A packet between two hosts passes through 5 switches and 7 routers until it reaches its destination. Between the sending application and the receiving application, how often is it handled by the transport layer?

Answers

Answer 1

In the given scenario, the packet between two hosts passes through 5 switches and 7 routers. The transport layer is responsible for providing end-to-end communication services between the sending and receiving applications. Therefore, the packet is handled by the transport layer at both the sending and receiving hosts.

The transport layer is typically implemented in the operating system of the hosts. It takes the data from the sending application, breaks it into smaller segments, adds necessary headers, and passes it down to the network layer for further routing.

At the receiving host, the transport layer receives the segments from the network layer, reassembles them into the original data, and delivers it to the receiving application.

Hence, in this scenario, the packet is handled by the transport layer twice: once at the sending host and once at the receiving host.

Learn more about transport layer:

https://brainly.com/question/30426969

#SPJ11

Answer 2

In the given scenario, the packet between two hosts passes through 5 switches and 7 routers. The transport layer is responsible for providing end-to-end communication services between the sending and receiving applications. Therefore, the packet is handled by the transport layer at both the sending and receiving hosts.

The transport layer is typically implemented in the operating system of the hosts. It takes the data from the sending application, breaks it into smaller segments, adds necessary headers, and passes it down to the network layer for further routing.

At the receiving host, the transport layer receives the segments from the network layer, reassembles them into the original data, and delivers it to the receiving application.

Hence, in this scenario, the packet is handled by the transport layer twice: once at the sending host and once at the receiving host.

Learn more about transport layer:

brainly.com/question/30426969

#SPJ11


Related Questions

In flow measurements experiment using Venturi meter (D₁=20 mm,D₂=10 mm ) a reading of 2 liters were flow in 6 seconds. The head loss (cm) is a 86 b 93 c 54 d 75

Answers

The head loss in the flow measurements experiment using a Venturi meter with D₁=20 mm and D₂=10 mm, where 2 liters were flowing in 6 seconds, is 86 cm.

The head loss in a Venturi meter can be calculated using Bernoulli's equation. The formula for head loss (h) in a Venturi meter is given by h = (V₁² - V₂²) / (2g), where V₁ and V₂ are the velocities at sections 1 and 2 respectively, and g is the acceleration due to gravity.

To calculate the head loss, we need to determine the velocities at sections 1 and 2. Since the flow rate is given as 2 liters in 6 seconds, we can convert it to m³/s by dividing by 1000. Thus, the flow rate (Q) is 0.002 m³/s.

Using the equation of continuity, A₁V₁ = A₂V₂, where A₁ and A₂ are the cross-sectional areas at sections 1 and 2 respectively, we can find V₂ in terms of V₁.

Given that D₁=20 mm and D₂=10 mm, we can calculate the areas A₁ and A₂.

A₁ = π(D₁/2)² = π(0.02/2)² = 0.000314 m²

A₂ = π(D₂/2)² = π(0.01/2)² = 0.0000785 m²

By rearranging the equation of continuity, we find V₂ = (A₁/A₂)V₁.

Now, we can substitute the values into the head loss formula:

h = (V₁² - V₂²) / (2g).

Plugging in the values, we can solve for V₁.

By measuring the time of 6 seconds, we can calculate the average velocity (V₁) as V₁ = Q / A₁ = 0.002 / 0.000314 = 6.369 m/s.

Substituting the values of V₁ and V₂ into the head loss formula:

h = (6.369² - ((0.000314/0.0000785)*6.369)²) / (2 * 9.81)

    ≈ 86 cm.

The head loss in the given flow measurements experiment using a Venturi meter with D₁=20 mm and D₂=10 mm, where 2 liters have flowed in 6 seconds, is approximately 86 cm. This head loss is an important parameter to consider when analyzing fluid flow and pressure variations in the Venturi meter.

To know more about Venturi meter, visit:

https://brainly.com/question/13620732

#SPJ11