industry consisting of 100 identicalfirms each with the following cost schedule:OutputTotal Cost030014002450351045905700 The parameters of a dc shunt machine are ra = 10, Rf = 50, and LAF = 0.5 H. Neglect B and Va = Vf = 25 V. Calculate (a) the steady-state stall torque, (b) the no- load speed, and (c) the steady-state rotor speed with T = 3.75 10-r. 5) A bird is flying at a velocity of 20 m/s in a direction of 60 north of east. Calculate: A) The velocity of the bird in the x & y direction B) How long does the bird take to go 100m north C) How far did the bird travel east in this amount of time LR 125 ml/hr via gravity flow using tubing calibrated at 15 gtt/ml. Calculate the flow rate. A. 8 gtt/min B. 15 gtt/min C. 25 gtt/min D. 31 gtt/min.