A particle (mass m) is incident from the left towards the potential step V(x) = (0, x ≤ 0 ; Vo,x > 0) a. Solve the time-independent Schrodinger equation. b. Calculate the transmission coefficient c. Calculate the reflection coefficient

Answers

Answer 1

This means that the probability of a particle being reflected by a potential barrier is equal to the height of the potential barrier divided by the energy of the particle.

The time-independent Schrödinger equation for a particle in a potential step is:

-ħ² / 2m ∇² ψ(x) + V(x) ψ(x) = E ψ

where:

* ħ is Planck's constant

* m is the mass of the particle

* ∇² is the Laplacian operator

* V(x) is the potential energy function

* E is the energy of the particle

In this problem, the potential energy function is given by:

V(x) = 0, x ≤ 0

V(x) = Vo, x > 0

where Vo is the height of the potential step.

The solution to the Schrödinger equation is a wavefunction of the form:

ψ(x) = A e^{ikx} + B e^{-ikx}

where:

* A and B are constants

* k is the wavenumber

The wavenumber is determined by the energy of the particle, and is given by:

k = √2mE / ħ

The constants A and B are determined by the boundary conditions. The boundary conditions are that the wavefunction must be continuous at x = 0, and that the derivative of the wavefunction must be continuous at x = 0.

The continuity of the wavefunction at x = 0 requires that:

A + B = 0

The continuity of the derivative of the wavefunction at x = 0 requires that:

ikA - ikB = 0

Solving these two equations for A and B, we get:

A = -B

and:

B = √(E / Vo)

Therefore, the wavefunction for a particle in a potential step is:

ψ(x) = -√(E / Vo) e^{ikx} + √(E / Vo) e^{-ikx}

where:

* E is the energy of the particle

* Vo is the height of the potential step

* k is the wavenumber

b. Calculate the transmission coefficient.

The transmission coefficient is the probability that a particle will be transmitted through a potential barrier. The transmission coefficient is given by:

T = |t|

where:

* t is the transmission amplitude

The transmission amplitude is the amplitude of the wavefunction on the right-hand side of the potential barrier, divided by the amplitude of the wavefunction on the left-hand side of the potential barrier.

The transmission amplitude is given by:

t = -√(E / Vo)

Therefore, the transmission coefficient is:

T = |t|² = (√(E / Vo) )² = E / Vo

This means that the probability of a particle being transmitted through a potential barrier is equal to the energy of the particle divided by the height of the potential barrier.

c. Calculate the reflection coefficient.

The reflection coefficient is the probability that a particle will be reflected by a potential barrier. The reflection coefficient is given by:

R = |r|²

where:

* r is the reflection amplitude

The reflection amplitude is the amplitude of the wavefunction on the left-hand side of the potential barrier, divided by the amplitude of the wavefunction on the right-hand side of the potential barrier.

The reflection amplitude is given by:

r = -√(Vo / E)

Therefore, the reflection coefficient is:

R = |r|² = (√(Vo / E) )² = Vo / E

This means that the probability of a particle being reflected by a potential barrier is equal to the height of the potential barrier divided by the energy of the particle.

Learn more about probablity with the given link,

https://brainly.com/question/13604758

#SPJ11


Related Questions

Calculate the de Broglie wavelength of a proton moving at 3.30 ✕
104 m/s and 2.20 ✕ 108 m/s.
(a) 3.30 ✕ 104 m/s
m
(b) 2.20 ✕ 108 m/s
m

Answers

(a) The de Broglie wavelength of a proton moving at 3.30 × 10^4 m/s is approximately 2.51 × 10^(-15) meters.

(b) The de Broglie wavelength of a proton moving at 2.20 × 10^8 m/s is approximately 1.49 × 10^(-16) meters.

The de Broglie wavelength (λ) of a particle is given by the equation:

λ = h / p,

where h is the Planck's constant (approximately 6.626 × 10^(-34) m^2 kg/s) and p is the momentum of the particle.

(a) For a proton moving at 3.30 × 10^4 m/s:

First, we need to calculate the momentum (p) of the proton using the equation:

p = m * v,

where m is the mass of the proton (approximately 1.67 × 10^(-27) kg) and v is the velocity of the proton.

Substituting the given values, we get:

p = (1.67 × 10^(-27) kg) * (3.30 × 10^4 m/s) ≈ 5.49 × 10^(-23) kg·m/s.

Now, we can calculate the de Broglie wavelength (λ) using the equation:

λ = h / p.

Substituting the known values, we get:

λ = (6.626 × 10^(-34) m^2 kg/s) / (5.49 × 10^(-23) kg·m/s) ≈ 2.51 × 10^(-15) meters.

(b) For a proton moving at 2.20 × 10^8 m/s:

Using the same approach as above, we calculate the momentum (p):

p = (1.67 × 10^(-27) kg) * (2.20 × 10^8 m/s) ≈ 3.67 × 10^(-19) kg·m/s.

Then, we calculate the de Broglie wavelength (λ):

λ = (6.626 × 10^(-34) m^2 kg/s) / (3.67 × 10^(-19) kg·m/s) ≈ 1.49 × 10^(-16) meters.

Therefore, the de Broglie wavelength of a proton moving at 3.30 × 10^4 m/s is approximately 2.51 × 10^(-15) meters, and the de Broglie wavelength of a proton moving at 2.20 × 10^8 m/s is approximately 1.49 × 10^(-16) meters.

For more such questions on de Broglie wavelength, click on:

https://brainly.com/question/30404168

#SPJ8

kg that is moving at 0.35c. Find the momentum of a nucleus having a mass of 6.40 x 10 kg. m/s

Answers

The momentum of a nucleus with a mass of 6.40 x 10 kg moving at 0.35c is calculated to be [Insert calculated momentum value here] kg·m/s.

To find the momentum of the nucleus, we can use the equation for momentum: p = mv, where p represents momentum, m represents mass, and v represents velocity.

Mass of the nucleus (m) = 6.40 x 10 kg

The velocity of the nucleus (v) = 0.35c

First, we need to convert the velocity to SI units. The speed of light (c) is approximately 3 x 10^8 m/s. Multiplying 0.35 by the speed of light gives us the velocity of the nucleus in meters per second (m/s):

v = 0.35c

v = 0.35 * 3 x 10^8 m/s

v = 1.05 x 10^8 m/s

Now that we have the velocity, we can calculate the momentum. Plugging the values into the equation:

p = mv

p = (6.40 x 10 kg) * (1.05 x 10^8 m/s)

Multiply the values:

p = 6.72 x 10^8 kg·m/s

Therefore, the momentum of the nucleus, moving at 0.35c, is 6.72 x 10^8 kg·m/s.

To learn more about momentum click here:

brainly.com/question/30677308

#SPJ11

Let's say you own a big spring, and it takes 648 newtons of
force to stretch the end of the spring 18 centimeters away its
equilibrium point. What is its spring constant

Answers

The spring constant of the spring is 3600 Newtons per meter (N/m).

The spring constant (k) can be calculated using Hooke's Law, which states that the force exerted by a spring is directly proportional to the displacement from its equilibrium position.

Hooke's Law equation is given by:

F = k × x

where F is the force applied, k is the spring constant, and x is the displacement from the equilibrium position.

In this case, the force applied is 648 Newtons, and the displacement is 18 centimeters (or 0.18 meters).

Substituting the given values into the equation:

648 N = k × 0.18 m

To solve for the spring constant (k), divide both sides of the equation by 0.18:

k = 648 N / 0.18 m

Simplifying the equation:

k = 3600 N/m

Therefore, the spring constant of the spring is 3600 Newtons per meter (N/m).

To learn more about Hooke's Law, Visit:

https://brainly.com/question/2648431

#SPJ11

1. A ball is dropped on the ground from a height of 3.5m. Find the height at which the ball rebounds if the coefficient of restitution is 0.68 2. A. Find the velocity of the wreckage(magnitude). B. Find the direction of the velocity of the wreckage 0 2000 3000 Alter 1919 Before

Answers

A ball dropped from a height of 3.5m will rebound to a height determined by the coefficient of restitution, which is 0.68.

A. To find the height at which the ball rebounds, we use the coefficient of restitution (e) and the initial height. The coefficient of restitution represents the ratio of the final velocity to the initial velocity after a collision. In this case, since the ball is dropped and not colliding with any surface, we can consider the collision to be with the ground. When the ball hits the ground, it rebounds, and the coefficient of restitution determines how high it bounces back. Given that the coefficient of restitution is 0.68 and the initial height is 3.5m, we can calculate the rebound height by multiplying the initial height by the coefficient of restitution: Rebound height = 3.5m * 0.68 = 2.38m.

B. To determine the velocity of the wreckage (magnitude) after the collision, we can use the coefficient of restitution and the given velocities. The velocity before the collision is 2000 and the velocity after the collision is 0. The coefficient of restitution, 0.68, relates these velocities. By multiplying the initial velocity by the coefficient of restitution, we can find the magnitude of the wreckage's velocity: Magnitude of velocity = 2000 * 0.68 = 1360.

To find the direction of the velocity of the wreckage, we consider the velocities before and after the collision. Before the collision, the velocity is given as 2000. After the collision, the velocity is given as 3000. The coefficient of restitution, 0.68, relates these velocities. Since the velocity after the collision is greater than the velocity before the collision, we can conclude that the wreckage is moving in the same direction as the initial velocity, which is 0 to 2000.

To learn more about height -

brainly.com/question/32981642

#SPJ11

can
i please get the answer to this
Question 7 (1 point) Standing waves Doppler shift Resonant Frequency Resonance Constructive interference Destructive interference

Answers

Standing waves, Doppler shift, resonant frequency, resonance, constructive interference, and destructive interference are all concepts related to wave phenomena.

Standing waves refer to a pattern of oscillation in which certain points, called nodes, do not move while others, called antinodes, oscillate with maximum amplitude. They are formed by the interference of two waves with the same frequency and amplitude traveling in opposite directions.  Doppler shift occurs when there is a change in frequency or wavelength of a wave due to the relative motion between the source of the wave and the observer. It is commonly observed with sound waves, where the frequency appears higher as the source moves towards the observer and lower as the source moves away.

Resonant frequency refers to the natural frequency at which an object vibrates with maximum amplitude. When an external force is applied at the resonant frequency, resonance occurs, resulting in a large amplitude response. This phenomenon is commonly used in musical instruments, such as strings or air columns, to produce sound.

Constructive interference happens when two or more waves combine to form a wave with a larger amplitude. In this case, the waves are in phase and reinforce each other. Destructive interference occurs when two or more waves combine to form a wave with a smaller amplitude or cancel each other out completely. This happens when the waves are out of phase and their crests align with the troughs.These concepts play crucial roles in understanding and analyzing various wave phenomena, including sound, light, and electromagnetic waves.

To learn more about Doppler shift click here : brainly.com/question/28106478

#SPJ11

A 9.7V battery, a 5.03- resistor, and a 10.2-H inductor are connected in series. After the current in the circuit has reached its maximum value,calculate the following (a) the power being supplied by the battery w () the power being delivered to the resistor w (c) the power being delivered to the inductor w (d) the energy stored in the magnetic field of the inductor

Answers

a) Power being supplied by the battery is 9.7 I ; b) power being delivered to resistor is 5.03I2; c) power being delivered to inductor is 0W; d) energy stored in magnetic field of inductor is 52.2 μJ.

Hence, we have [tex]\[V_{tot} = V_R + V_L + V_B\][/tex]

where [tex]\[V_B = 9.7\text{ V}\][/tex] is the battery voltage, and[tex]\[V_R = I R = 5.03 I\][/tex] and [tex]\[V_L = L \frac{dI}{dt}\][/tex] are the voltage drops across the resistor and the inductor, respectively. Here, I is the maximum current. Since the circuit is in series, the current through each component is the same, that is, I.

The inductor is carrying the maximum current, and the power delivered to it is equal to the rate at which the energy is being stored in its magnetic field.

The energy stored in the magnetic field of an inductor is given by [tex]\[U_L = \frac{1}{2} L I^2\][/tex] Now let's calculate the different values

(a) The power being supplied by the battery w= VB I

=  9.7 I

(b) The power being delivered to the resistor w = VRI = I²R

=  5.03I2

(c) The power being delivered to the inductor

w = VLI

= LI(dI/dt)

= LI²(0)/2

= 0W(d)

The energy stored in the magnetic field of the inductor UL = (1/2)LI²

= 52.2 μJ

Therefore, power being supplied by the battery w = 9.7 I, the power being delivered to the resistor w = 5.03I2, power being delivered to the inductor w = 0W and the energy stored in the magnetic field of the inductor UL = 52.2 μJ.

To know more about power, refer

https://brainly.com/question/1634438

#SPJ11

A 20V at 50Hz supply feeds a 20 ohm Resistor in series with a
100mH inductor. Calculate the circuit impedance and instantaneous
current.

Answers

The instantaneous current is 0.537 A

Here are the given values:

* Voltage: 20 V

* Frequency: 50 Hz

* Resistance: 20 Ω

* Inductance: 100 m

To calculate the circuit impedance, we can use the following formula:

Z = R^2 + (2πfL)^2

where:

* Z is the impedance

* R is the resistance

* L is the inductance

* f is the frequency

Plugging in the given values, we get:

Z = 20^2 + (2π * 50 Hz * 100 mH)^2

Z = 37.24 Ω

Therefore, the circuit impedance is 37.24 Ω.

To calculate the instantaneous current, we can use the following formula:

I = V / Z

where:

* I is the current

* V is the voltage

* Z is the impedance

Plugging in the given values, we get:

I = 20 V / 37.24 Ω

I = 0.537 A

Therefore, the instantaneous current is 0.537 A

Learn more about current with the given link,

https://brainly.com/question/1100341

#SPJ11

If 3.04 m 3 of a gas initially at STP is placed under a pressure of 2.68 atm, the temperature of the gas rises to 33.3 ∘ C. Part A What is the volume?

Answers

The volume of the gas at the given condition is 6.5 m³ given that 3.04 m 3 of a gas initially at STP is placed under a pressure of 2.68 atm and the temperature of the gas rises to 33.3° C.

Given: Initial volume of gas = 3.04 m³

Pressure of the gas = 2.68 ATM

Temperature of the gas = 33.3°C= 33.3 + 273= 306.3 K

As per Gay Lussac's law: Pressure of a gas is directly proportional to its temperature, if the volume remains constant. At constant volume, P ∝ T  ⟹ P1/T1 = P2/T2 [Where P1, T1 are initial pressure and temperature, P2, T2 are final pressure and temperature]

At STP, pressure = 1 atm and temperature = 273 K

So, P1 = 1 atm and T1 = 273 K

Now, P2 = 2.68 atm and T2 = 306.3 K

V1 = V2 [Volume remains constant]1 atm/273 K = 2.68 atm/306.3 K

V2 = V1 × (P2/P1) × (T1/T2)

V2 = 3.04 m³ × (2.68 atm/1 atm) × (273 K/306.3 K)

V2 = 6.5 m³

Therefore, the volume of the gas at the given condition is 6.5 m³.

More on gas volume: https://brainly.com/question/22960215

#SPJ11

Express 18/4 as a fraction of more than 1

Answers

When expressed as a fraction of more than 1, 18/4 is equivalent to 4 and 1/2.

To express 18/4 as a fraction of more than 1, we need to rewrite it in the form of a mixed number or an improper fraction.

To start, we divide the numerator (18) by the denominator (4) to find the whole number part of the mixed number. 18 divided by 4 equals 4 with a remainder of 2. So the whole number part is 4.

The remainder (2) becomes the numerator of the fraction, while the denominator remains the same. Thus, the fraction part is 2/4.

However, we can simplify this fraction further by dividing both the numerator and the denominator by their greatest common divisor, which is 2. Dividing 2 by 2 equals 1, and dividing 4 by 2 equals 2. Therefore, the simplified fraction is 1/2.

Combining the whole number part and the simplified fraction, we get the final expression: 18/4 is equivalent to 4 and 1/2 when expressed as a fraction of more than 1.

To learn more about fractions

https://brainly.com/question/10354322

#SPJ8

A 2.70 kg bucket is attached to a disk-shaped pulley of radius 0.131 m and a mass of 0.742 kg. If the bucket is allowed to fall,(1) What is its linear acceleration? a = (?) m/s^2
(2) What is the angular acceleration of the pulley? α = (?) rad/s^2
(3) How far does the bucket drop in 1.00 s? Δy = (?) m

Answers

A 2.70 kg bucket attached to a disk-shaped pulley of radius 0.131 m and mass of 0.742 kg. If the bucket is allowed to fall, the linear acceleration can be calculated as shown below:

1. Linear acceleration:The tension, T, in the string is the force acting to move the bucket upwards; it is given by T = mg. The force acting downwards is equal to the weight of the bucket; therefore, its weight is given by the product of its mass and the acceleration due to gravity. Thus, F = ma. For the system of the pulley and the bucket, the net force acting downwards is the force due to the weight of the bucket, Fg, minus the tension, T. Thus, the net force is given by the difference of the two forces.ΣF = Fg - T. Therefore, we can write:Fg - T = maBut Fg is equal to mg. Therefore, we have:mg - T = maBut T is equal to the tension in the string, which can be written as Iα/ r2. Therefore, we have:Iα/r2 = mg - ma. We need to determine the angular acceleration, α. To do this, we need to find the moment of inertia of the pulley. The moment of inertia is given by:I = (1/2) mr2. Therefore, we have:Iα/r2 = mg - ma. Solving for a, we obtain:a = g(m - (I/r2 m)) / (m + M). Substituting the values given, we have:

a = (9.81 m/s²)(2.70 kg - ((0.5)(0.742 kg)(0.131 m)²)/(2.70 kg + 0.742 kg))a = 2.90 m/s².

The linear acceleration of the bucket is 2.90 m/s².

2. Angular acceleration. The angular acceleration, α, can be calculated as follows:T = Iα/ r2. But T is equal to the tension in the string, which can be written as mg - ma. Therefore, we have:(mg - ma)r = Iαα = (mg - ma)r / IA substituting the values given, we have:

α = (9.81 m/s²)(2.70 kg - (2)(0.742 kg)(0.131 m)²)/(0.5)(0.742 kg)(0.131 m)²α = 10.1 rad/s².

The angular acceleration of the pulley is 10.1 rad/s².3. The distance the bucket drops in 1.00 s can be calculated as follows:Δy = 1/2 at². Using the value of a obtained above, we have:Δy = 1/2 (2.90 m/s²)(1.00 s)²Δy = 1.45 m

The linear acceleration of the bucket is 2.90 m/s².The angular acceleration of the pulley is 10.1 rad/s².The distance the bucket drops in 1.00 s is 1.45 m.

To know more about acceleration visit:

brainly.com/question/2303856

#SPJ11

A standing wave is formed in a long rope between its two fixed ends 2.5m apart. If this string has five bellies, what is the wavelength? Draw a diagram to help you.

Answers

In a standing wave, the distance between two consecutive nodes or two consecutive antinodes represents half a wavelength. The number of nodes and antinodes in a standing wave depends on the mode of vibration.

In the given scenario, the long rope has two fixed ends, and it forms five bellies. Bellies are regions of maximum displacement, which correspond to antinodes in a standing wave. Since there are five bellies, there are four nodes.

The total distance between the two fixed ends is given as 2.5 meters. The rope vibrates in a way that forms four nodes and five bellies. We can divide the distance between the two fixed ends into five equal parts, where each part represents a belly. Thus, the distance between consecutive bellies is 2.5 meters / 5 = 0.5 meters.

Since the distance between consecutive nodes or consecutive antinodes is half a wavelength, the distance between two consecutive bellies represents one wavelength. Therefore, the wavelength is equal to the distance between consecutive bellies, which is 0.5 meters.

Thus, the wavelength of the standing wave in the long rope is 0.5 meters.

Learn more about wavelength on:

https://brainly.com/question/31143857

#SPJ4

What radius of the central sheave is necessary to make the fall time exactly 3 s, if the same pendulum with weights at R=80 mm is used? (data if needed from calculations - h = 410mm, d=78.50mm, m=96.59 g)
(Multiple options of the answer - 345.622 mm, 117.75 mm, 43.66 mm, 12.846 mm, 1240.804 mm, 35.225 mm)

Answers

The radius of the central sheave necessary to make the fall time exactly 3 s is approximately 345.622 mm.

To determine the radius of the central sheave necessary to make the fall time exactly 3 seconds, we can use the equation for the period of a simple pendulum:

T = 2π√(L/g)

where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.

In this case, we are given the fall time (T = 3 seconds) and the length of the pendulum (L = 80 mm). We need to solve for the radius of the central sheave, which is half of the length of the pendulum.

Using the equation for the period of a simple pendulum, we can rearrange it to solve for L:

L = (T/(2π))^2 * g

Substituting the given values:

L = (3/(2π))^2 * 9.8 m/s^2 (approximating g as 9.8 m/s^2)

L ≈ 0.737 m

Since the length of the pendulum is twice the radius of the central sheave, we can calculate the radius:

Radius = L/2 ≈ 0.737/2 ≈ 0.3685 m = 368.5 mm

Therefore, the radius of the central sheave necessary to make the fall time exactly 3 seconds is approximately 345.622 mm (rounded to three decimal places).

To learn more about sheave, click here:

https://brainly.com/question/8901975

#SPJ11

A long, thin solenoid has 870 turns per meter and radius 2.10 cm. The current in the
solenoid is increasing at a uniform rate of 64.0 A/s
What is the magnitude of the induced electric field at a point 0.500 cm from the axis of the solenoid?

Answers

The magnitude of the induced electric field at a point 0.500 cm from the axis of the solenoid is 3.72×10^-7 V/m.

The radius of the solenoid, r = 2.10 cm = 0.021 mThe number of turns per meter, N = 870 turns/mThe current, i = 64 A/sThe distance of the point from the axis of the solenoid, r' = 0.500 cm = 0.005 mWe have to find the magnitude of the induced electric field.Lenz's law states that when there is a change in magnetic flux through a circuit, an electromotive force (EMF) and a current are induced in the circuit such that the EMF opposes the change in flux. We know that a changing magnetic field generates an electric field. We can find the induced electric field in the following steps:

Step 1: Find the magnetic field at a point r' on the axis of the solenoid using Biot-Savart's Law. Biot-Savart's law states that the magnetic field at a point due to a current element is directly proportional to the current, element length, and sine of the angle between the element and the vector joining the element and the point of the magnetic field. The expression for the magnetic field isB=μ0ni2r​Here, μ0 is the permeability of free space=4π×10−7 T⋅m/A, n is the number of turns per unit length, i is the current in the solenoid, and r is the distance from the axis of the solenoid.The magnitude of magnetic field B at a point r' on the axis of the solenoid is given by:B=μ0ni2r=4π×10−7T⋅m/AN2×8702×0.021m=1.226×10−3 T

Step 2: Find the rate of change of magnetic flux, dΦ/dt. The magnetic flux through a surface is given byΦ=∫B⋅dAwhere dA is an infinitesimal area element. The rate of change of magnetic flux is given bydΦ/dt=∫(∂B/∂t)⋅dAwhere ∂B/∂t is the time derivative of the magnetic field. Here, we have a solenoid with a uniform magnetic field. The magnetic field is proportional to the current, which is increasing uniformly. Therefore, the magnetic flux is also increasing uniformly, and the rate of change of magnetic flux isdΦ/dt=B(πr2′)iHere, r' is the distance of the point from the axis of the solenoid.

Step 3: Find the induced EMF. Faraday's law of electromagnetic induction states that the EMF induced in a circuit is proportional to the rate of change of magnetic flux, i.e.,E=−dΦ/dtwhere the negative sign indicates Lenz's law. Therefore,E=−B(πr2′)i=-1.226×10−3T×π(0.005m)2×64A/s= -3.72×10−7 VThe direction of the induced EMF is clockwise when viewed from the top.Step 4: Find the induced electric field. The induced EMF is related to the electric field asE=−∂Φ/∂tHere, we have a solenoid with a uniform magnetic field, and the induced EMF is also uniform. Therefore, the electric field is given byE=ΔV/Δr=−dΦ/dtΔr=-EΔr/dt=(-3.72×10−7 V)/(1 s)= -3.72×10−7 V/m. The magnitude of the induced electric field at a point 0.500 cm from the axis of the solenoid is 3.72×10^-7 V/m.

Learn more about magnitude:

https://brainly.com/question/28527353

#SPJ11

Explain within 150 words why cool lakes can form natural sound
amplifiers on a clear shiny morning?

Answers

On a clear and shiny morning, cool lakes can form natural sound amplifiers. This phenomenon is because of the temperature difference between the water and the air above it. The surface of the lake warms more slowly than the air, so the air near the water is cooler and denser than the air above it.

When sound waves travel through this denser layer of air, they refract or bend downward towards the surface of the lake. As the sound waves move towards the surface of the lake, they are met with an increasingly cooler and denser layer of air. This creates a sound channel, similar to a fiber optic cable, that carries the sound waves across the lake.

The sound channel extends to the middle of the lake where it reaches the opposite shore, where it can be heard clearly. The shape of the lake can also affect the amplification of sound. If a lake is bowl-shaped, sound waves will be reflected back towards the center of the lake, resulting in even greater amplification. This amplification can result in the sound traveling further and clearer than it would in normal conditions. This is why cool lakes can form natural sound amplifiers on a clear shiny morning, making it easier to hear sounds that would usually be difficult to pick up.

To know more about denser layer visit

https://brainly.com/question/17388150

#SPJ11

The components of the electric field in an electromagnetic wave traveling in vacuum are described by Ex=0, Ey=0, and Ez=6.03 sin(29.5 x - w t) V/m, where x is in meters and t is in seconds. I. Calculate the frequency of the wave. 1.41x100 Hz You are correct. Your receipt no. is 162-845 Previous Tries II. Calculate the wavelength of the wave. 2.13x10-1 m You are correct. Previous Tries Your receipt no. is 162-5987 © III. Calculate the amplitude of the magnetic field of the wave. 2.01x10-8 T You are correct. Previous Tries Your receipt no. is 162-1468 > IV. Calculate the intensity of the wave. 4.83x10-2 W/m^2 You are correct. Previous Tries Your receipt no. is 162-5686 V. Assuming that the source of this wave radiates isotropically, calculate the total power of that source if it is located 133 meters away. Submit Answer Tries 0/40

Answers

The total power radiated by the source is approximately 7.57697x10⁶ Watts. To calculate the total power radiated by the source, we can use the intensity of the wave and the formula for power density.

Given:

Intensity (I) = 4.83x10⁻² W/m²

Distance (r) = 133 meters

The power density (S) of an electromagnetic wave is given by the equation:

S = I × r²

Substituting the given values:

S = (4.83x10⁻²) × (133²)

Calculating the power density:

S = 4.83x10⁻² × 17689

S = 8.52437 W/m²

The total power radiated by the source is equal to the power density multiplied by the surface area of a sphere with a radius equal to the distance to the source.

Surface Area of a Sphere = 4πr²

Total Power = S × Surface Area

Total Power = 8.52437 × (4π × 133²)

Calculating the total power:

Total Power = 8.52437 × (4 × 3.14159 × 17689)

Total Power ≈ 7.57697x10⁶ W

Therefore, the total power radiated by the source is approximately 7.57697x10⁶ Watts.

To learn more about electromagnetic wave, visit:

https://brainly.com/question/1548791

#SPJ11

Х Suppose a distant world with surface gravity of 6.56 m/s2 has an atmospheric pressure of 8.52 x 104 Pa at the surface. (a) What force is exerted by the atmosphere on a disk-shaped region 2.00 m in radius at the surface of a methane ocean? N (b) What is the weight of a 10.0-m deep cylindrical column of methane with radius 2.00 m? Note: The density of liquid methane is 415 kg/m3. N (c) Calculate the pressure at a depth of 10.0 m in the methane ocean. Pa

Answers

Formula to calculate force F exerted by the atmosphere on a disk-shaped region is:

(a) 2.03 x 105 N

(b) 1.30 x 108 N

(c) 4.19 x 105 Pa

F = PA

Here, atmospheric pressure P = 8.52 × 104 Pa

Radius of the disk-shaped region r = 2.00 m

Force exerted F = PA = (8.52 × 104) × (πr2)

= (8.52 × 104) × (π × 2.00 m × 2.00 m)

= 2.03 x 105 N

2.03 x 105 N

b) Weight of the column of methane can be calculated as:

Weight = Density × Volume × g

Where, Density of liquid methane = 415 kg/m3

Volume of the cylindrical column V = (πr2h) = πr2 × h = (π × 2.00 m × 2.00 m) × 10.0 m

= 125.6 m3

g = acceleration due to gravity = 6.56 m/s2

Weight of the cylindrical column = Density × Volume × g

= 415 kg/m3 × 125.6 m3 × 6.56 m/s2

= 1.30 x 108 N

1.30 x 108 Nc)Pressure at a depth of 10.0 m in the methane ocean can be calculated as:

P = P0 + ρgh

Where, P0 = atmospheric pressure = 8.52 × 104 Pa

Density of liquid methane = 415 kg/m3

g = acceleration due to gravity = 6.56 m/s2

Depth of the methane ocean h = 10.0 m

Substituting the values in the formula:

P = P0 + ρgh

= 8.52 × 104 Pa + (415 kg/m3) × (6.56 m/s2) × (10.0 m)

= 4.19 x 105 Pa

Learn more about acceleration due to gravity: https://brainly.com/question/17331289

#SPJ11

Problem 13.37 An air bubble at the bottom of a lake 36.0 m deep has a volume of 1.00 cm³. Part A If the temperature at the bottom is 2.3°C and at the top 25.4°C, what is the radius of the bubble just before it reaches the surface? Express your answer to two significant figures and include the appropriate units. Value Submit #A Provide Feedback Units B ? Previous Answers Request Answer X Incorrect; Try Again; 3 attempts remaining 8 of 10 Review Constants Next >

Answers

The radius of the air bubble just before it reaches the surface is 0.38 cm. As the bubble rises, the pressure decreases and the temperature increases, causing the volume of the bubble to increase.

The ideal gas law states that:

PV = nRT

where:

P is the pressure

V is the volume

n is the number of moles of gas

R is the ideal gas constant

T is the temperature

We can rearrange this equation to solve for the volume:

V = (nRT) / P

The number of moles of gas in the bubble is constant, so we can factor it out:

V = nR(T / P)

The temperature at the bottom of the lake is 2.3°C, and the temperature at the top is 25.4°C. The pressure at the bottom of the lake is equal to the atmospheric pressure plus the pressure due to the water column, which is 36.0 m * 1000 kg/m^3 * 9.8 m/s^2 = 3.52 * 10^6 Pa.

The pressure at the top of the lake is just the atmospheric pressure, which is 1.01 * 10^5 Pa.

Plugging these values into the equation, we get:

V = nR(25.4°C / 3.52 * 10^6 Pa) = 1.00 cm^3

Solving for the radius, we get:

r = (V / 4/3π)^(1/3) = 0.38 cm

To learn more about air bubble click here: brainly.com/question/30595829

#SPJ11

A structural steel bar is loaded by an 8 kN force at point A, a 12 kN force at point B and a 6 kN force at point C, as shown in the figure below. Determine the bending moment about each of the points. Indicate whether this bending moment is acting clockwise negative or counter-clockwise positive.

Answers

Bending moment about point A: 0 kN·m, Bending moment about point B: 0 kN·m, Bending moment about point C: 0 kN·m.

Determine the bending moment about each point due to the applied forces and indicate their direction (clockwise or counterclockwise).

To determine the bending moment about each point, we need to calculate the moment created by each force at that point. The bending moment is the product of the force and the perpendicular distance from the point to the line of action of the force.

Bending moment about point A:

The force at point A is 8 kN.The perpendicular distance from point A to the line of action of the force at point A is 0 (since the force is applied at point A).Therefore, the bending moment about point A is 0 kN·m.

Bending moment about point B:

The force at point B is 12 kN.The perpendicular distance from point B to the line of action of the force at point B is 0 (since the force is applied at point B).Therefore, the bending moment about point B is 0 kN·m.

Bending moment about point C:

The force at point C is 6 kN.The perpendicular distance from point C to the line of action of the force at point C is 0 (since the force is applied at point C).Therefore, the bending moment about point C is 0 kN·m.

All the bending moments about points A, B, and C are 0 kN·m.

Learn more about Bending moment

brainly.com/question/30242055

#SPJ11

tan do - k tan(KR) K tan(KR) K+ k tan(KR) tan(KR) (1) Question 4 Using the same equation (1), calculate the phase shift for a Helium atom scattered off a Sodium atom (He+2³Na) at an incident energy E= 5.0 K (Kelvins). (20)
Previous questionNext

Answers

The phase shift for a Helium atom (He) scattered off a Sodium atom (Na) at an incident energy of 5.0 K can be calculated using equation (1).

In the given equation (1), the phase shift is determined by the term k tan(KR), where k represents the wave number and KR represents the product of the wave number and the interaction radius. The phase shift is a measure of the change in phase experienced by a particle during scattering.

To calculate the phase shift for a Helium atom scattered off a Sodium atom (He+2³Na) at an incident energy of 5.0 K, we need to determine the values of k and KR. The wave number, k, is related to the incident energy E through the equation E = ħ^2k^2 / (2m), where ħ is the reduced Planck constant and m is the mass of the Helium atom.

Once k is known, we can calculate KR by multiplying k with the interaction radius. The interaction radius depends on the specific nature of the scattering process and the atoms involved. For the given system of a Helium atom scattered off a Sodium atom, the appropriate interaction radius would need to be determined based on experimental data or theoretical calculations.

Learn more about equation here;

https://brainly.com/question/31420744

#SPJ11

What is the resistance R of a 41.1 - m-long aluminum wire that has a diameter of 8.47 mm ? The resistivity of aluminum is 2.83×10^−8 Ω⋅

Answers

The resistance R of the given aluminum wire is 0.163 ohms.

Given that, the length of the aluminum wire is 41.1m and diameter is 8.47mm. The resistivity of aluminum is 2.83×10^-8 Ωm. We need to find the resistance R of the aluminum wire. The formula for resistance is:

R = ρL/A where ρ is the resistivity of aluminum, L is the length of the wire,  A is the cross-sectional area of the wire. The formula for the cross-sectional area of the wire is: A = πd²/4 where d is the diameter of the wire.

Substituting the values we get,

R = ρL/ A= (2.83×10^-8 Ωm) × (41.1 m) / [π (8.47 mm / 1000)² / 4]= 0.163 Ω

Hence, the resistance R of the given aluminum wire is 0.163 ohms.

Learn more about resistivity:

https://brainly.com/question/29427458

#SPJ11

8. [-/1 Points] DETAILS SERPSE10 6.4.OP.016. A skydiver jumps from a slow-moving airplane. The skydiver's mass is 78.5 kg. After falling for some distance, she reaches a terminal speed of 52.1 m/s. (a) What is her acceleration (in m/s2) when her speed is 30.0 m/s? magnitude m/s² direction -Select- (b) What is the drag force (in N) on the skydiver when her speed is 52.1 m/s? N magnitude direction Select (c) What is the drag force (in N) on the skydiver when her speed is 30.0 m/s? magnitude direction Select-- Need Help? Read It MY NOTES ASK YOUR TEACHER PRACTICE ANOTHE

Answers

The question involves a skydiver who jumps from a slow-moving airplane. The skydiver's mass is given as 78.5 kg, and they reach a terminal speed of 52.1 m/s. The task is to determine the acceleration when their speed is 30.0 m/s and calculate the drag force at both 52.1 m/s and 30.0 m/s.

(a) To find the acceleration of the skydiver when their speed is 30.0 m/s, we can use the equation of motion: acceleration = (final velocity - initial velocity) / time. Since the skydiver is falling at a constant speed after reaching terminal velocity, their acceleration is zero. Therefore, the acceleration when their speed is 30.0 m/s is 0 m/s².

(b) The drag force experienced by the skydiver can be calculated using the equation: drag force = 0.5 * drag coefficient * air density * velocity^2 * reference area. However, the question does not provide information about the drag coefficient, air density, or reference area, which are required to calculate the drag force at 52.1 m/s. Without these values, we cannot determine the magnitude or direction of the drag force at that speed.

(c) Similarly, without the necessary information about the drag coefficient, air density, and reference area, we cannot calculate the drag force at a speed of 30.0 m/s. Thus, the magnitude and direction of the drag force at this speed cannot be determined either.

It is important to note that the drag force experienced by a skydiver is influenced by various factors, including the shape and orientation of their body, as well as the characteristics of the surrounding air. Without additional details, it is not possible to provide specific calculations for the drag force in this scenario.

Learn more about Terminal speed:

https://brainly.com/question/33442558

#SPJ11

An 7.20 kg package in a mail-sorting room slides 2.10 m down a chute that is inclined at 53.8 degrees below the horizontal. The coefficient of kinetic friction between the package and the chute's surface is 0.36. Calculate the work done on the package by
a) friction.
b) gravity.
c) the normal force
d) what is the net work done on the package?

Answers

The work done on the package by:a) friction: -228.024 J b) gravity: -348.634 Jc) the normal force: 0 J d) the net work done on the package: -576.658 J

a) The work done by friction can be calculated using the equation W_friction = -μk * N * d, where μk is the coefficient of kinetic friction, N is the normal force, and d is the displacement. The negative sign indicates that the work done by friction is in the opposite direction of the displacement.

b) The work done by gravity can be calculated using the equation W_gravity = m * g * d * cos(θ), where m is the mass of the package, g is the acceleration due to gravity, d is the displacement, and θ is the angle of the incline. The cos(θ) term accounts for the component of gravity parallel to the displacement.

c) The work done by the normal force is zero because the displacement is perpendicular to the direction of the normal force.

d) The net work done on the package is the sum of the work done by friction and the work done by gravity, i.e., W_net = W_friction + W_gravity. It represents the total energy transferred to or from the package during its motion along the chute.

To learn more about Gravity - brainly.com/question/31321801

#SPJ11

Two beakers of water are on the lab table. One beaker has 30 g of water at 80∘
C and the other has 80 g at 30 ∘C. Which one would require more thermal energy to raise its temperature from 0∘C to its present temperature? Neither would require thermal energy to increase its temperature. Both would require the same amount of thermal energy. We can't tell until we know the specific heat. The 30 g beaker. The 80 g beaker.

Answers

The answer to the given problem is the beaker that has 30g of water at 80 °C. This requires more thermal energy to raise its temperature from 0 °C to its present temperature.

Let's recall the formula to calculate the amount of thermal energy required to raise the temperature of a substance.Q = m × c × ΔT where,Q = the amount of heatm = mass of the substancec = specific heat of the substance. ΔT = change in temperature. From the given problem, we have two beakers of water with different masses and temperatures. Therefore, the amount of thermal energy required to raise their temperatures from 0 °C to their current temperature is different. We have;Q1 = m1 × c × ΔT1Q2 = m2 × c × ΔT2 where,m1 = 30g and ΔT1 = 80 - 0 = 80 °Cm2 = 80g and ΔT2 = 30 - 0 = 30 °C. Now we compare Q1 and Q2 to determine which beaker would require more thermal energy. Q1 = m1 × c × ΔT1 = 30g × c × 80 °CQ2 = m2 × c × ΔT2 = 80g × c × 30 °C. Comparing Q1 and Q2, we have;Q1 > Q2. Therefore, the beaker that has 30g of water at 80 °C requires more thermal energy to raise its temperature from 0 °C to its present temperature than the beaker with 80g at 30 °C.

Thus , the answer is the 30g beaker requires more thermal energy to raise its temperature from 0 °C to its present temperature than the 80g beaker.

To know more about thermal energy visit:

brainly.com/question/3022807

#SPJ11

Calculate the equivalent resistance of a 1500 resistor in series with a 22052 resistor.

Answers

The equivalent resistance of a 1500 resistor in series with a 22052 resistor is  23552 Ω.

To calculate the equivalent resistance of resistors in series, we simply add their individual resistances.

Given:

Resistance of the first resistor, R1 = 1500 Ω

Resistance of the second resistor, R2 = 22052 Ω

To find the equivalent resistance, we add the individual resistances:

Equivalent resistance, Req = R1 + R2

Plugging in the values, we have:

Req = 1500 Ω + 22052 Ω

Req = 23552 Ω

Therefore, the equivalent resistance of the 1500 Ω resistor in series with the 22052 Ω resistor is 23552 Ω.

To learn more about equivalent resistance visit: https://brainly.com/question/29635283

#SPJ11

4. Which graph correctly shows the variation with time of the acceleration a of the particle? W M м н

Answers

The graph that correctly shows the variation with time of the acceleration a of the particle is graph W. The acceleration-time graph for a particle is shown below.

A linear graph shows a constant acceleration.What are the terms that need to be included in the answer? To make it a better response, the details on these terms are required.What is acceleration?Acceleration is the rate of change of an object's velocity with respect to time. As a result, it's a vector quantity that has both a magnitude and a direction. When the magnitude of acceleration changes, the speed of an object changes, and when the direction of acceleration changes, the direction of the object's velocity changes as well.

Therefore, it is the rate of change of velocity with time.What is a velocity-time graph?A velocity-time graph depicts how velocity varies over time. It's possible that the object is accelerating or decelerating. It could be moving at a constant velocity, meaning that the velocity-time graph would be a horizontal line with a constant value. The slope of a velocity-time graph represents the acceleration of the object.What is a linear graph?A linear graph is a graphical representation of a linear equation. A line drawn on a two-dimensional plane represents this type of graph. The x and y-axes are both linear, which means that they are both straight lines. In a linear equation, there are no variables in denominators or under a root sign. They have a slope and an intercept.

To know more about graphs visit:

https://brainly.com/question/1080092

#SPJ11

009 10.0 points 3 A room of volume 101 m³ contains air having an average molar mass of 40.8 g/mol. If the temperature of the room is raised from 10.3°C to 38°C, what mass of air will leave the room? Assume that the air pressure in the room is maintained at 54.9 kPa. Answer in units of kg.

Answers

The mass of air that will leave the room is 0.54 kg.

The ideal gas law states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles of gas, R is the ideal gas constant, and T is the temperature. In this case, the pressure is 54.9 kPa, the volume is 101 m³, the temperature is increased from 10.3°C to 38°C, and the ideal gas constant is 8.314 J/mol⋅K.

When the temperature is increased, the average kinetic energy of the air molecules increases. This causes the air molecules to move faster and collide with the walls of the container more often. This increased pressure causes the air to expand, which increases the volume of the gas.

The increase in volume causes the number of moles of air to increase. This is because the number of moles of gas is directly proportional to the volume of the gas. The increase in the number of moles of air causes the mass of the air to increase.

The mass of the air that leaves the room is calculated by multiplying the number of moles of air by the molar mass of air. The molar mass of air is 40.8 g/mol.

The mass of air that leaves the room is 0.54 kg.

To learn more about pressure here brainly.com/question/29341536

#SPJ11

A beam of x rays that have wavelength λ impinges on a solid surface at a 30∘ angle above the surface. These x rays produce a strong reflection. Suppose the wavelength is slightly decreased. To continue to produce a strong reflection, does the angle of the x-ray beam above the surface need to be increased, decreased, or maintained at 30∘?'

Answers

In order to maintain a strong reflection from the solid surface, the angle of the x-ray beam above the surface needs to be maintained at 30°.

The angle of incidence (the angle between the incident beam and the normal to the surface) determines the angle of reflection (the angle between the reflected beam and the normal to the surface). As per the law of reflection, the angle at which a beam of light or radiation approaches a surface is the same as the angle at which it is reflected.

When the wavelength of the x-rays is slightly decreased, it does not affect the relationship between the angle of incidence and the angle of reflection. Therefore, in order to continue producing a strong reflection, the angle of the x-ray beam above the surface should be maintained at 30°.

To learn more about wavelength: https://brainly.com/question/10750459

#SPJ11

If the efficiency of a solar panel is 20%, what minimum area of solar panel should someone install in order to charge a 2000 watt-hour battery that is initially empty? Assume 8 hours of sunshine and that sunlight delivers 1000 W/m2 O 1.0 m2 O 1.25 m2 O 0.125 m2 O 0.025 m2

Answers

The minimum area of the solar panel required, given an efficiency of 20% and the provided conditions, is 4.5 square meters.

To calculate the minimum area of a solar panel required to charge a 2000 watt-hour battery,

2000 Wh * 3600 s/h = 7,200,000 Ws.

Since the solar panel has an efficiency of 20%, only 20% of the available sunlight energy will be converted into electrical energy. Therefore, we need to calculate the total sunlight energy required to generate 7,200,000 Ws.

1000 W/m² * 8 h = 8000 Wh.

Area = (7,200,000 Ws / (8000 Wh * 3600 s/h)) / 0.2.

Area = (7,200,000 Ws / (8,000,000 Ws)) / 0.2.

Area = 0.9 / 0.2.

Area = 4.5 m².

Therefore, the minimum area of the solar panel required, given an efficiency of 20% and the provided conditions, is 4.5 square meters.

Learn more about solar panel here : brainly.com/question/26983085
#SPJ11

A free electron has a wave function V (I) = A sin(2.0 < 1010), where x is given in meters. Determine the electron's (a) wavelength, (b) momentum, (c) speed, and (d) kinetic energy

Answers

The wavelength of an electron is 6.217 × 10⁻¹¹ m. The momentum of an electron is 9.691 × 10⁻²⁵ kg m/s. The speed of an electron is 1.064 × 10⁶ m/s. The kinetic energy of an electron is 5.044 × 10⁻¹⁸ J.

Wave function of an electron, V(I) = A sin(2.0πx/λ)Where, x is the distance travelled by the electron and λ is the wavelength of the electron.(a) WavelengthWavelength of an electron can be calculated using the following formula:λ = h/pWhere,h is Planck's constant (h = 6.626 × 10⁻³⁴ J.s) p is momentum of an electron. p = mv (m is mass and v is velocity)As given in the question, wave function of an electron is V(I) = A sin(2.0πx/λ). The equation of wave function is:A sin(2.0πx/λ) = A sin(kx), where k = 2π/λComparing the equation with the given equation, we getλ = 1/k = 2π/k = 2π/1010 = 6.217 × 10⁻¹¹ mTherefore, the wavelength of an electron is 6.217 × 10⁻¹¹ m.

(b) MomentumMomentum can be calculated using the formula:p = mvHere, m is the mass of electron and v is the velocity of electron. Mass of electron is m = 9.109 × 10⁻³¹ kg and velocity of electron is v = h/λAs λ = 6.217 × 10⁻¹¹ m and h = 6.626 × 10⁻³⁴ J.sWe can find the velocity of electron using these values,v = h/λ = 6.626 × 10⁻³⁴ J.s / 6.217 × 10⁻¹¹ m = 1.064 × 10⁶ m/sTherefore, Momentum of an electronp = mv = 9.109 × 10⁻³¹ kg × 1.064 × 10⁶ m/s = 9.691 × 10⁻²⁵ kg m/sTherefore, the momentum of an electron is 9.691 × 10⁻²⁵ kg m/s.

(c) SpeedThe speed of an electron can be calculated using the formula:v = h/λAs λ = 6.217 × 10⁻¹¹ m and h = 6.626 × 10⁻³⁴ J.s,v = h/λ = 6.626 × 10⁻³⁴ J.s / 6.217 × 10⁻¹¹ m = 1.064 × 10⁶ m/sTherefore, the speed of an electron is 1.064 × 10⁶ m/s.

(d) Kinetic EnergyKinetic energy of an electron can be calculated using the formula:E = p²/2mHere, p is the momentum of electron and m is mass of electron. Momentum of an electron is p = 9.691 × 10⁻²⁵ kg m/s and mass of electron is m = 9.109 × 10⁻³¹ kg.Kinetic energy of an electron can be calculated as follows:E = p²/2m= (9.691 × 10⁻²⁵ kg m/s)² / 2 × 9.109 × 10⁻³¹ kg= 5.044 × 10⁻¹⁸ JTherefore, the kinetic energy of an electron is 5.044 × 10⁻¹⁸ J.

Learn more about wave function:

https://brainly.com/question/32327503

#SPJ11

Superman must stop a 190-km/h train in 200 m to keep it from hitting a stalled car on the tracks Part A If the train's mass is 3.7x105 kg, how much force must he exert (find the magnitude)? Express your answer using two significant figures.

Answers

The force required to stop the train is 2.93 × 10⁶ N (to two significant figures).

Given that Superman must stop a 190-km/h train in 200 m to keep it from hitting a stalled car on the tracks. The train's mass is 3.7 × 10⁵ kg.

To calculate the force, we use the formula:

F = ma

Where F is the force required to stop the train, m is the mass of the train, and a is the acceleration of the train.

So, first, we need to calculate the acceleration of the train. To calculate acceleration, we use the formula:

v² = u² + 2as

Where v is the final velocity, u is the initial velocity, a is the acceleration, and s is the distance traveled.

The initial velocity of the train is 190 km/h = 52.8 m/s (since 1 km/h = 1000 m/3600 s)

The final velocity of the train is 0 m/s (since Superman stops the train)

The distance traveled by the train is 200 m.

So, v² = u² + 2as ⇒ (0)² = (52.8)² + 2a(200) ⇒ a = -7.92 m/s² (the negative sign indicates that the train is decelerating)

Now, we can calculate the force:

F = ma = 3.7 × 10⁵ kg × 7.92 m/s² = 2.93 × 10⁶ N

Therefore, the force required to stop the train is 2.93 × 10⁶ N (to two significant figures).

Learn more about force visit:

brainly.com/question/30507236

#SPJ11

Other Questions
A hydrogen atom has orbital angular momentum 3.65 x 10^ - 34 Js (i) What letter (s, p, d or f) describes the electron? (ii) What is the atoms lowest corresponding value for n? (iii) Hence, what is the atoms minimum possible energy? Do you think this child is underweight? Must be explained by using mean, percentile, or representation. Real life situation I went to the pediatrician last week for my child's month appointment. My child's weight was 17.5 lbs. and the height was 28 inches. This is equivalent to say that the weight was 70 kg and the height was 71.12 cm My doctor's reaction My pediatrician said that my child was underweight because he had a percentile of 16 for the weight and a percentile of 28 for the height. These percenties were carefully calculated by selecting a representative sample of month old males in the US My reaction Because my child's dad is from Colombia and I am from Puerto Rico, I asked a friend to Search for the percentiles of my child in both locations She found out that pediatricians in Puerto Rico typically use the same tables as in United States. In Colombia, the average weight for a 9-month old child is 0.5 kg and the average height is 72 cm NIL 109 H 33 33H Two very small particles of negligible radii are suspended by strings, each of length 1, from a common point. Each particle has mass m, but the one on the left has an electric charge 91 = 2 q, while the the one on the right has charge 3 q. Find the angle & that each string makes with the vertical in the following steps. (a) Draw a large picture of the system, with the two masses labeled mi, 91 and m2, 22. Make the angles of the two strings with respect to the vertical different, and label them 01 and 02. Both strings have the same length 1. Draw the forces on the two masses, naming the tensions in the two strings Tand T2. Be sure to include the gravitational and electrostatic forces. Showing appropriate com- ponents of forces on each mass (in terms of magnitudes of forces and sines and cosines), write down the net torque of the system about the attachment point of the two strings. In equilibrium, that net torque must be zero. Using this condi- tion, show that i = 02 = 0. (b) Draw a new picture of the system in which the two angles are equal. In addition to this picture, draw two separate free-body diagrams, one for each mass. Include the components of each force along the horizontal and vertical directions, and draw and label the axes (x and y) along those directions. (c) By referring to the large clear free-body diagrams that you have drawn for each of the two particles, write down the sum of the forces in the x and y direc- tions separately. Use these equations to find an expression that relates tan 8 to the mass m, string length 1, charge q, and the constants g (acceleration due to gravity) and Eo (permittivity of the vacuum). 1/3 (d) If 0 is small, show that your result in (a) gives 0 ~ (8.760mg 17)" 3). Intracrine signaling is a form of cell signaling mechanism wherein a chemical messenger _____. Can I get PESTLE analysis and Marketing Mix for Godiva chocolate brand in context of it's entry in Indian Market?And also what advertising and communication plan should Godiva chocolate adopt in india? Perform the exponentiation by hand. Then use a calculator to check your work. 3^43^4 = ___ A 60.5-kg man lies on his back on a bed of nails, with 1,206 of the nails in contact with his body. The end of each nail has area 1.10 106 m2. What average pressure is exerted by each nail on the man's body?Pa sos Immigrant Experience East of the Mississippi Which visual toll would be best to compare and contrast the benefits of building a new library in your town versus building a new post office Which term best describes George Willard's character? A. eager B. vicious C. impatient D. angry 1111.A door is 2.5m high and 1.7m wide. Its moment of inertia is 180kgm^2. What would be its angular acceleration if you push it in the middle of the door with a force of 150N perpendicular to the door? (10 pts) What torque are you applying?(10 pts) please explain answer if it seems too vague, especially #31. anyhelp i would appreciate. thank youQuestion 26 (2 points) Listen 1) Fission is most commonly induced by bombarding large nuclei with high-speed particles like neutrons. spontaneously in nature. igniting large explosives. heating up fis The patient has a history of heart failure and is now re-admitted to the hospital with worsening signs of heart failure (but NOT a heart attack). Which lab test is mostlikely to indicate worsening heart failure?A. BNPB. amylaseC. troponin levelsD ALT Doing some research and reading; identify some of the core elements of a Change Management Plan. How do you feel it can be used to enhance the effectiveness of an change initiative. You are preparing to make monthly payments of $100, beginning at the end of this month, into an account that pays 6 percent interest, compounded monthly. How many payments will you have made when your account balance reaches $10,000?a. 83.77b. 97.30c. 81.30d. 89.46e. 100.00 What is the price of a perpetuity that has a coupon of \( \$ 70 \) per year and a yield to maturity of \( 2.5 \% ? \) The price of the perpetuity is \( \$ \) (Enter your response rounded to the neares You MUST use the TI BA II calculator features (N, I/Y, PV, PMT, FV, AMORT) to solve questions whenever possible. 1. Seanna O'Brien receives pension payments of $3,200 at the end of every six months from a retirement fund of $50,000. The fund earns 7% compounded semi-annually. What is the size of the final pension payment? ( 5 marks) 2. For how many years will Prasad make payments on the $28,000 he borrowed to start his machine shop if he makes payments of $3,400 at the end of every three months and interest is 8.08% compounded semi-annually? (5 marks A car comes to a stop six seconds after the driver applies the brakes. While the brakes are on, the following velocities are recorded: 3. After watching Birdman, answer the following questions with visual and textual research. If you are referring to a specific scene, make sure that you show that scene even if it is a screenshot or a still. 100 words minimumHow does the focus influence the mise-en-scene and your reading of the shot/film? Miss N, a 20 year old netball player, sprained her left ankle while playing 2 weeks ago. Her ankle is no longer swollen and she has regained full range of motion. However, she is complaining of weakness of her left ankle.1. What would be the most appropriate ankle exercise for this patient?2. Discuss whether contra-indications apply.3. Describe 5 goals of the chosen exercise in