Complete question is;
A point charge is positioned in the center of a hollow metallic shell of radius R. During four experiments the value of point charge and charge of the shell were respectively:
+5q; 0
-6q; +2q
+2q; -3q
-4q; +12q
Rank the results of experiments according to the charge on the inner surface of the shell, most positive first:
a. 2, 3, 1, 4
b. 1, 2, 3, 4
c. 2, 4, 3, 1
d. 1, 3, 4, 2
Answer:
c. 2, 4, 3, 1
Explanation:
In this question, we can say that;
q_in = q_b
Where;
q_in is the charge on the inner surface of the shell
q_b is the point charge on the shell.
Thus q_in = -q_b was written because, as the shell is conducting, it means that the electric field would have a value of zero and thus the radius inside will be zero.
Thus;
- For +5q; 0:
q_in = -(+5q)
q_in = -5q
- For -6q; +2q :
q_in = - (-6q)
q_in = +6q
- For +2q; -3q :
q_in = -(+2q)
q_in = -2q
- For -4q; +12q:
q_in = -(-4q)
q_in = +4q
Ranking the most positive to the least positive ones, we have;
+6q, +4q, -2q, -5q
This corresponds to options;
2, 4, 3, 1
Which best describes the relationship between heat,intemal energy, and thermal energy?
Internal energy is heat that flows and heat is the part of thermal energy that can be transferred
Internal energy is thermal energy that flows, and thermal energy is the part of heat that can be transferred,
Thermal energy is heat that flows, and heat is the part of intemal energy that can be transferred
Heat is thermal energy that flows, and hennal energy is the part of internal energy that can be transferred.
Answer:
It is all a thermodynamic system that is highly related to each other.
Explanation:
Because they are in the physics of thermodynamics it is not wrong to say they follow the same thermodynamic rules and has highly the same properties of energy.
Put the following energy sublevels in order from least to greatest energy
A None of these
BIS. 25. 20, 35, 38, 34, 45, 46, 4d. 48
Cisas is4s, 20, 30, 40, 30, 40, 4f
D. is 25, 20, 35, 3p. 45, 3d, 4p, 40, 48
if Petrol diesel etc catches fire one should never try to extinguish in using water why?
Answer:
because both petrol and diesel are oil
Explanation:
oil floats on water that's why if we will try to extinguish with water so the fire will float on water
hope u like my answer
please mark methe brainest
A chimpanzee sitting against his favorite tree gets up and walks 51 m due east and 39 m due south to reach a termite mound, where he eats lunch. (a) What is the shortest distance between the tree and the termite mound
Answer:
64.20m
Explanation:
As we can see from the image I have attached below, the route that the chipanzee makes forms a right triangle. In this case, the shortest distance is represented by x in the image, which is the hypotenuse. To find this value we use the Pythagorean theorem which is the following.
[tex]a^{2} +b^{2} = c^{2}[/tex]
where a and b are the length of the two sides and c is the length of the hypotenuse (x). Therefore, we can plug in the values of the image and solve for x
[tex]51^{2} +39^{2} =x^{2}[/tex]
2,601 + 1,521 = [tex]x^{2}[/tex]
4,122 = [tex]x^{2}[/tex] ... square root both sides
64.20 = x
Finally, we see that the shortest distance is 64.20m
Find the refractive index of a medium
having a velocity of 1.5 x 10^8*
Explanation:
refractive index ,is the ratio of velocity of light in vacuum to the velocity of light a medium
how can scientific method solve real world problems examples
A point charge of -3.0 x 10-5C is placed at the origin of coordinates. Find the electric field at the point 3. r= 50 m on the x-axis
Answer: -5×10-3
Explanation:
E=kq/r
Two electrons are passing 20.0 mm apart. What is the electric repulsive force that they exert on each other
Answer:
0.5766422350752*10^-24 N
Explanation:
Couloumb's law states that states that there is an electrical force acting on 2 static charges. The magnitude is directly proportional to the product of the 2 charges.
Strength of electrons : q1 = q2 = 1.602 x 10-19. C
Substitute and solve:
F = (9*10^9)(1.602 x 10-19)(1.602 x 10-19) / (0.02)^2
Done.
Part of your electrical load is a 60-W light that is on continuously. By what percentage can your energy consumption be reduced by turning this light off
Answer:
Following are the solution to the given question:
Explanation:
Please find the complete question in the attached file.
The cost after 30 days is 60 dollars. As energy remains constant, the cost per hour over 30 days will be decreased.
[tex]\to \frac{\$60}{\frac{30 \ days}{24\ hours}} = \$0.08 / kwh.[/tex]
Thus, [tex]\frac{\$0.08}{\$0.12} = 0.694 \ kW \times 0.694 \ kW \times 1000 = 694 \ W.[/tex]
The electricity used is continuously 694W over 30 days.
If just resistor loads (no reagents) were assumed,
[tex]\to I = \frac{P}{V}= \frac{694\ W}{120\ V} = 5.78\ A[/tex]
Energy usage reduction percentage = [tex](\frac{60\ W}{694\ W} \times 100\%)[/tex]
This bulb accounts for [tex]8.64\%[/tex] of the energy used, hence it saves when you switch it off.
A water-balloon launcher with mass 2 kg fires a 0.75 kg balloon with a
velocity of 14 m/s to the west. What is the recoil velocity of the launcher?
What is the answer
Answer:
5.25 m/s to the east
Explanation:
Applying,
MV = mv.............. Equation 1
Where M = mass of the launcher, V = recoil velocity of the launcher, m = mass of the balloon, v = velocity of the balloon
make V the subject of the equation
V = mv/M............ Equation 2
From the question,
M = 2 kg, m = 0.75 kg, v = 14 m/s
Substitute these values into equation 2
V = (0.75×14)/2
V = 5.25 m/s to the east
Define measurements.
Answer:
act or process of measuring
Explanation:
Explanation:
the comparison of an unknown quantity with a known quantity.
Which graph would be created by a pendulum with the greatest amplitude?
Answer:
Graph (c) would be created by a pendulum with the greatest amplitude.
Explanation:
The amplitude of a wave is the greatest displacement covered by an object. It refers to the maximum amount of displacement of a particle on the medium from its rest position. It is the distance from rest to crest.
Out of three graphs, the amplitude is greatest in graph 3 as the distance from rest is crest in this case is maximum. Hence, the correct option is (c).
The relation of mass m, angular velocity o and radius of the circular path r of an object with the centripetal force is-
a. F = m²wr
b. F = mwr²
c. F = mw²r
d. F = mwr.
Answer:
Correct option not indicated
Explanation:
There are few mistakes in the question. The angular velocity ought to have been denoted with "ω" and not "o" (as also suggested in the options).
The formula to calculate a centripetal force (F) is
F = mv²/r
Where m is mass, v is velocity and r is radius
where
While the formula to calculate a centrifugal force (F) is
F = mω²r
where m is mass, ω is angular velocity and r is radius of the circular path.
From the above, it can be denoted that the relationship been referred to in the question is that of a centrifugal force and not centripetal force, thus the correct option should be C.
NOTE: Centripetal force is the force required to keep an object moving in a circular path/motion and acts inward towards the centre of rotation while centrifugal force is the force felt by an object in circular motion which acts outward away from the centre of rotation.
An object is 2.0 cm from a double convex lens with a focal length of 1.5 cm. Calculate the image distance
Answer:
0.857 cm
Explanation:
We are given that:
The focal length for a convex lens to be (f) = 1.5cm
The object distance (u) = - 2.0 cm
We are to determine the image distance (v) = ??? cm
By applying the lens formula:
[tex]\dfrac{1}{f} = \dfrac{1}{u}+\dfrac{1}{v}[/tex]
By rearrangement and making (v) the subject of the above formula:
[tex]v = \dfrac{uf}{u-f}[/tex]
replacing the given values:
[tex]v = \dfrac{(-2.0)(1.5)}{(-2.0 -1.5)}[/tex]
[tex]v = \dfrac{-3.0}{(-3.5)}[/tex]
v = 0.857 cm
Magnetic field lines begin at the _?_ pole of a magnet and end at the _?_ pole
The 1 kg box is sliding along a frictionless surface. It collides with and sticks to the 2 kg box. Afterward, the speed of the two boxes is:__________.
A) 0 m/s
B) 1 m/s
C) 2 m/s
D) 3 m/s
E) Not enough info
Answer:
The correct option is (E).
Explanation:
Given that,
Mass of object 1, m₁ = 1 kg
Mass of object 2, m₂ = 2 kg
They collides after the collision. We need to find the speed of the two boxes after the collision.
The initial speeds of both boxes is not given. So, we can't put the values of their speeds in the momentum conservation equation.
So, the information is not enough.
Increased air pressure on the surface of hot water tends to
A) prevent boiling.
B) promote boiling.
C) neither of these
Soap bubble coloring example:
(reflection, interference, refraction, diffraction)
Explanation:
Interference is the example of soap bubble colouringEXTRA INFO:(LOOK AT THE IMAGE)
An incoming light ray is partly reflected by the top surface of the soap film and partly reflected by the bottom surface. The wave reflected from the bottom surface has traveled further (an extra distance equal to twice the thickness of the film) so emerges out of step with the top wave. When the two waves meet, they add together, and some colors are removed by destructive interference. Where the film is thickest, the bubble appears more blueish; where it's thinner, it will look more violet or magenta.
[tex]\huge\bold\color{black}{ANSWER}[/tex]
Soap bubble coloring example: INTERFERENCE
A wave moves in a rope with a certain wavelength. A second wave is made to move in the same rope with twice the wavelength of the first wave. The frequency of the second wave is _______________ the frequency of the first wave.
Answer:
The frequency of the second wave is half of the frequency of first one.
Explanation:
The wavelength of the second wave is double is the first wave.
As we know that the frequency is inversely proportional to the wavelength of the velocity is same.
velocity = frequency x wavelength
So, the ratio of frequency of second wave to the first wave is
[tex]\frac{f_2}{f_1} =\frac{\lambda _1}{\lambda _2}\\\\\frac{f_2}{f_1} =\frac{\lambda _1}{2\lambda _1}\\\\\frac{f_2}{f_1} =\frac{1}{2}\\\\[/tex]
The frequency of the second wave is half of the frequency of first one.
Why don’t you see tides ( like those of the ocean ) in your swimming pool ?
If Katie swims from one end of the pool, to the other side, and then swims back to her original spot, her average velocity is half of her average speed when she swam to the other side.a) trueb) false
Answer:
false.
Explanation:
Ok, we define average velocity as the sum of the initial and final velocity divided by two.
Remember that the velocity is a vector, so it has a direction.
Then when she goes from the 1st end to the other, the velocity is positive
When she goes back, the velocity is negative
if both cases the magnitude of the velocity, the speed, is the same, then the average velocity is:
AV = (V + (-V))/2 = 0
While the average speed is the quotient between the total distance traveled (twice the length of the pool) and the time it took to travel it.
So we already can see that the average velocity will not be equal to half of the average speed.
The statement is false
Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces an amount of electric energy with the hot reservoir at 500 K during Day One and then produces the same amount of electric energy with the hot reservoir at 600 K during Day Two. The thermal pollution was:
Answer: hello your question lacks some vital information below is the complete question
Suppose a power plant uses a Carnot engine to generate electricity, using the atmosphere at 300 K as the low-temperature reservoir. Suppose the power plant produces 1 × 106 J of electricity with the hot reservoir at 500 K during Day One and then produces 1 × 106 J of electricity with the hot reservoir at 600 K during Day Two. The thermal pollution was
answer:
Total thermal pollution = 2.5 * 10^6 J
Explanation:
Low temperature reservoir = 300 K
hot reservoir temperature = 500 K
Electrical energy produced by plant ( W ) = 1 * 10^6 J
lets assume ; Q1 = energy absorbed , Q2 = energy emitted
W = Q1 - Q2 or Q2 = Q1 - W ( we will apply this as the formula for determining thermal pollution )
For day 1
T1 = 500k , T2 = 300k
applying Carnot engine formula
W / Q1 = 1 - T2/T1
∴ Q1 = 10^6 / ( 1 - (300/500)) = 2.5 * 10^6 J
thermal pollution ; Q2 = Q1 - W = ( 2.5 * 10^6 - 1 * 10^6 ) = 1.5 * 10^6 J
for Day 2
T1 = 600k, T2 = 300k
Q1 = 10^6 / ( 1 - (300/600)) = 2 * 10^6 J
Thermal pollution; Q2 = Q1 - W = 1 * 10^6 J
Therefore the Total thermal pollution = 1 * 10^6 + 1.5 * 10^6 = 2.5 * 10^6 J
what is conservation energy?
Explanation:
Conservation of energy, principle of physics according to which the energy of interacting bodies or particles in a closed system remains constant
hope it is helpful to you
Give an example of a substance with an amorphous structure.
Answer:
Tempered glass
Explanation:
When warmed, an amorphous substance has a non-crystalline architecture that differentiates from its isochemical liquid, but this does not go through structural breakdown or the glass transition.
There are two possible alignments of a dipole in an external electric field where the dipole is in equilibrium: when the dipole moment is parallel to the electric field and when the dipole moment is oriented opposite the electric field.
Part A
Are both alignments stable? (Consider what would happen in each case if you gave the dipole a slight twist.)
a) Yes
b) No
Part B
Based on your answer to the previous part and your experience in mechanics, in which orientation does the dipole have less potential energy?
a) The arrangement with the dipole moment parallel to the electric field has less potential energy.
b) The arrangement with the dipole moment opposite the electric field has less potential energy.
c) Both arrangements have the same potential energy.
Answer:
A. (b)
B. (a)
Explanation:
The electric dipole moment is the product of charge and the length of the dipole.
The torque on the dipole placed in the external electric field is given by
torque = p E sin A
where, p is the electric dipole moment, E is the electric field, A is the angle between the field and dipole moment.
When the dipole moment is parallel to the electric field, the net torque is zero and it is said to be in stable equilibrium.
When the dipole moment is anti parallel to the electric field, the net torque is zero but the dipole is in unstable equilibrium.
So, the option (b) is correct.
Teh energy is given by
U = - p E cos A
When the angle A is zero , the potential energy is negative and it is minimum.
In this exercise we have to use the knowledge about dipole to be able to mark the correct alternative for each question, in this way we find that:
A) Letter b
B) Letter a
So knowing that the electric dipole moment is the product of charge and the length of the dipole and the torque on the dipole placed in the external electric field is given by:
[tex]torque = p E sin (A)[/tex]
where:
p: the electric dipole momentE: the electric fieldA: the angle between the field and dipole momentWhen the dipole moment is parallel to the electric field, the net torque is zero and it is said to be in stable equilibrium. When the dipole moment is anti parallel to the electric field, the net torque is zero but the dipole is in unstable equilibrium.
Now the energy is given by:
[tex]U = - p E cos (A)[/tex]
We can say that when the angle A is zero , the potential energy is negative and it is minimum.
See more about dipole at brainly.com/question/12757739
water contracts on freezing is it incorrect or conrrect
Answer:
hope it helps
much as you can
A study finds that the metabolic rate of mammals is proportional to m^3/4 , where m is the total body mass. By what factor does the metabolic rate of a 70.0-kg human exceed that of a 4.91-kg cat?
Answer:
The mass of human is 2898 times of the mass of cat.
Explanation:
A study finds that the metabolic rate of mammals is proportional to m^3/4 i.e.
[tex]M=\dfrac{km^3}{4}[/tex]
Where
k is constant
If m = 70 kg, the mass of human
[tex]M=\dfrac{70^3}{4}\\\\=85750[/tex]
If m = 4.91 kg, the mass of cat
[tex]M'=\dfrac{4.91^3}{4}\\\\=29.59[/tex]
So,
[tex]\dfrac{M}{M'}=\dfrac{85750}{29.59}\\\\=2897.93\approx 2898[/tex]
So, the mass of human is 2898 times of the mass of cat.
A child is outside his home playing with a metal hoop and stick. He uses the stick to keep the hoop of radius 45.0 cm rotating along the road surface. At one point the hoop coasts downhill and picks up speed. (a) If the hoop starts from rest at the top of the hill and reaches a linear speed of 6.35 m/s in 11.0 s, what is the angular acceleration, in rad/s2, of the hoop? rad/s2 (b) If the radius of the hoop were smaller, how would this affect the angular acceleration of the hoop? i. The angular acceleration would decrease. ii. The angular acceleration would increase. iii. There would be no change to the angular acceleration.
Answer:
a) [tex] \alpha = 1.28 rad/s^{2} [/tex]
b) Option ii. The angular acceleration would increase
Explanation:
a) The angular acceleration is given by:
[tex] \omega_{f} = \omega_{0} + \alpha t [/tex]
Where:
[tex] \omega_{f} [/tex]: is the final angular speed = v/r
v: is the tangential speed = 6.35 m/s
r: is the radius = 45.0 cm = 0.45 m
[tex]\omega_{0}[/tex]: is the initial angular speed = 0 (the hoop starts from rest)
t: is the time = 11.0 s
α: is the angular acceleration
Hence, the angular acceleration is:
[tex] \alpha = \frac{\omega}{t} = \frac{v}{r*t} = \frac{6.35 m/s}{0.45 m*11.0 s} = 1.28 rad/s^{2} [/tex]
b) If the radius were smaller, the angular acceleration would increase since we can see in the equation that the radius is in the denominator ([tex] \alpha = \frac{v}{r*t} [/tex]).
Therefore, the correct option is ii. The angular acceleration would increase.
I hope it helps you!
A car is moving with a velocity of45m/sis brought to rest in 5s.the distance travelled by car before it comes to rest is
Answer:
The car travels the distance of 225m before it comes to rest.
Explanation:
Given,
v = 45m/s
t = 5s
Therefore,
d = v × t
= 45 × 5
= 225m
Two objects are at rest on a frictionless surface. Object 1 has a greater mass than object 2.
(a) When a constant force is applied to object 1, it accelerates through a distance d. The force is removed from object 1 and is applied to object 2. At the moment when object 2 has accelerated through the same distance d, which statements are true? (Select all that apply.)
K1 < K2 p1 = p2 p1 < p2 p1 > p2 K1 > K2 K1 = K2
(b) When a force is applied to object 1, it accelerates for a time interval ?t. The force is removed from object 1 and is applied to object 2. Which statements are true after object 2 has accelerated for the same time interval ?t? (Select all that apply.)
K1 > K2 K1 = K2 p1 = p2 p1 > p2 K1 < K2 p1 < p2
Answer:
Look at explanation
Explanation:
a) Kinetic energy= ΔW. W=Fd, and since in both scenarios the same force and same distance is travelled. K1=K2. I am assuming that the objects are at non zero height so by P=mgh, P1>P2
b. Again I am assuming that the objects are at non zero height so by P=mgh, P1>P2. A heavier mass, a constant force means a smaller acceleration. So a1<a2. We can then use x-x0=v0t+1/2at² and since v0=0, x-x0(d)=1/2at². Solve for t²=2d/a. Since t is the same for both but a1<a2, d1<d2. And since Kinetic Energy=ΔW, W=Fd and F is constant while d1<d2, K1<K2.
According to the question,
Potential energy be "P".Kinetic energy be "K".(a)
Word done towards both the block will be similar.
So,
→ [tex]P1 = P2[/tex]
→ [tex]K1= K2[/tex]
(b)
We know,
→ [tex]a = \frac{F}{M}[/tex]
or,
→ [tex]V = a\times t[/tex]
Now,
→ [tex]K = \frac{1}{2} MV^2[/tex]
[tex]= 0.5\times M\times V^2[/tex]
[tex]=0.5\times M\times (\frac{F^2}{M^2} )\times t^2[/tex]
[tex]= 0.5\times F^2\times \frac{t^2}{M}[/tex]
The force and t will be same. So K of the smaller mass will be greater than the larger mass.
hence,
→ [tex]K1<K2[/tex]
Thus the above responses are correct.
Learn more about friction here:
https://brainly.com/question/13340887