A poll is given, showing 75% are in favor of a new building
project. If 8 people are chosen at random, what is the probability
that exactly 2 of them favor the new building project? Round to the
4th d

Answers

Answer 1
The answer is: 0.33% or 0.0033
Answer 2

The probability of exactly 1 out of 7 randomly chosen people favoring the new building project is approximately 0.1641.

To calculate the probability that exactly 1 out of 7 randomly chosen people favor the new building project, we can use the binomial probability formula:

[tex]\[P(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n - k}\][/tex]

where:

P(X = k) is the probability of getting exactly k successes

n is the total number of trials (sample size)

k is the number of successes

p is the probability of success in a single trial

In this case:

n = 7 (number of people chosen)

k = 1 (number of people favoring the new building project)

p = 0.75 (probability of favoring the new building project)

Using the formula, we can calculate the probability:

[tex]\[P(X = 1) = \binom{7}{1} \times 0.75^1 \times (1 - 0.75)^{7 - 1}\][/tex]

To calculate (7C1), we can use the combination formula:

[tex]\[(7C1) = \frac{7!}{1!(7-1)!} = 7\][/tex]

Calculating the values:

[tex]\begin{equation}(7C1) = \frac{7!}{1!6!} = \frac{7 \times 1}{1 \times 1} = 7[/tex]

P(X = 1) = 7 * 0.75¹ * 0.25⁶

P(X = 1) ≈ 0.1641

Therefore, the probability that exactly 1 out of 7 randomly chosen people favor the new building project is approximately 0.1641, rounded to 4 decimal places.

To know more about the probability refer here :

https://brainly.com/question/32004014#

#SPJ11

Complete question :

A poll is given, showing 75% are in favor of a new building project. If 7 people are chosen at random, what is the probability that exactly 1 of them favor the new building project? Round your answer to 4 places after the decimal point, if necessary. 1 Preview ints possible: 2


Related Questions

QUESTION 14 Identify whether the sample is a simple random sample. A principal obtains a sample of his students by randomly choosing 10 students from each grade. Yes No

Answers

No, the sample obtained by randomly choosing 10 students from each grade is not a simple random sample.

A simple random sample is a sampling method where every member of the population has an equal and independent chance of being selected. In this case, the principal is selecting 10 students from each grade, which introduces a stratified sampling approach.

The sampling is not completely random since it is done separately within each grade rather than randomly selecting students from the entire population without regard to their grade.

By choosing 10 students from each grade, the principal is creating distinct groups within the population based on the grade level. This approach may introduce potential biases as the sample might not be representative of the entire student population.

It is possible that certain grades have unique characteristics that differ from the overall student body. For example, if a certain grade has a higher proportion of academically gifted students, the sample may overrepresent this group compared to other grades.

In summary, the sample obthttps://brainly.com/question/31890671?referrer=searchResultsined by randomly choosing 10 students from each grade is not a simple random sample. The stratified sampling approach based on grade levels introduces potential biases and limits the randomness of the selection process.

To know more about samples, refer here :

https://brainly.com/question/31890671#

#SPJ11

Based on a sample of 25 people, the sample mean GPA was 2.46 with a standard deviation of 0.03

The test statistic is: (to 2 decimals)

The critical value is: (to 2 decimals)

Based on this we:

Reject the null hypothesis
Fail to reject the null hypothesis

Answers

We will reject the null hypothesis because the p-value is not provided.

Is the p-value less than the significance level?

To determine the p-value, we need to perform a hypothesis test.

Null hypothesis (H₀) is that the population mean GPA is equal to a specific value (let's say 2.5). Alternative hypothesis (H₁) would be that the population mean GPA is not equal to 2.5. We will conduct a two-tailed t-test.

Given:

Sample mean (x) = 2.46

Standard deviation (σ) = 0.03

Sample size (n) = 25

The t-score is calculated using the formula: t = (x - μ) / (σ / √n)

t = (2.46 - 2.5) / (0.03 / √25)

t = -0.04 / 0.006

t = -6.67

Degrees of freedom (df) = n - 1 = 25 - 1 = 24

As p-value is not provided, we cannot determine if it is less than the significance level. However, based on the given information, we can state that the main answer is we will reject the null hypothesis.

Correct question:

Based on a sample of 25 people, the sample mean GPA was 2.46 with a standard deviation of 0.03. The p-value is:_______

Based on this we:

Reject the null hypothesis

Fail to reject the null hypothesis.

Read more about normal distribution

brainly.com/question/4079902

#SPJ4

which statements explain that the table does not represent a prbability distribution
A. The probability 4/3 is greater than 1.
B. The probabilities have different denominators.
C. The results are all less than 0.
D. The sum of the probabilities is 8/3 .

Answers

The sum of the probabilities is not equal to one, the table does not represent a probability distribution, so option D is the correct answer.

The statement that explains that the table does not represent a probability distribution is D. The sum of the probabilities is 8/3.

This statement explains that the probabilities do not add up to one, which is a requirement for a probability distribution. Therefore, it is not a probability distribution. If a table is given with probabilities and it is required to identify whether it represents a probability distribution or not, we must check the probabilities whether they meet the following conditions or not.

The sum of all probabilities should be equal to 1.All probabilities should be greater than or equal to zero.If any probability is greater than 1, then it is not a probability, so the probability table does not represent a probability distribution.The given probabilities have different denominators, this condition alone is not enough to reject it as probability distribution and is also a common error while creating the probability table.

An event's probability is a numerical value that reflects how likely it is to occur. Probabilities are always between zero and one, with zero indicating that the event is impossible and one indicating that the event is certain.

The sum of the probabilities of all possible outcomes for a particular experiment is always equal to one.The probabilities in the table represent the likelihood of the event happening and must add up to 1.

For example, the probability of rolling a die and getting a 1 is 1/6 because there are six possible outcomes and only one of them is a 1.The probability distribution can be used to determine the likelihood of certain outcomes. The sum of all probabilities must be equal to one.

The probability distribution function is also used in statistics to calculate the mean, variance, and standard deviation of a random variable. A probability distribution that meets the required conditions is called a discrete probability distribution. It is a distribution where the probability of each outcome is defined for discrete values.

To know more about probabilities visit:

https://brainly.com/question/32004014

#SPJ11

suppose that ϕ:r→s is a ring homomorphism and that the image of ϕ is not {0}. if r has a unity and s is an integral domain, show that ϕ carries the unity of r to the unity of s.

Answers

If ϕ: r → s is a ring homomorphism with the image of ϕ not being {0}, and if r has a unity and s is an integral domain, then ϕ carries the unity of r to the unity of s.

Let's denote the unity of r as 1ᵣ and the unity of s as 1ₛ.

Proof that ϕ(1ᵣ) = 1ₛ:

Since ϕ is a ring homomorphism, it preserves the ring operations, including multiplication and the identity element.

First, we note that ϕ(1ᵣ) ∈ s because ϕ is a mapping from r to s. We need to show that ϕ(1ᵣ) is indeed the unity of s, which is denoted as 1ₛ.

To prove this, let's consider the product ϕ(1ᵣ) · ϕ(a), where a ∈ r. Since ϕ is a ring homomorphism, we have:

ϕ(1ᵣ) · ϕ(a) = ϕ(1ᵣ · a) (by the preservation of multiplication)

= ϕ(a) (since 1ᵣ is the unity of r)

Now, let's consider the product ϕ(a) · ϕ(1ᵣ):

ϕ(a) · ϕ(1ᵣ) = ϕ(a · 1ᵣ) (by the preservation of multiplication)

= ϕ(a) (since 1ᵣ is the unity of r)

From the above, we see that ϕ(1ᵣ) · ϕ(a) = ϕ(a) = ϕ(a) · ϕ(1ᵣ) for all a ∈ r. This implies that ϕ(1ᵣ) is a left identity element in s, and it is also a right identity element.

Since s is an integral domain, it has only one unity element, which we denoted as 1ₛ. Therefore, ϕ(1ᵣ) must be equal to 1ₛ.

Hence, we have shown that ϕ carries the unity of r (1ᵣ) to the unity of s (1ₛ).

For more questions like Homomorphism click the link below:

https://brainly.com/question/6111672

#SPJ11

Directions Read the instructions for this self-checked activity. Type in your response to each question, and check your answers. At the end of the activity, write a brief evaluation of your work. Activity In this activity, you will apply the laws of sines and cosines to solve for the missing angles and side lengths in non-right triangles. Question 1 in triangle ABC, ZA = 35°,mZB = 60°, and the length of side AB is 6 cm. Find the length of side BC using the law of sines.

Answers

Given,In triangle ABC, ZA = 35°,mZB = 60°, and the length of side AB is 6 cm. Find the length of side BC using the law of sines.According to the law of sines, the ratio of the length of the sides of a triangle to the sine of their opposite angles is constant, that is a/sin A = b/sin B = c/sin C

Now, let’s apply the law of sines to solve this triangle ABC using the given data.Since we have already known angle A and its opposite side AB, we can find the length of BC as follows;

In ABC,We have, AB/sin A = BC/sin BSo, BC = AB × sin B / sin AHere, AB = 6 cm sin B = sin (180° - 60° - 35°)

{Sum of angles of triangle ABC = 180°}Sin B = sin 85°sin A = sin 35°

Put the values in above equation,BC = 6 × sin 85° / sin 35° = 11.5 cm (approx)

Therefore, the length of side BC is 11.5 cm.

Evaluation:This self-checking activity required to apply the laws of sines and cosines to solve for the missing angles and side lengths in non-right triangles. I found this activity interesting and it helped me to practice my understanding of these laws. However, I need to practice more to fully master these concepts.

To know more about triangle visit:

https://brainly.com/question/2773823

#SPJ11

1) calculate the volume of the air inside the garage in cm3. the area of the garage floor covers a rectangle of 8 m by 8 m and its height is 3 m.

Answers

To calculate the volume of the air inside the garage, we need to multiply the area of the garage floor by its height.

First, let's convert the dimensions from meters to centimeters:

Length of the garage floor = 8 m = 800 cm

Width of the garage floor = 8 m = 800 cm

Height of the garage = 3 m = 300 cm

Now, we can calculate the volume:

Volume = Length × Width × Height

      = 800 cm × 800 cm × 300 cm

      = 192,000,000 cm³

Therefore, the volume of the air inside the garage is 192,000,000 cm³.

To know more about volume visit-

brainly.com/question/9268777

#SPJ11

Find all!! solutions of the given equation. (Enter your answers as a comma-separated list. Let k be any integer. Round terms to two decimal places where appropriate.)

a) sin(theta) + 1 = 0
b) cos(theta) = 0.44
c) 9 sin(theta) − 1 = 0

Answers

a) There is no solution for the given equation and b) The solution of the given equation is 2πk - 1.13, 1.13 + 2πk and c) There is no solution for the given equation.

a) Given equation is sin(theta) + 1 = 0.

It is given that sin(theta) + 1 = 0

sin(theta) = -1

Here, we know that the value of sin(theta) is between -1 and 1.

So, there is no solution for the given equation.

b) Given equation is cos(theta) = 0.44.

Here, we know that the value of cos(theta) is between -1 and 1. Also, we can use the inverse cosine function to solve for theta.

cos(theta) = 0.44

cos⁻¹(cos(theta)) = cos⁻¹(0.44)

θ = 1.13 + 2πk, 2πk - 1.13 for all k ∈ Z. (using calculator)

Thus, the solution of the given equation is 2πk - 1.13, 1.13 + 2πk.

c) Given equation is 9sin(theta) - 1 = 0.

9sin(theta) = 1

Here, we know that the value of sin(theta) is between -1 and 1.

So, there is no solution for the given equation.

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

the number of rabbits in elkgrove doubles every month. there are 20 rabbits present initially.

Answers

There will be 160 rabbits after three months And so on. So, we have used the exponential growth formula to find the number of rabbits in Elkgrove. After one month, there will be 40 rabbits.

Given that the number of rabbits in Elkgrove doubles every month and there are 20 rabbits present initially. In order to determine the number of rabbits in Elkgrove, we need to use an exponential growth formula which is given byA = P(1 + r)ⁿ where A is the final amount P is the initial amount r is the growth rate n is the number of time periods .

Let the number of months be n. If the number of rabbits doubles every month, then the growth rate (r) = 2. Therefore, the formula becomes A = 20(1 + 2)ⁿ.

Simplifying this expression, we get A = 20(2)ⁿA = 20 x 2ⁿTo find the number of rabbits after one month, substitute n = 1.A = 20 x 2¹A = 20 x 2A = 40 .

Therefore, there will be 40 rabbits after one month.To find the number of rabbits after two months, substitute n = 2.A = 20 x 2²A = 20 x 4A = 80Therefore, there will be 80 rabbits after two months.

To find the number of rabbits after three months, substitute n = 3.A = 20 x 2³A = 20 x 8A = 160. Therefore, there will be 160 rabbits after three months And so on. So, we have used the exponential growth formula to find the number of rabbits in Elkgrove. After one month, there will be 40 rabbits.

After two months, there will be 80 rabbits. After three months, there will be 160 rabbits. The number of rabbits will continue to double every month and we can keep calculating the number of rabbits using this formula.

To know more about Exponential  visit :

https://brainly.com/question/29160729

#SPJ11

Question 14 2 Construct a scatter plot and decide if there appears to be a positive correlation, negative correlation, or no correlation. X Y X Y 30 43 750 18 180 37 790 18 520 29 950 11 630 17 960 15

Answers

The data given to construct a scatter plot is shown below: XY 30 43 750 18 180 37 790 18 520 29 950 11 630 17 960 15 The scatter plot for the given data is shown below: In the given scatter plot, it is observed that the data points have an increasing trend from left to right.

Hence, there is a positive correlation between the variables X and Y. When the values of one variable increase with the increase in the values of the other variable, it is a positive correlation. Hence, in the given data, there is a positive correlation between the variables X and Y. The scatter plot can be used to study the nature of the correlation between two variables. The nature of correlation between variables can be either positive, negative, or no correlation.

If the values of one variable increase with the increase in the values of the other variable, then it is a positive correlation. If the values of one variable decrease with the increase in the values of the other variable, then it is a negative correlation. If there is no change in the values of one variable with the increase in the values of the other variable, then there is no correlation.

To know more about data visit:

https://brainly.com/question/10980404

#SPJ11

In a large clinical trial, 398,002 children were randomly assigned to two groups. The treatment group consisted of 199,053 children given a vaccine for a certain disease, and 29 of those children developed the disease. The other 198,949 children were given a placebo, and 99 of those children developed the disease. Consider the vaccine treatment group to be the first sample. Identify the values of n₁. P₁. 91. 2. P2. 92. P, and 9. 7₁ = 0 P1=0 (Type an integer or a decimal rounded to eight decimal places as needed.) 91=0 (Type an integer or a decimal rounded to eight decimal places as needed.) n₂= P₂ = P2 (Type an integer or a decimal rounded to eight decimal places as needed.) 92 = (Type an integer or a decimal rounded to eight decimal places as needed.) p= (Type an integer or a decimal rounded to eight decimal places as needed.) q= (Type an integer or a decimal rounded to eight decimal places as needed.)

Answers

Answer : The values of n₁, P₁, 91, n₂, P₂, p, and q are as follows:n₁=199,053 P₁=0.00014546291=0 n₂=198,949 P₂=0.00049757692=0 p = 0.000321098 q= 0.999678902

Explanation :

Given,In a large clinical trial, 398,002 children were randomly assigned to two groups.

The treatment group consisted of 199,053 children given a vaccine for a certain disease, and 29 of those children developed the disease.

The other 198,949 children were given a placebo, and 99 of those children developed the disease.

Consider the vaccine treatment group to be the first sample.

n₁=199,053P₁= 29/199,053=0.000145462( rounded to 8 decimal places)91=0

n₂=198,949P₂= 99/198,949=0.000497576( rounded to 8 decimal places)92=0

p = (29+99)/(199,053+198,949)≈ 0.000321098 ( rounded to 8 decimal places)q= 1-p≈ 0.999678902 ( rounded to 8 decimal places)

Hence, the values of n₁, P₁, 91, n₂, P₂, p, and q are as follows:n₁=199,053 P₁=0.00014546291=0 n₂=198,949 P₂=0.00049757692=0 p = 0.000321098 q= 0.999678902

Learn more about probability here https://brainly.com/question/21586810

#SPJ11

6. For which value(s) of k is the function f(x) = = a probability density function? (A) k = -2. (B) k = 1. (C) k = 2. (D) k = 1 and (E) k 113 2 = 13 kxe 0, x > 0 x < 0

Answers

A.  This value of k does not result in a probability density function.

B.  This value of k results in a probability density function.

C.  This value of k does not result in a probability density function.

D. The correct answer is option (B) k = 1.

For a function to be a probability density function, it must satisfy the following conditions:

f(x) must be greater than or equal to 0 for all x.

The area under the curve of f(x) from negative infinity to positive infinity must be equal to 1.

Using these conditions, we can check each value of k given in the options:

(A) k = -2:

f(x) = 13kxe^(kx)

f(x) = 13(-2)x e^(-2x)

For x > 0, this is always positive and satisfies condition 1. For x < 0, this is negative and does not satisfy condition 1. Therefore, this value of k does not result in a probability density function.

(B) k = 1:

f(x) = 13kxe^(kx)

f(x) = 13(1)x e^(x)

For x > 0, this is always positive and satisfies condition 1. For x < 0, this is 0 and also satisfies condition 1. Moreover, the integral of this function from negative infinity to positive infinity equals 1. Therefore, this value of k results in a probability density function.

(C) k = 2:

f(x) = 13kxe^(kx)

f(x) = 13(2)x e^(2x)

For x > 0, this is always positive and satisfies condition 1. For x < 0, this is negative and does not satisfy condition 1. Therefore, this value of k does not result in a probability density function.

(D) k = 1 and (E) k = 2 do not change our previous answer, i.e., k = 1 is the only value of k that results in a probability density function.

Therefore, the correct answer is option (B) k = 1.

Learn more about probability from

https://brainly.com/question/251701

#SPJ11

For any positive integer n, let An​ denote the surface area of the unit ball in Rn, and let Vn​ denote the volume of the unit ball in Rn. Let i be the positive integer such that Ai​>Ak​ for all k k not equal to i. Similarly let j be the positive integer such that Vj​>Vk​ for all k not equal to j. Find j−i.

Answers

To find the value of j - i, we need to determine the relationship between the surface areas (An) and volumes (Vn) of the unit ball in Rn for different positive integers n.

For the unit ball in Rn, the formula for surface area (An) and volume (Vn) are given by:

An = (2 * π^(n/2)) / Γ(n/2)

Vn = (π^(n/2)) / Γ((n/2) + 1)

where Γ denotes the gamma function.

To find the value of j - i, we need to identify the positive integers i and j such that Ai > Ak for all k not equal to i, and Vj > Vk for all k not equal to j.

First, let's analyze the relationship between An and Vn. By comparing the formulas, we can see that:

An / Vn = [(2 * π^(n/2)) / Γ(n/2)] / [(π^(n/2)) / Γ((n/2) + 1)]

      = 2 / [n * (n-1)]

From this equation, we can deduce that An / Vn > 1 if and only if 2 > n * (n-1).

To find the positive integer i, we need to identify the highest positive integer n for which 2 > n * (n-1) holds true. We can observe that this condition is satisfied for n = 2. Therefore, i = 2.

Now, let's find the positive integer j. We need to identify the lowest positive integer n for which 2 > n * (n-1) does not hold true. We can observe that this condition is no longer satisfied for n = 3. Therefore, j = 3.

Finally, we can calculate j - i as follows:

j - i = 3 - 2 = 1

Therefore, j - i equals 1.

To know more about integer visit-

brainly.com/question/32066988

#SPJ11

Multiply using the rule for the product of the sum and difference of two terms. (6x+5)(6x-5)

Answers

The product of (6x+5)(6x-5) is 36x^2 - 25.

To find the product of (6x+5)(6x-5), we can use the rule for the product of the sum and difference of two terms, which states that the product of (a+b)(a-b) is equal to a^2 - b^2.

In this case, the terms are (6x+5) and (6x-5), where a = 6x and b = 5. Applying the rule, we have:

(6x+5)(6x-5) = (6x)^2 - 5^2

Simplifying further:

(6x)^2 - 5^2 = 36x^2 - 25

Therefore, the product of (6x+5)(6x-5) is 36x^2 - 25.

Learn more about product:
brainly.com/question/28813267

#SPJ11

how to determine if a polynmial equatino is a perfect square

Answers

To determine if a polynomial equation is a perfect square, you can follow these steps:

1. Write the polynomial equation in the standard form, where the terms are arranged in descending order of degree.

2. Check if the polynomial has two equal square roots. This means that each term in the polynomial should have an even exponent and the coefficients should be such that they result in perfect squares when simplified.

3. Take the square root of each term and simplify. If the resulting simplified expression is another polynomial, then the original polynomial is a perfect square. If not, then it is not a perfect square.

For example, consider the polynomial equation x^2 + 4x + 4.

1. The equation is already in standard form.

2. All the exponents in this polynomial are even, and the coefficients result in perfect squares. The square root of x^2 is x, the square root of 4x is 2x, and the square root of 4 is 2.

3. Simplifying the square roots gives us (x + 2)^2, which is another polynomial. Therefore, the original polynomial x^2 + 4x + 4 is a perfect square.

If the resulting expression is not a polynomial, then the original polynomial is not a perfect square.

By following these steps, you can determine if a polynomial equation is a perfect square.

To know more about polynomial visit-

brainly.com/question/32149255

#SPJ11

A highly rated community college has over 60,000 students and seven different campuses. One of its highest density classes offered is Introduction to Statistics. The statistics course is required for nearly every major offered at the college and therefore is considered a strategic course for the college. The college's leadership is very interested in the relationship between the class size of its statistics courses and students' final grades for the course. Specifically, the college is concerned with the low pass rate of some of its class sections and is determined to remedy the situation. The college's institutional research department recently collected data for analysis in order to support leadership's upcoming discussion regarding the low pass rate of some of its statistics class sections. Final grades from a random sample of 300 class sections over the last five years were collected. The research division also conducted analysis, using archived data, to determine the class size of these 300 class sections. The Class Number, Campus, Class Size, Average Final Grade, Number of "F"s, Average G.P.A. and Successful/Unsuccessful data were collected for these 300 class sections. StatCrunch Data Set Assume that the distribution of Average G.P.A. for all of the college's Introduction to Statistics class sections over the past five years has the same shape, mean, and standard deviation as the Average G.P.A. data. If it is reasonable based on your visual analysis of a histogram of the Average G.P.A. data, use the sample mean (2.66) and sample standard deviation (0.23) from the Average G.P.A. data together with the Normal distribution to answer all of the following questions. Calculate the probability of randomly selecting a class section from the population with an average G.P.A. less than 2.50. nothing% (Round to two decimal places as needed.) Calculate the probability of randomly selecting a class section from the population with an average G.P.A. greater than 3.00. nothing% (Round to two decimal places as needed.) Calculate the probability of randomly selecting a class section from the population with an average G.P.A. between 2.35 and 2.80. nothing% (Round to two decimal places as needed.) Calculate the average G.P.A. that represents the 90th percentile of all Introduction to Statistics class sections over the past five years. nothing (Round to two decimal places as needed.)

Answers

The probability of randomly selecting a class section from the population with an average G.P.A. less than 2.50 is approximately 24.91%. The probability of randomly selecting a class section from the population with an average G.P.A. greater than 3.00 is approximately 6.84%.

To calculate the probabilities and the average GPA for the given questions, we can use the sample mean (2.66) and sample standard deviation (0.23) from the Average G.P.A. data, assuming they represent the population.

1. The probability of randomly selecting a class section from the population with an average G.P.A. less than 2.50 can be calculated using the z-score formula and the standard normal distribution.

The z-score is (2.50 - 2.66) / 0.23 = -0.6957. Using a standard normal distribution table or software, we find the probability to be approximately 24.91%.

2. The probability of randomly selecting a class section from the population with an average G.P.A. greater than 3.00 can be calculated using the z-score formula and the standard normal distribution.

The z-score is (3.00 - 2.66) / 0.23 = 1.4783. Using a standard normal distribution table or software, we find the probability to be approximately 6.84%.

3. The probability of randomly selecting a class section from the population with an average G.P.A. between 2.35 and 2.80 can be calculated by finding the area under the standard normal curve between the corresponding z-scores.

The z-scores for 2.35 and 2.80 are (-0.9130) and (0.6522) respectively. Using a standard normal distribution table or software, we find the probability to be approximately 46.20%.

4. To compute the average G.P.A. that represents the 90th percentile of all Introduction to Statistics class sections over the past five years, we need to find the corresponding z-score. Using a standard normal distribution table or software, we find the z-score to be approximately 1.2816.

We can then calculate the average G.P.A. using the formula: average G.P.A. = (z-score * standard deviation) + mean.

Substituting the values, we get (1.2816 * 0.23) + 2.66 = 2.9668. Therefore, the average G.P.A. that represents the 90th percentile is approximately 2.97.

Note: It is important to keep in mind that these calculations are based on the assumption that the sample accurately represents the population.

To know more about probability refer here:

https://brainly.com/question/32560116#

#SPJ11

Suppose a multiple regression model is fitted into a variable called model. Which Python method below returns fitted values for a data set based on a multiple regression model? Select one.
model.values
fittedvalues.model
model.fittedvalues
values.model

Answers

The Python method "model.fittedvalues" returns fitted values for a data set based on a multiple regression model.

When fitting a multiple regression model in Python using a library like statsmodels or scikit-learn, the resulting model object provides various methods and attributes to access different information about the model. The "model.fittedvalues" method specifically returns the fitted values for the data set based on the multiple regression model.

These fitted values represent the predicted values of the dependent variable based on the independent variables in the model.

By calling "model.fittedvalues", you can obtain an array or series containing the predicted values corresponding to the data points used to fit the model.

This allows you to evaluate the model's performance, compare predicted values with actual values, and perform further analysis or calculations based on the fitted values.

To learn more about regression model visit:

brainly.com/question/31969332

#SPJ11

In January 2019, the Dow Jones Industrial Average (DJIA) was
23,138.82. By September 2019, the DJIA was 26,970.71. Construct an
index value for September 2019, using January 2019 as the base (=
100) a

Answers

The index value for September 2019  = (26,970.71 / 23,138.82) x 100Index value = 116.59

The Dow Jones Industrial Average (DJIA) was 23,138.82 in January 2019 and rose to 26,970.71 by September 2019. To construct an index value for September 2019 with January 2019 as the base of 100, you can use the following formula:Index value = (Current value / Base value) x 100Therefore, the index value for September 2019 can be calculated as follows:Index value = (26,970.71 / 23,138.82) x 100Index value = 116.59

AThe Dow Jones Industrial Average (DJIA) is a stock market index that represents the performance of 30 large publicly traded companies in the United States. It is one of the most widely used indicators of the overall health of the US stock market.

In January 2019, the DJIA was 23,138.82, and by September 2019, it had risen to 26,970.71. To construct an index value for September 2019 using January 2019 as the base of 100, you can use the formula given above.The index value is a measure of the relative performance of the DJIA from January 2019 to September 2019.

By setting the index value at 100 for January 2019, we can compare the DJIA's performance over the eight-month period. The index value of 116.59 for September 2019 indicates that the DJIA has grown by 16.59% since January 2019.

This is a strong indication of the strength of the US stock market, as the DJIA is considered to be a reliable indicator of the overall health of the market.the Dow Jones Industrial Average (DJIA) was 23,138.82 in January 2019 and rose to 26,970.71 by September 2019.

The index value for September 2019 can be calculated as 116.59, using January 2019 as the base of 100. This indicates that the DJIA has grown by 16.59% since January 2019, reflecting the strength of the US stock market.

To know more about  index value visit:

brainly.com/question/8154168

#SPJ11

Find the line integral of f(x,y)=ye x 2
along the curve r(t)=4ti−3tj,−1≤t≤1. The integral of f is

Answers

The value of the line integral of `f(x, y) = ye^(x^2)`along the curve `r(t) = 4ti - 3tj, -1 ≤ t ≤ 1` is `-0.0831255sqrt(145)` (approx).

The given integral is of the form:

Line integral is defined as the integration of a function along a curve. The given integral is a line integral that is the integral of the function along a given curve.  Therefore, the line integral of

`f(x, y) = ye^(x^2)`

along the curve

`r(t) = 4ti - 3tj, -1 ≤ t ≤ 1` is:

We know that,

Let us evaluate

`f(r(t))` first.`f(r(t)) = y(t)e^(x(t)^2)`

where,

`x(t) = 4t`, `y(t) = -3t`

So, `f(r(t)) = (-3t)e^((4t)^2)`

To find the line integral of

`f(x, y) = ye^(x^2)`

along the curve

`r(t) = 4ti - 3tj, -1 ≤ t ≤ 1`.

we integrate

`f(r(t))` with respect to `t`. Hence,

`∫f(r(t))dt` (for t = -1 to t = 1)`= ∫_(-1)^(1) f(r(t))|r'(t)|dt`

since `ds = |r'(t)|dt`)`= ∫_(-1)^(1) [(-3t)e^((4t)^2)]|r'(t)|dt`

substituting `f(r(t))` with the corresponding value

`= ∫_(-1)^(1) [(-3t)e^((4t)^2)]sqrt(16+9)dt`

(substituting `|r'(t)|` with `sqrt(16+9)`)`=

∫_(-1)^(1) [-3tsqrt(145)e^(16t^2)] dt`

Thus, the integral of f is

`∫_(-1)^(1) [-3tsqrt(145)e^(16t^2)] dt = (-sqrt(145)/4)[e^(16t^2)]_(-1)^(1)`

Let's evaluate

`e^(16)` and `e^(-16)` now

.`e^(16) = 8.8861 xx 10^6`

`e^(-16) = 1.1254 xx 10^(-7)`

Therefore,

`(-sqrt(145)/4)[e^(16t^2)]_(-1)^(1)`= `(-sqrt(145)/4)

[e^(16) - e^(-16)]`

= `(-sqrt(145)/4)[8.8861 xx 10^6 - 1.1254 xx 10^(-7)]`

= `(-sqrt(145)/4)(8.8860985 xx 10^6 - 1.1254 xx 10^(-7))

= -0.0831255 sqrt(145)`

Hence, the value of the line integral of `f(x, y) = ye^(x^2)`along the curve `r(t) = 4ti - 3tj, -1 ≤ t ≤ 1` is `-0.0831255sqrt(145)` (approx).

To know more about line integral visit:

https://brainly.com/question/30763905

#SPJ11

After 1 year,90 \%of the initial amount of a radioactive substance remains. What is the half-life of the substance?

half-life is
years .

Answers

The half-life of the substance is 1.44 years.

Half-life is defined as the time it takes for half of the original amount of a radioactive substance to decay.

It is denoted by T1/2. If after 1 year, 90% of the initial amount of a radioactive substance remains, then it means that 10% of the substance has decayed.

This 10% is equal to half of the original amount of the substance.

Therefore, we can find the half-life using the following formula:0.5 = (1/2)^(t/T1/2)

where t = 1 year (time elapsed) and 0.5 is half of the original amount of the substance.

Substituting the values, we have:0.5 = (1/2)^(1/T1/2)

Taking the logarithm of both sides, we get:

log 0.5 = log [(1/2)^(1/T1/2)]

Using the power rule of logarithms, we can simplify the right-hand side of the equation as follows:

log 0.5 = (1/T1/2) log (1/2)

Recall that log (1/2) is equal to -0.3010. Substituting this value and solving for T1/2:log 0.5 = (1/T1/2) (-0.3010)T1/2 = 1.44 years

Therefore, the half-life of the substance is 1.44 years.

Know more about half-life here:

https://brainly.com/question/1160651

#SPJ11

Use the Laplace transform to solve the given initial-value problem. y' + 3y = e4t, y(0) = 2

Answers

To solve the given initial-value problem by using Laplace transform,y' + 3y = e⁴t, y(0) = 2We will have to follow these steps:

1. Apply Laplace transform to both sides of the given equation y' + 3y = e⁴t.

Applying Laplace transform, we get,

L{y' + 3y} = L{e⁴t} or L{y'} + 3L{y} = L{e⁴t} or sY(s) - y(0) + 3Y(s) = 1 / (s - 4)

2. Substitute the initial value y(0) = 2 to the above equation.

sY(s) - 2 + 3Y(s) = 1 / (s - 4) 3.

Now solve for Y(s), by bringing the like terms together.

sY(s) + 3Y(s) = 1 / (s - 4) + 2sY(s) + 3Y(s) = (1 + 2s) / (s - 4) Y(s) (s + 3) = (1 + 2s) / (s - 4) Y(s) = (1 + 2s) / [(s - 4) (s + 3)]

4. Apply inverse Laplace transform to find y(t)

.Y(s) = (1 + 2s) / [(s - 4) (s + 3)] = A / (s - 4) + B / (s + 3) + C... [1]

where A, B, C are constants obtained by partial fractions.

So, the solution of the given initial-value problem is

y(t) = L^-1 {Y(s)} = L^-1 {A / (s - 4) + B / (s + 3) + C}... [2]

On solving the equation [1] we get, A = -0.1, B = 0.3, C = 0.8

Substitute the values of A, B, and C in equation [2] we get,

y(t) = L^-1 {-0.1 / (s - 4) + 0.3 / (s + 3) + 0.8}

y(t) = -0.1 L^-1 {1 / (s - 4)} + 0.3 L^-1 {1 / (s + 3)} + 0.8 L^-1 {1}

Using the standard Laplace transform formulas

L^-1 {1 / (s - a)} = e^at and L^-1 {1 / (s + a)} = e^-at, we get,

y(t) = -0.1 e^4t + 0.3 e^-3t + 0.8

Therefore, the solution of the given initial-value problem is

y(t) = -0.1 e^4t + 0.3 e^-3t + 0.8, where y(0) = 2.

To know more about Laplace transform visit:

https://brainly.com/question/30759963

#SPJ11

This is the thing that I need help on pls helpppp

Answers

Answer:

144 in^2

Step-by-step explanation:

Using the A = s^2 and the text says that s= 12in

 the answer is 12 in * 12 in = 144 in^2

Do u know this? Answer if u do

Answers

Answer:

Your answer is correct.

Step-by-step explanation:

When we have a product on one side of the equation and 0 on the other, we'd be looking to find when either of the parts of the product zeroes out. This is due to the fact that multiplying anything by 0 returns 0, therefore we're looking to find when any of the parts are 0, meaning that side of the equation would be zero.

In our product, the parts of the product are (3n + 7) and (n - 4). To find n, we'll find when both of these items are equal to zero:

[tex]3n + 7 = 0\\3n = -7\\n = -\frac73[/tex]

[tex]n - 4 = 0\\n = 4[/tex]

Therefore, n is either -7/3 or 4.

the volume of a cylindrical tin can with a top and a bottom is to be 16pi cubic inches

Answers

The height, in inches, of the can of the volume is 16π is 8 inches

What is the height of the cylindrical tin can?

Volume of a cylinder = πr²h

Where,

r = radius,

h = height

So,

πr²h = 16π

h = 16/r²

dh/dr = -16/(r)

Find the derivative of the volume and set it equal to zero

dV/dr = 2πrh + πr²(dh/dr)

dV/dr = 2πr16/(r²) + πr²(-16/(r))

0 = 32π/(r) - 16πr

Solve for r

32π/(r) = 16πr

2/(r) = r

2 = r²

r = √2

Substitute r into h

h = 16/(r²)

h = 16/√2²

h = 16/2

h = 8 inches

Complete question:

The volume of a cylindrical tin can with a top and bottom is to be 16π cubic inches. If a minimum amount if tin is to be used to construct the can, what must be the height, in inches, of the can?

Read more on volume of cylinder:

https://brainly.com/question/9554871

#SPJ4

Question 3 (25 points) We throw a fair coin ('heads' versus 'tails') three times, where the probability of heads in each throw is 50%. Define as random variable x the number of heads resulting from th

Answers

The probability fair coin of x = 0 is 1/8, the probability of x = 1 is 3/8, the probability of x = 2 is 3/8, and the probability of x = 3 is 1/8. P(X = 0) is 1/8, P(X = 1) is 3/8, P(X = 2) is 3/8, and P(X = 3) is 1/8.

Given that we toss a fair coin three times, each time with a 50% chance of hitting a head. The quantity of heads that outcome from the three tosses, otherwise called the irregular variable x, should be found. The outcome of a fair coin toss is either heads or tails. The following is a list of the outcomes that produce x heads: 0 heads:

Since there are three tosses, the absolute number of results is 2 2 2 = 8. Director of TTT1: HTT, THT, and TTH2 heads: THH3, HHT, and HTH heads: As a result, the following is the random variable's probability distribution: The likelihood of x = 0 is 1/8, the likelihood of x = 1 is 3/8, the likelihood of x = 2 is 3/8, and the likelihood of x = 3 is 1/8. P is 1/8 for X = 0, 3/8 for X = 1, 3/8 for X = 2, and 1/8 for X = 3.    

The probability of x = 0 is 1/8, the probability of x = 1 is 3/8, the probability of x = 2 is 3/8, and the probability of x = 3 is 1/8. P(X = 0) is 1/8, P(X = 1) is 3/8, P(X = 2) is 3/8, and P(X = 3) is 1/8.

To know more about probability distribution refer to

https://brainly.com/question/29062095

#SPJ11

Below are batting averages you collect from a high
school baseball team:
50, 75, 110, 125, 150, 175, 190 200, 210, 225, 250, 250,
258, 270, 290, 295, 300, 325, 333, 333, 350, 360, 375, 385, 400,
425,

Answers

The five-number summary for the given data set is{50, 182.5, 292.5, 367.5, 425}.

Given batting averages collected from a high school baseball team as follows:

50, 75, 110, 125, 150, 175, 190, 200, 210, 225, 250, 250, 258, 270, 290, 295, 300, 325, 333, 333, 350, 360, 375, 385, 400, 425.

The five-number summary is a set of descriptive statistics that provides information about a dataset. It includes the minimum and maximum values, the first quartile, the median, and the third quartile of a data set.

The five-number summary for the given data set can be calculated as follows:

Firstly, sort the data set in ascending order:

50, 75, 110, 125, 150, 175, 190, 200, 210, 225, 250, 250, 258, 270, 290, 295, 300, 325, 333, 333, 350, 360, 375, 385, 400, 425

Minimum value: 50

Maximum value: 425

Median:

It is the middle value of the data set. It can be calculated as follows:

Arrange the dataset in ascending order

Count the total number of terms in the dataset (n)

If the number of terms is odd, the median is the middle term

If the number of terms is even, the median is the average of the two middle terms

Here, the number of terms (n) is 26, which is an even number. Therefore, the median will be the average of the two middle terms.

The two middle terms are 290 and 295.

Median = (290 + 295)/2 = 292.5

First quartile:

It is the middle value between the smallest value and the median of the dataset. Here, the smallest value is 50 and the median is 292.5.

So, the first quartile will be the middle value of the dataset that ranges from 50 to 292.5. To find it, we can use the same method as for the median.

The dataset is:

50, 75, 110, 125, 150, 175, 190, 200, 210, 225, 250, 250, 258, 270, 290, 295

Q1 = (175 + 190)/2 = 182.5

Third quartile:

It is the middle value between the largest value and the median of the dataset. Here, the largest value is 425 and the median is 292.5.

So, the third quartile will be the middle value of the dataset that ranges from 292.5 to 425. To find it, we can use the same method as for the median.

The dataset is:

290, 295, 300, 325, 333, 333, 350, 360, 375, 385, 400, 425Q3 = (360 + 375)/2 = 367.5

The five-number summary for the given data set is

Minimum value: 50

First quartile (Q1): 182.5

Median: 292.5

Third quartile (Q3): 367.5

Maximum value: 425

Therefore, the five-number summary for the given data set is{50, 182.5, 292.5, 367.5, 425}.

Learn more about five-number summary here:

https://brainly.com/question/30451903

#SPJ11

Express the limit as a definite integral on the given interval.
lim n→[infinity]
n i = 1
xi*
(xi*)2 + 3
Δx, [1, 8]

Answers

The given limit is lim n→∞ ∑i=1nxi*(xi*)²+3 Δx with an interval of [1, 8].Since the limit can be expressed as a definite integral, consider the following steps:

Firstly, substitute xi* with xi and express Δx as (b-a)/n; b being the upper bound and a being the lower bound. The substitution gives;

lim n→∞ ∑i=1nxi((xi)²+3) (b - a) / n

Next, take the limit of the sequence and substitute i/n with x. The substitution gives;[tex]

lim n→∞ [(b - a) / n] ∑i=1n f(x) Δx where f(x) = x((x)²+3).[/tex]

Next, express the summation as an integral by taking the limit as n approaches infinity;

l[tex][tex]lim n→∞ [(b - a) / n] ∑i=1n f(x) Δx where f(x) = x((x)²+3).[/tex][/tex]im n→∞ [(b - a) / n] ∑i=1n f(xi*) Δx ∫ba f(x) dx

Finally, integrate f(x) within the interval [1,8] as follows;∫18 x(x²+3) dxThe definite integral evaluates to;

∫18 x(x²+3) dx = [x²/2 + 3x]_1^8= [8²/2 + 3(8)] - [1²/2 + 3(1)]= 71[tex]∫18 x(x²+3) dx = [x²/2 + 3x]_1^8= [8²/2 + 3(8)] - [1²/2 + 3(1)]= 71[/tex] units squared

To know more about integral visit:

https://brainly.com/question/31059545

#SPJ11

A rocket blasts off vertically from rest on the launch pad with a constant upward acceleration of 2.70 m/s². At 30.0 s after blastoff, the engines suddenly fail, and the rocket begins free fall. Express your answer with the appropriate units. m avertex 9.80 - Previous Answers ▾ Part D How long after it was launched will the rocket fall back to the launch pad? Express your answer in seconds. IVE ΑΣΦ ? Correct t = 45.7 Submit Previous Answers Request Answer S

Answers

Rocket need time of 30sec to fall back to the launch pad.

To determine the time it takes for the rocket to fall back to the launch pad, we can use the equations of motion for free fall.

We know that the acceleration due to gravity is -9.80 m/s² (negative because it acts in the opposite direction to the upward acceleration during the rocket's ascent). The initial velocity when the engines fail is the velocity the rocket had at that moment, which we can find by integrating the acceleration over time:

v = u + at

where v is the final velocity, u is the initial velocity, a is the acceleration, and t is the time.

Integrating the acceleration gives:

v = -9.80t + C

We know that at t = 30.0 s, the velocity is 0 since the rocket begins free fall. Substituting these values into the equation, we can solve for C:

0 = -9.80(30.0) + C

C = 294

So the equation for the velocity becomes:

v = -9.80t + 294

To find the time it takes for the rocket to fall back to the launch pad, we set the velocity equal to 0 and solve for t:

0 = -9.80t + 294

9.80t = 294

t = 30.0 s

Therefore, the rocket will fall back to the launch pad 30.0 seconds after it was launched.

To know more about acceleration refer here:

https://brainly.com/question/19537384?#

#SPJ11

Use graphical methods to solve the linear programming problem. Maximize z = 6x + 7y subject to: 2x + 3y ≤ 12 2x + y ≤ 8 x ≥ 0 y ≥ 0

Answers

The graphical method shows that the maximum value of z = 6x + 7y occurs at the corner point (4, 0) with a value of z = 24.

Which corner point yields the maximum value for z in the linear programming problem?

The graphical method is used to solve the linear programming problem and determine the maximum value of z = 6x + 7y, subject to the given constraints: 2x + 3y ≤ 12, 2x + y ≤ 8, x ≥ 0, and y ≥ 0.

By graphing the feasible region defined by the constraints and identifying the corner points, we can evaluate the objective function z at each corner point.

The maximum value of z occurs at the corner point (4, 0), where x = 4 and y = 0, resulting in z = 6(4) + 7(0) = 24.

Learn more about: Graphical method

brainly.com/question/6574852

#SPJ11

Perform the indicated goodness-of-fit test. Use a significance level of 0.01 to test the claim that workplace accidents are distributed on workdays as follows: Monday 25%, Tuesday: 15%, Wednesday: 15%, Thursday: 15%, and Friday: 30%. In a study of 100 workplace accidents, 22 occurred on a Monday, 16 occurred on a Tuesday, 15 occurred on a Wednesday, 16 occurred on a Thursday, and 31 occurred on a Friday. a. The Degrees of Freedom are Type in a whole number. k b. The Test Statistic is Round to 3 decimal places. c. There sufficient evidence to conclude that workplace accidents are distributed on workdays as follows: Monday 25%, Tuesday: 15%, Wednesday: 15%, Thursday: 15%, and Friday: 30%. Type in "is" or "is not exactly as you see here.

Answers

a. The Degrees of Freedom are 4. b. The Test Statistic is 0.527. c. There is not sufficient evidence to conclude that workplace accidents are distributed on workdays exactly as specified.

To perform the goodness-of-fit test, we will use the chi-square test. The null hypothesis (H0) is that the workplace accidents are distributed on workdays as follows: Monday 25%, Tuesday 15%, Wednesday 15%, Thursday 15%, and Friday 30%. The alternative hypothesis (Ha) is that the distribution is different from the specified proportions.

Step 1: Set up the observed and expected frequencies:

Observed frequencies:

Monday: 22

Tuesday: 16

Wednesday: 15

Thursday: 16

Friday: 31

Expected frequencies:

Monday: (0.25 * 100) = 25

Tuesday: (0.15 * 100) = 15

Wednesday: (0.15 * 100) = 15

Thursday: (0.15 * 100) = 15

Friday: (0.30 * 100) = 30

Step 2: Calculate the chi-square test statistic:

χ² = Σ((Observed - Expected)² / Expected)

χ² = ((22 - 25)² / 25) + ((16 - 15)² / 15) + ((15 - 15)² / 15) + ((16 - 15)² / 15) + ((31 - 30)² / 30)

χ² = (3² / 25) + (1² / 15) + (0² / 15) + (1² / 15) + (1² / 30)

χ² = 9/25 + 1/15 + 0/15 + 1/15 + 1/30

χ² = 0.36 + 0.0667 + 0 + 0.0667 + 0.0333

χ² = 0.5267

Step 3: Determine the degrees of freedom (k):

The degrees of freedom (k) are equal to the number of categories minus 1. In this case, there are 5 categories (Monday, Tuesday, Wednesday, Thursday, Friday), so k = 5 - 1 = 4.

Step 4: Find the critical value:

Using a significance level of 0.01 and 4 degrees of freedom, we find the critical value from the chi-square distribution table to be approximately 13.28.

Step 5: Compare the test statistic to the critical value:

Since the test statistic (0.5267) is less than the critical value (13.28), we fail to reject the null hypothesis.

Step 6: Interpret the result:

There is not sufficient evidence to conclude that workplace accidents are distributed on workdays exactly as specified (Monday 25%, Tuesday 15%, Wednesday 15%, Thursday 15%, and Friday 30%).

Learn more about Degrees of Freedom here

https://brainly.com/question/28527491

#SPJ11

Assume that a procedure yields a binomial distribution with n=5
trials and a probability of success of p=0.30 . Use a binomial
probability table to find the probability that the number of
successes x 17 Nb N112 n OFNOO-NO- 0 2 0 2 3 4 IN4O 0 2 Binomial Probabilities 05 10 902 810 095 180 002 010 857 729 135 243 007 027 001 815 171 014 0+ 0+ 774 204 021 588 6 8 8 8 8 980 020 0+ 970 029 +0 0+ 961 60

Answers

The probability that the number of successes x ≤ 1 is 0.528.

A procedure yields a binomial distribution with n = 5 trials and a probability of success of p = 0.30.

We have to find the probability that the number of successes x ≤ 1.

Since x follows binomial distribution, the probability of x successes in n trials is given by:

P (X = x) = nCx px (1 - p)n - x

where n = 5, p = 0.30

P(X ≤ 1) = P(X = 0) + P(X = 1)

Now, using binomial probability table;

for n = 5, p = 0.30:

When x = 0

P (X = 0) = 0.168, and

When x = 1;

P (X = 1) = 0.360

Hence,

P(X ≤ 1) = P(X = 0) + P(X = 1) = 0.168 + 0.360 = 0.528

Therefore, P(X ≤ 1) = 0.528

To learn more about probability visit : https://brainly.com/question/13604758

#SPJ11

Other Questions
5. what is the difference between programmed i/o and interrupt driven i/o? 3. Answer the following two questions (20 points each part is 10 points) a. The orthoclose (potassium feldspar) clay mineral reacts with the HF/HCL mixture according to the following stochiometric reaction equation. For the 3 wt % HF (specific gravity of about 1.152 and MW=20) reacting with orthoclase feldspar (MW = 278.4 and p = 2.65 gr/cc) you are asked to calculate the gravimetric and volumetric dissolving powers Orthoclase (potassium feldspar): KAISI 308 + 14HF + 2H+K+ + AIF + 3SiF4 + 8HO b. A sandstone with a porosity of 0.22 containing 12% (volume) calcite (CaCO3) is to be acidized. If the HCI preflush is to remove all carbonates 36 inches beyond a 0.328-ft radius wellbore before the HF/HC1 stage enters the formationbefore the HF/HC1 stage enters the formation, what minimum preflush volume (gallons of acid solution per foot of formation thickness) is required if the preflush is 15% HCl solution? According to Keynesians, an increase in the money supply will: Select one: a. only increases prices. b. decrease the interest rate and increase investment, aggregate demand, prices, real GDP and employment. c. increase the interest rate and decrease investment, aggregate demand, prices, real GDP and employment. d. decrease the interest rate and decrease investment, aggregate demand, prices, real GDP and employment. (b) Assume that Division A can sell all its production in the open market. Should Division A transfer the goods to Division B? The transfer be made If so, at what price? Save for Later Attempts: 0 of 1 used Submit Answer te .../5 E Question 8 of 30 View Policies Current Attempt in Progress The Blossom Company is a multidivisional company. Its managers have full responsibility for profits and complete autonomy to accept or reject transfers from other divisions. Division A produces a sub-assembly part for which there is a competitive market. Division B currently uses this sub-assembly for a final product that is sold outside at $960. Division A charges Division B the market price of $560 per unit of the part. Unit variable costs are 5424 and $480 for Divisions A and B, respectively The manager of Division B feels that Division A should transfer the part at a lower price than market because at market, Division Bis unable to make a pront. (a) Your answer has been saved, See score details after the due date. Calculate Division B's contribution margin if transfers are made at the market price, and calculate the company's total contribution margin (Enter negative amounts using either a negative sign preceding the number eg.-45 or parentheses es. (45) Division B's contribution margin 80 Company's total contribution margin $ 56 Attempts: 1 of 1 used (b) Assume that Division A can sell all its production in the open market. Should Division A transfer the goods to Division B? The transfer be made If so, at what price? How an organization can impact an employee's motivation using the Four-Drive Theory. Many employees look to the company to provide them with motivation for work. How does the organization you are working ensure they are satisfying all the four drives? the largest employment sector of recent recipients of bachelor's degrees in psychology is... Please answer A, B & CA fan blade rotates with angular velocity given by w.(t)=y-Bt2, where y=5.25 rad/s and B=0.755 rad/s. Part A Calculate the angular acceleration as a function of time t in terms of B and y. Express y A polar curve is given by the equation r=10/^2+1 for 0. What is the instantaneous rate of change of r with respect to when =2 ? 10 Define TL(F") byT(X1, X2. X3, Xn) = (x1,2x2, 3x3...,xn).(a) Find all eigenvalues and eigenvectors of T.(b) Find all invariant subspaces of T.11 Define T: P(R) P(R) by Tp = p. Find all eigenvalues and eigenvectors of T in searches and seizures without a warrant, who has the burden of proof regarding probable causea. the policeb. the defendantc. the courtd. the defense attorney Teduie company bought a new model of motor for its electric power generating plant in 2017. The useful life of the motor was 5 years and the investment was $30,000 in 2017's dollars. The following 5 table shows the savings obtained through the project in actual dollars and the consumer price index numbers for the time period between 2017 and 2022: End of Year Savings Price Index 250 2017 2018 250 2019 275 2020 $10,000 $12,100 $14,641 $19,326.1 $23,384.6 302.5 2021 363 2022 399.3 If the inflation-free interest rate is 15%, determine whether the investment was worthwhile. The correlation coefficient of a set of points is r = 0.8. The standard deviation of the x-coordinates of the points is 2.1, and the standard deviation of the y-coordinates of the points is 1.2. Find the slope of the least-squares line 1. provide the date the company was originally established COMPANY 3M2. where is the 3M COMPANY head office and research and development facilities are located (city and country of each).3. Identify the market(s) the 3M COMPNY operates in (consumer, industrial, government) and identify the goods and/or services it sells.4. Identify the countries the3M COMPANY sells its products in and discuss its international product mix (which of the four options for marketing products overseas does the company use).5. Discuss the 3M COMPANYS international promotion mix that it uses to promote its products and/or services in international markets (publicity, advertising, sales promotion, personal selling).6. Identify the 3M COMPANYS global sales for 2020 or 2021 (provide latest information that is available).Expert Answer For an n-type semiconductora) Concentrationelectrons < concentrationholesb) Concentrationelectrons = concentrationholesc) Concentrationelectrons > concentrationholes What would it take for you to be excited about an organizationalchange? Discuss three things that would change your whole attitudeabout going through the change process. All of following are organs of the shar`ah governance system... All of following are organs of the shari'ah governance system EXCEPT: a) Islamic Banking Associations b) Shariah supervisory board at the micro level c) Shari ah supervisory council of the central bank at the macro level d) internal Shari'ah compliance unit 11. Larrodev Enterprises provides you with the following information as it relates to its business operation. Compute the appropriate allowances and charges for the years of assessment 2018 2021 in respect to the following. The company makes up accounts as at 31 December each year. Compute any balancing allowance/charge for assets dispose of in 2021. PURCHASES DURING 2018 1 July Industrial Building (block, steel and cement), 8,500,000 including cost of land $1,500,000 1 July-Plant and Machinery (used in production) 3,000,0001 September - Office equipment 1,500,0001 April - Non-industrial building (wooden structure) 5,000,00001 July-Delivery Truck- Business use 60% and private use 40% 4,000,0001 October- Private motor vehicle 4,000,000Exchange rate USSI:JS120 DISPOSAL DURING 2021 1 June - Office Equipment 2,000,0001 August - Non-Industrial 1,800,000-1 October - Trade Vehicle 2,800,000 11 of 3011 of 30 QuestionsQuestionA baker makes peanut butter cookies and chocolate chip cookies.She needs 2 cups of flour and 34 cup of butter to make one batch of peanut butter cookies.She needs 3 cups of flour and 1 cup of butter to make one batch of chocolate chip cookies.If the baker has 26 cups of flour and 9 cups of butter, how many batches of each type of cookie can she make? Explain how the matching concept needs to be followed when working out gross profit for a retailer in an accounting period Which human activity requires the most freshwater? a) Irrigation in agriculture b) Industry for manufacturing c) domestic use d) fishing