Given that a random variable X is distributed according to a normal law with variance 4. We know that P(X ≤ 2) = 0.8051.The probability distribution function of the standard normal distribution.
φ(x)=1/√(2π) e^((-1/2)x^2)
Let the given normal distribution be
N(μ, σ^2), then we need to convert the distribution into standard normal distribution i.e. N(0, 1) by using the formula Z=(X-μ)/σa)
Calculate the mean of the variable XWe know that
P(X ≤ 2) = 0.8051i.e. P(Z ≤ (2 - μ)/σ) = 0.8051
Using normal tables we get,0.8051 corresponds to
Z = 0.84
Therefore, (2 - μ)/σ = 0.84..........(1)Also, Z = (X - μ)/σX = σZ + μPut Z = 0
in the above equation,X = σ * 0 + μi.e. X = μSo, substituting μ = X in equation (1)
0.84 = (2 - X)/2X = 2 - 0.84 * 2X = 0.32
To know more about variance visit:
https://brainly.com/question/31432390
#SPJ11
Q. Let X have the following density function: fx(x) = { otherwise 3x5 for 0 < x < 2 • Find the çdf of X. Find P(X>1). Find E[X] Define a new random variable by setting Y=X2. Find the density of
The cumulative distribution function (cdf) of a random variable is defined as the probability that the random variable X takes on a value less than or equal to x. The cdf is therefore defined as F(x) = P(X ≤ x). Now, we have to find the cdf of X. Therefore, we must calculate the probability that X is less than or equal to some value x.
Using the density function, we can calculate the cdf of X as follows:
For 0 ≤ x < 2,
fx(x) = 3x5
So,F(x) = ∫0x3t5dt= x6.
For x < 0, F(x) = 0.
For x > 2,
F(x) = 1.
Finding P(X > 1)P(X > 1)
= 1 - P(X ≤ 1)
= 1 - F(1)
= 1 - (1/6)
= 5/6
Finding E[X]:
The expected value of X is given by:
E(X) = ∫(-∞)∞x.f(x)dx.
For 0 ≤ x < 2,
fx(x) = 3x5
∴ E(X) = ∫0∞x.3x5dx
= 3x716∣∣∣∣02
= 310
Thus, the çdf of X is F(x) = { 0 for x ≤ 0;
x6 for 0 < x < 2 ;
1 for x ≥ 2 }
The probability that X > 1 is 5/6. The expected value of X is E(X) = 310. The density function of Y is
fy(y) = 1√yfx(√y) = { otherwise 15y32 for 0 < y < 4, 0 elsewhere }.
To know more about the cumulative distribution function, visit:
brainly.com/question/30402457
#SPJ11
Suppose that X is an exponentially distributed random variable
with λ=0.35. Find each of the following probabilities:
A. P(X>1) =
B. P(X>0.2) =
C. P(X<0.35) =
D. P(0.18
The probability that X is less than 0.35 is approximately 0.360 or 36.0%.d) P(0.18 < X < 0.36) = P(X < 0.36) - P(X < 0.18)= [1 - e-0.35(0.36)] - [1 - e-0.35(0.18)]= e-0.35(0.18) - e-0.35(0.36)≈ 0.285 or 28.5% (rounded to 3 decimal places).Thus, the probability that X lies between 0.18 and 0.36 is approximately 0.285 or 28.5%.
Suppose X is an exponentially distributed random variable with λ = 0.35.The exponential distribution is a continuous probability distribution that measures the time between events occurring at a constant average rate λ.According to the definition of exponential distribution, we have:P(X > t) = e-λtandP(X ≤ t) = 1 - e-λtGiven, λ = 0.35.a) P(X > 1) = e-0.35(1)≈ 0.561 or 56.1% (rounded to 3 decimal places).Thus, the probability that X is greater than 1 is approximately 0.561 or 56.1%.b) P(X > 0.2) = e-0.35(0.2)≈ 0.838 or 83.8% (rounded to 3 decimal places).Thus, the probability that X is greater than 0.2 is approximately 0.838 or 83.8%.c) P(X < 0.35) = 1 - P(X ≥ 0.35) = 1 - (1 - e-0.35(0.35))≈ 0.360 or 36.0% (rounded to 3 decimal places).Thus, the probability that X is less than 0.35 is approximately 0.360 or 36.0%.d) P(0.18 < X < 0.36) = P(X < 0.36) - P(X < 0.18)= [1 - e-0.35(0.36)] - [1 - e-0.35(0.18)]= e-0.35(0.18) - e-0.35(0.36)≈ 0.285 or 28.5% (rounded to 3 decimal places).Thus, the probability that X lies between 0.18 and 0.36 is approximately 0.285 or 28.5%.
Learn more about probability here:
https://brainly.com/question/31828911
#SPJ11
You pick a card at random. 5 6 7 What is P(less than 7)? Write your answer as a fraction or whole number.
The probability of picking a card less than 7 from a standard deck of cards is 2/13.
To find the probability (P) of picking a card less than 7, we need to determine the number of favorable outcomes (cards less than 7) and divide it by the total number of possible outcomes.
In this case, the favorable outcomes are the cards with values less than 7, which are 5 and 6. The total number of possible outcomes is the total number of cards in the deck, which depends on the specific deck being used.
Assuming a standard deck of 52 cards, there are four 5s and four 6s, making a total of eight favorable outcomes.
Therefore, P(less than 7) = favorable outcomes / total outcomes = 8 / 52.
Simplifying the fraction, we find that P(less than 7) = 2 / 13.
For more such questions on probability
https://brainly.com/question/251701
#SPJ8
for each 7-subset of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, give the next largest 7-subset or indicate that the 7-subset is the last one in lexicographic order.
To answer the question, we must list the subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14} in lexicographic function order.
The first 7-subset is {1, 2, 3, 4, 5, 6, 7}. The next 7-subset is obtained by replacing the last element 7 by the smallest element greater than 7, which is 8. Thus, the next largest 7-subset is {1, 2, 3, 4, 5, 6, 8}.The next 7-subset is obtained by replacing the last element 8 by the smallest element greater than 8, which is 9. Thus, the next largest 7-subset is {1, 2, 3, 4, 5, 6, 9}.The next 7-subset is obtained by replacing the last element 9 by the smallest element greater than 9, which is 10. Thus, the next largest 7-subset is {1, 2, 3, 4, 5, 6, 10}.
The next 7-subset is obtained by replacing the last element 10 by the smallest element greater than 10, which is 11. Thus, the next largest 7-subset is {1, 2, 3, 4, 5, 6, 11}.The next 7-subset is obtained by replacing the last element 11 by the smallest element greater than 11, which is 12. Thus, the next largest 7-subset is {1, 2, 3, 4, 5, 6, 12}.The next 7-subset is obtained by replacing the last element 12 by the smallest element greater than 12, which is 13. Thus, the next largest 7-subset is {1, 2, 3, 4, 5, 6, 13}.The next 7-subset is obtained by replacing the last element 13 by the smallest element greater than 13, which is 14. Thus, the next largest 7-subset is {1, 2, 3, 4, 5, 6, 14}.Finally, the last 7-subset is {8, 9, 10, 11, 12, 13, 14}.
To know more about linear function visit:
https://brainly.com/question/29205018
#SPJ11
in the matrix equation below, what are the values of x and y? x = –1, y = 2 x = 3, y = 8 x = 5, y = –4 x = 5, y = 2
The value of x is 5 and value of y is 2 in the matrix equation.
From the matrix equation let us find the value of y:
1/2(8)-3(y+1)=-5
4-3y-3=-5
Isolate the variable y:
-3y=-5-1
-3y=-6
Divide both sides by -3:
y=2
Now let us solve for x:
1/2(x+3)-3(-1)=7
x/2+3/2+3=7
x/2+3/2=4
x/2=4-3/2
x/2=5/2
x=5
Hence, the value of x is 5 and value of y is 2.
To learn more on Matrices click:
https://brainly.com/question/28180105
#SPJ12
The values of x and y in the matrix equation below are x = 5, y = 2, the correct option is D.
We are given the matrix equation;
[tex]1/2\left[\begin{array}{ccc}4&8\\x+ 3&-4\end{array}\right] - 3\left[\begin{array}{ccc}1&y+ 1\\-1&-2\end{array}\right] = \left[\begin{array}{ccc}-1&-5\\7&4\end{array}\right][/tex]
Now, solving
[tex]\left[\begin{array}{ccc}2&4\\x+ 3/2&-2\end{array}\right] - \left[\begin{array}{ccc}3&3y+ 3\\-3&-6\end{array}\right] = \left[\begin{array}{ccc}-1&-5\\7&4\end{array}\right][/tex]
[tex]\left[\begin{array}{ccc}2-3&4-3y+ 3\\x+ 3/2 + 3&-2+6\end{array}\right] = \left[\begin{array}{ccc}-1&-5\\7&4\end{array}\right][/tex]
Two matrices are equal if their entries are equal.
1-3y = -5
⇒ -3y = -5-1
⇒ -3y = -6
y = 2
Thus, x+9 = 14
x = 14-9
x = 5
Therefore, by the equation answer will be x = 5, y = 2.
Learn more about equations;
https://brainly.com/question/10413253
#SPJ12
Give an example of events A and B, both relating to a random variable X, such that Pr(AB) + Pr(A) Pr(B)
Both relating to a random variable X, such that Pr(AB) + Pr(A) Pr(B) is 5/12.
Let's consider an example where A and B are events related to a random variable X, where X represents the outcome of rolling a fair six-sided die.
Suppose X represents the outcome of rolling a fair six-sided die. Let A be the event that X is an even number (A = {2, 4, 6}) and B be the event that X is less than or equal to 3 (B = {1, 2, 3}).
To calculate the probabilities, we can use the fact that the die is fair and each outcome is equally likely.
Pr(A) = Pr(X is an even number) = 3/6 = 1/2
Pr(B) = Pr(X is less than or equal to 3) = 3/6 = 1/2
Now, let's calculate Pr(AB):
Pr(AB) = Pr(X is an even number and X is less than or equal to 3)
= Pr(X is {2}) (as 2 is the only number that satisfies both A and B)
= 1/6
Now, let's calculate Pr(AB) + Pr(A) Pr(B):
Pr(AB) + Pr(A) Pr(B) = (1/6) + (1/2)(1/2) = 1/6 + 1/4 = 2/12 + 3/12 = 5/12
Therefore, we have Pr(AB) + Pr(A) Pr(B) = 5/12, which shows that the inequality holds in this example.
To know more about random variable refer here:
https://brainly.com/question/29131216
#SPJ11
b) In a sample of 25 observations from a normal distribution with mean 98.6 and standard deviation 17.2 (10) (i) What is P(92
Given that there are 25 observations in a sample taken from a normal distribution having mean 98.6 and standard deviation 17.2.
We are to find [tex]P(92 < X < 100)[/tex], where X is the random variable with a normal distribution having mean 98.6 and standard deviation 17.2.
We know that the distribution is normal, and we have the mean and standard deviation. Let Z be the standard normal variable such that [tex]Z = (X - μ) / σ[/tex], where [tex]μ[/tex] and [tex]σ[/tex] are the mean and standard deviation of the normal distribution.
The probability that X lies between two given values a and b is the probability that Z lies between the corresponding standard scores.
(ii) To find [tex]P(X > 105)[/tex], we use the same standard normal variable Z.
[tex]P(X > 105) = P(Z > (105 - 98.6) / 17.2)= P(Z > 0.372)[/tex]. From standard normal tables, the area under the curve to the right of z = 0.372 is 0.3520.
P(X > 105) = 0.3520. This implies that the probability that the value of X is greater than 105 is 0.3520.
To know more about mean visit:
https://brainly.com/question/31101410
#SPJ11
find 0.900 and 0.100 probability limits for a c chart when the process average is equal to 16 nonconformities.'
The 0.900 and 0.100 probability limits for a c chart, with a process average of 16 nonconformities, can be calculated as follows: 26.8 and 5.2, respectively.
To determine the 0.900 and 0.100 probability limits for a c chart, we need to consider the process average of 16 nonconformities. The c chart is used to monitor the number of nonconformities in a process, where the data is collected in subgroups and plotted on a chart.
The probability limits for the c chart are calculated based on the average number of nonconformities and the standard deviation. The standard deviation is estimated using historical data or initial samples. Since we don't have specific information about the standard deviation, we can use a commonly accepted approximation that assumes the distribution of nonconformities follows a Poisson distribution.
For a Poisson distribution, the standard deviation is equal to the square root of the average number of nonconformities. In this case, the process average is 16 nonconformities, so the estimated standard deviation is √16 = 4.
To calculate the probability limits, we multiply the estimated standard deviation by the appropriate factors. The factor for the 0.900 probability limit is 3, and the factor for the 0.100 probability limit is 1.
For the 0.900 probability limit, we multiply the standard deviation (4) by 3, resulting in 12. Therefore, the 0.900 probability limit is 16 + 12 = 28.
For the 0.100 probability limit, we multiply the standard deviation (4) by 1, resulting in 4. Therefore, the 0.100 probability limit is 16 - 4 = 12.
These values indicate the upper and lower limits within which the number of nonconformities should typically fall in a stable process. Any data points exceeding these limits suggest a potential out-of-control situation that may require further investigation.
Learn more about probability
brainly.com/question/31828911
#SPJ11
A function is given. f(x) = 3 - 3x^2; x = 1, x = 1 + h Determine the net change between the given values of the variable. Determine the average rate of change between the given values of the variable.
The average rate of change between x = 1 and x = 1 + h is -3h - 6.
The function given is f(x) = 3 - 3x², x = 1, x = 1 + h; determine the net change and average rate of change between the given values of the variable.
The net change is the difference between the final and initial values of the dependent variable.
When x changes from 1 to 1 + h, we can calculate the net change in f(x) as follows:
Initial value: f(1) = 3 - 3(1)² = 0
Final value: f(1 + h) = 3 - 3(1 + h)²
Net change: f(1 + h) - f(1) = [3 - 3(1 + h)²] - 0
= 3 - 3(1 + 2h + h²) - 0
= 3 - 3 - 6h - 3h²
= -3h² - 6h
Therefore, the net change between x = 1 and x = 1 + h is -3h² - 6h.
The average rate of change is the slope of the line that passes through two points on the curve.
The average rate of change between x = 1 and x = 1 + h can be found using the formula:
(f(1 + h) - f(1)) / (1 + h - 1)= (f(1 + h) - f(1)) / h
= [-3h² - 6h - 0] / h
= -3h - 6
Therefore, the average rate of change between x = 1 and x = 1 + h is -3h - 6.
Know more about function here:
https://brainly.com/question/22340031
#SPJ11
Data Analysis (20 points)
Dependent Variable: Y Method: Least Squares
Date: 12/19/2013 Time: 21:40 Sample: 1989 2011
Included observations:23
Variable Coefficient Std. Error t-Statistic Prob.
C 3000 2000 ( ) 0.1139
X1 2.2 0.110002 20 0.0000
X2 4.0 1.282402 3.159680 0.0102
R-squared ( ) Mean dependent var 6992
Adjusted R-square S.D. dependent var 2500.
S.E. of regression ( ) Akaike info criterion 19.
Sum squared resid 2.00E+07 Schwarz criterion 21
Log likelihood -121 F-statistic ( )
Durbin-Watson stat 0.4 Prob(F-statistic) 0.001300
Using above E-views results::
Put correct numbers in above parentheses(with computation process)
(12 points)
(2)How is DW statistic defined? What is its range? (6 points)
(3) What does DW=0.4means? (2 points)
The correct numbers are to be inserted in the blanks (with calculation process) using the given E-views results above are given below: (1) Variable Coefficient Std. Error t-Statistic Prob.
C. 3000 2000 1.50 0.1139X1 2.2 0.110002 20 0.0000X2 4.0 1.282402 3.159680 0.0102R-squared 0.9900 Mean dependent var 6992. Adjusted R-square 0.9856 S.D. dependent var 2500. S.E. of regression 78.49 Akaike info criterion 19. Sum squared redid 2.00E+07 Schwarz criterion 21 Log likelihood -121 F-statistic 249.9965 Durbin-Watson stat 0.4 Prob(F-statistic) 0.0013 (2)DW (Durbin-Watson) statistic is defined as a test
statistic that determines the existence of autocorrelation (positive or negative) in the residual sequence. Its range is between 0 and 4, where a value of 2 indicates no autocorrelation. (3) DW = 0.4 means there is a positive autocorrelation in the residual sequence, since the value is less than 2. This means that the error term of the model is correlated with its previous error term.
To know more about Coefficient refer to:
https://brainly.com/question/1038771
#SPJ11
Find the missing value required to create a probability
distribution. Round to the nearest hundredth.
x / P(x)
0 / 0.18
1 / 0.11
2 / 0.13
3 / 4 / 0.12
The missing value to create a probability distribution is 0.46.
To find the missing value required to create a probability distribution, we need to add the probabilities and subtract from 1.
This is because the sum of all the probabilities in a probability distribution must be equal to 1.
Here is the given probability distribution:x / P(x)0 / 0.181 / 0.112 / 0.133 / 4 / 0.12
Let's add up the probabilities:
0.18 + 0.11 + 0.13 + 0.12 + P(4) = 1
Simplifying, we get:0.54 + P(4) = 1
Subtracting 0.54 from both sides, we get
:P(4) = 1 - 0.54P(4)
= 0.46
Therefore, the missing value to create a probability distribution is 0.46.
Know more about probability distribution here:
https://brainly.com/question/28021875
#SPJ11
the figure shows level curves of a function . (a) draw gradient vectors at and . is longer than, shorter than, or the same length as ?
The level curves represent the function. The gradient of the function at a point is perpendicular to the level curve through that point, and the direction of the gradient is the direction of the steepest ascent (maximum increase) of the function.
The gradient of the function points in the direction of the greatest rate of increase of the function. In this case, we have to draw gradient vectors at and .At , a gradient vector can be drawn perpendicular to the level curve, such that it points to the higher values of the function. The magnitude of the gradient vector can be determined by the rate of change of the function, which is given by the slope of the tangent line to the level curve at .
The gradient vector at is: At , a gradient vector can be drawn perpendicular to the level curve, such that it points to the higher values of the function. The magnitude of the gradient vector can be determined by the rate of change of the function, which is given by the slope of the tangent line to the level curve at .
To know more about curves visit:
https://brainly.com/question/29736815
#SPJ11
A doctor brings coins, which have a 50% chance of coming up "heads". In the last ten minutes of a session, he has all the patients flip the coins until the end of class and then ask them to report the numbers of heads they have during the time. Which of the following conditions for use of the binomial model is NOT satisfied?
a) fixed number of trials
b) each trial has two possible outcomes
c) all conditions are satisfied
d) the trials are independent
e) the probability of 'success' is same in each trial
The correct answer is (a) fixed number of trials because there is no fixed number of trials in this case.
The doctor has the patients flip the coins until the end of the session, and then asks them to report the number of heads they got. Which of the following conditions for using the binomial model is not satisfied?The doctor has coins with a 50% chance of coming up heads. The doctor has patients flip the coins until the end of the session. The patients will then report how many heads they got. Which of the following conditions for using the binomial model is not met?The condition that is not satisfied for the use of the binomial model is a fixed number of trials. Since there is no fixed number of trials, the doctor may have to flip the coins several times. It is essential that the number of trials is fixed so that the binomial model can be used properly.In a binomial experiment, there are a fixed number of trials, each trial has two possible outcomes, the trials are independent, and the probability of success is the same for each trial. If any of these conditions are not met, the binomial model cannot be used. Therefore, the correct answer is (a) fixed number of trials because there is no fixed number of trials in this case.
Learn more about trials here:
https://brainly.com/question/12255499
#SPJ11
Before doing any calculations, determine whether this probability is greater than 50% or less than 50%. Why? The answer should be less than 50%, because the resulting z-score will be negative and the sampling distribution is approximately Normal. The answer should be greater than 50%, because 0.24 is greater than the population proportion of 0.20 and because the sampling distribution is approximately Normal. The answer should be less than 50%, because 0.24 is greater than the population proportion of 0.20 and because the sampling distribution is approximately Normal. The answer should be greater than 50%, because the resulting z-score will be positive and the sampling distribution is approximately Normal. Calculate the probability that 24% or more of the sample will be living in poverty. Assume the sample is collected in such a way that the conditions for using the CLT are met. P (p ge 0.24) = (Round to three decimal places as needed.)
To calculate the probability that 24% or more of the sample will be living in poverty, we can use the standard normal distribution and the z-score formula.
First, we need to calculate the z-score corresponding to 0.24. The z-score formula is given by:
z = (p - P) / sqrt(P(1 - P) / n)
Where:
p is the proportion of interest (0.24 in this case)
P is the population proportion (unknown)
n is the sample size
Since the population proportion is unknown, we can use the sample proportion as an estimate. If we assume that the sample is collected in such a way that the conditions for using the Central Limit Theorem (CLT) are met, we can use the sample proportion of 0.20 as an estimate for the population proportion.
Using these values, we can calculate the z-score:
z = (0.24 - 0.20) / sqrt(0.20 * (1 - 0.20) / n)
Assuming that the sample size is large enough for the CLT to apply, we can use the standard normal distribution to find the probability associated with this z-score. The probability that 24% or more of the sample will be living in poverty can be calculated as P(Z ≥ z), where Z is a standard normal random variable.
To know more about probability visit-
brainly.com/question/13711333
#SPJ11
The area of a square can be represented by the expression x10 Which monomial represents a side of the square?
The monomial that represents a side of the square is 10x.
In the given expression, "x10" represents the area of a square. To find the monomial that represents a side of the square, we need to rewrite the expression in a form that represents the side length.
In the expression "x10," the variable "x" represents the unknown side length of the square, and the coefficient "10" represents the area. We know that the area of a square is equal to the side length squared (A = s^2), so we need to rearrange the expression to isolate the side length.
To do this, we divide both sides of the equation by 10 to get the side length alone. Dividing "x10" by 10 yields "x." Therefore, "x" represents the side length of the square.
In summary, the monomial that represents a side of the square is 10x. The coefficient "10" represents the area, and the variable "x" represents the side length.
The expression "x10" represents the area of a square. However, to find the monomial that represents the side length, we need to rearrange the expression to isolate the side length. By dividing both sides of the equation by 10, we obtain the side length alone, represented by the variable "x." This means that "x" is the monomial that represents a side of the square. By understanding the relationship between area and side length in a square, we can determine the correct monomial representation.
Learn more about Square
brainly.com/question/14198272
#SPJ11
Draw an isosceles right triangle with legs of length 5. What is the length of the hypotenuse? Use the lengths of the sides of the triangle to compute the following trigonometric functions for the angl
The trigonometric functions for the angle in the given right triangle are:
$$sin\theta = \frac{\sqrt{2}}{2}, cos\theta = \frac{\sqrt{2}}{2}, tan\theta = 1.$$
he trigonometric functions of an angle can be calculated using the sides of the right triangle. The given triangle is an isosceles right triangle. The length of its leg is 5, and we need to find the length of the hypotenuse.Therefore,By Pythagoras theorem,
$$Hypotenuse^2 = 5^2 + 5^2$$$$Hypotenuse^2 = 50$$$$Hypotenuse = \sqrt{50} = 5\sqrt{2}$$
Now, let's compute the trigonometric functions for an angle in the given right triangle.We can calculate the trigonometric functions of an angle using the ratio of two sides of a right triangle. Given that the length of the hypotenuse is
$$5\sqrt{2}$$.
So, the trigonometric functions for the angle are
:$$sin\theta = \frac{opposite}{hypotenuse} = \frac{5}{5\sqrt{2}} = \frac{\sqrt{2}}{2}$$$$cos\theta = \frac{adjacent}{hypotenuse} = \frac{5}{5\sqrt{2}} = \frac{\sqrt{2}}{2}$$$$tan\theta = \frac{opposite}{adjacent} = \frac{5}{5} = 1$$
Hence, the trigonometric functions for the angle in the given right triangle are:
$$sin\theta = \frac{\sqrt{2}}{2}, cos\theta = \frac{\sqrt{2}}{2}, tan\theta = 1.$$
To know more about trigonometric visit:
https://brainly.com/question/29156330
#SPJ11
characterize the likely shape of a histogram of the distribution of scores on a midterm exam in a graduate statistics course.
The shape of a histogram of the distribution of scores on a midterm exam in a graduate statistics course is likely to be bell-shaped, symmetrical, and normally distributed. The bell curve, or the normal distribution, is a common pattern that emerges in many natural and social phenomena, including test scores.
The mean, median, and mode coincide in a normal distribution, making the data symmetrical on both sides of the central peak.In a graduate statistics course, it is reasonable to assume that students have a good understanding of the subject matter, and as a result, their scores will be evenly distributed around the average, with a few outliers at both ends of the spectrum.The histogram of the distribution of scores will have an approximately normal curve that is bell-shaped, with most of the scores falling in the middle of the range and fewer scores falling at the extremes.
To know more about histogram visit :-
https://brainly.com/question/16819077
#SPJ11
The normal monthly precipitation (in inches) for August is
listed for 20 different U.S. cities. Construct a boxplot for the
data set. Enter the maximum value.
3.7, 3.5, 4.4, 1.9, 2.8, 6.5, 1.5, 5.5, 2
The maximum value from the given data set is 6.5 A box plot is a pictorial representation of data that demonstrates the center, spread, and distribution of a data set, as well as any potential outliers.
It is made up of a rectangle that encompasses the interquartile range (IQR), which encompasses the middle 50% of the data, with whiskers extending to the minimum and maximum values or the maximum value that falls within a particular range.
To create a boxplot, first find the minimum, maximum, median, and quartiles of the data set. The quartiles divide the data into four equal parts, each containing 25% of the data.
The median is the middle value of the data set once it has been sorted in ascending or descending order. The interquartile range (IQR) is the difference between the upper and lower quartiles. It is also known as the middle 50% of the data. It's now time to construct the boxplot after obtaining the necessary statistics. A rectangular box is used to represent the IQR. The whiskers are represented by two lines extending out from the top and bottom of the box. The maximum and minimum values are represented by the whiskers. Any points that are further from the box than the whiskers are considered outliers. As we can see the maximum value from the given data set is 6.5, so that will be the answer.
To know more about interquartile range visit:
brainly.com/question/29173399
#SPJ11
You measure 28 randomly selected textbooks' weights, and find
they have a mean weight of 70 ounces. Assume the population
standard deviation is 8.6 ounces. Based on this, construct a 90%
confidence in
The 90% confidence interval for the mean weight of the population of textbooks is [tex]$(68.08, 71.92)$[/tex] ounces.
To construct a 90% confidence interval for the mean weight of 28 randomly selected textbooks, we will use the following formula: [tex]$$\bar{X} \pm z_{\frac{\alpha}{2}}\left(\frac{\sigma}{\sqrt{n}}\right)$$[/tex].
Where: [tex]$\bar{X}$[/tex] is the sample mean weight, [tex]$\sigma$[/tex] is the population standard deviation, [tex]$n$[/tex] is the sample size, [tex]$z_{\frac{\alpha}{2}}$[/tex] is the critical value obtained from the z-table or calculator, and [tex]$\alpha$[/tex] is the significance level which is equal to 1 - confidence level.
So, let's plug in the given values and solve:
Sample size, [tex]$n = 28$[/tex]
Sample mean weight, [tex]$\bar{X} = 70$[/tex]
Population standard deviation, [tex]$\sigma = 8.6$[/tex]
Confidence level, [tex]$C = 90\%$[/tex], which means [tex]$\alpha = 1 - C = 0.1$[/tex].
Therefore, the critical value from the z-table for a 90% confidence level is [tex]$z_{\frac{\alpha}{2}}= 1.645$[/tex].
Now, we can calculate the confidence interval:[tex]$$\begin{aligned}\bar{X} \pm z_{\frac{\alpha}{2}}\left(\frac{\sigma}{\sqrt{n}}\right) &= 70 \pm 1.645\left(\frac{8.6}{\sqrt{28}}\right) \\&= 70 \pm 1.915 \\&= (68.08, 71.92)\end{aligned}$$[/tex].
Therefore, the 90% confidence interval for the mean weight of the population of textbooks is [tex]$(68.08, 71.92)$[/tex] ounces.
To know more about 90% confidence interval, visit:
https://brainly.com/question/31420373
#SPJ11
Ryan is practicing his shot put throw. The path of the ball is given approximately by the function H(x) = -0.01x² + .66x +5.5, where H is measured in feet above the ground and is the horizontal dista
Answer:
The highest peak when x= 33 and the ball reaches a height of 16.39 ft
Step-by-step explanation:
The peak is obtained at x= -b/2a
x= -0.66 / 2(-0.01)
x = -0.66/(-0.02)
x= 33
The highest is reached when x=33 :
-0.01(33)^2 +0.66*33 +5.5 = 16.39 ft
The ball finally touches the ground again when -0.01x² + .66x +5.5 = 0
and the starting height is when x=0 => -0.01(0)^2 + 0.66(0) +5.5 = 5.5 ft
He started his throw at 5.5 ft
If X ∼ t(p), prove that X2 ∼ F(1,p)
The t-distribution is defined as the distribution of a random variable T that is obtained by dividing a standard normal variable Z by the square root of a chi-square random variable χ^2 with p degrees of freedom, that is:
T = Z / √(χ^2 / p)
If X ∼ t_p with p degrees of freedom, then:
X = Z / √(χ^2 / p)
We can square this expression to obtain:
X^2 = Z^2 / (χ^2 / p)
Since the numerator is a chi-square variable with one degree of freedom and the denominator is a chi-square variable with p degrees of freedom, we have:
X^2 ∼ F(1,p)
Therefore, if X ∼ t_p, then X^2 ∼ F(1,p).
To learn more about distribution, refer below:
https://brainly.com/question/29664127
#SPJ11
Develop a spreadsheet model to determine how much a person or a couple can afford to spend on a house. Lender guidelines suggest that the allowable monthly housing expenditure should be more more than 28% of monthly gross income. From this, you must subtract total nonmortgage housing expense, which would include insurance and property taxes and any other additional expenses. This defines the affordable monthly mortgage payment. In additional, guidelines also suggest that total affordable monthly debt payments, including housing expenses, should not exceed 36% of gross monthly income. The smaller of the affordable monthly mortgage payment and the total affordable monthly debt payments is the affordable monthly mortgage. To calculate the maximum that can be borrowed, find the monthly payment per $1,000 mortgage based on the current interest rate and duration of the loan. Divide the affordable monthly mortgage amount by this monthly payment to find the affordable mortgage. Assuming a 20% down payment, the maximum price of a house would be the affordable mortgage divided by 0.8. Use the flowwing data to test your model: total monthly gross income = $6,500; nonmortgage housing expense - $350; mothly installment debt = $500; monthly payment per $1,000 ,prtgage = $7.25.
By entering the provided data into the respective cells and following the steps outlined above, the spreadsheet will calculate the maximum price of a house that the person or couple can afford based on the given guidelines and information.
To develop a spreadsheet model to determine how much a person or a couple can afford to spend on a house, follow these steps:
Create a new spreadsheet and label the columns: "Item" in column A, "Amount" in column B, and "Calculation" in column C.
In cell A2, enter "Total Monthly Gross Income" and in cell B2, enter the value of $6,500 (or reference the cell where this value is entered).
In cell A3, enter "Nonmortgage Housing Expense" and in cell B3, enter the value of $350 (or reference the cell where this value is entered).
In cell A4, enter "Monthly Installment Debt" and in cell B4, enter the value of $500 (or reference the cell where this value is entered).
In cell A5, enter "Monthly Payment per $1,000 Mortgage" and in cell B5, enter the value of $7.25 (or reference the cell where this value is entered).
In cell C2, enter the formula "=B2*28%" to calculate the affordable monthly housing expenditure (28% of monthly gross income).
In cell C3, enter the formula "=B3" to calculate the total nonmortgage housing expense.
In cell C4, enter the formula "=B4" to calculate the monthly installment debt.
In cell C6, enter the formula "=MIN(C2-C3, B2*36%-C4)" to calculate the smaller value between the affordable monthly mortgage payment and the total affordable monthly debt payments.
In cell C7, enter the formula "=C6/B5" to calculate the affordable mortgage.
In cell C8, enter the formula "=C7/0.8" to calculate the maximum price of the house assuming a 20% down payment.
Format the cells as desired and review the results.
By entering the provided data into the respective cells and following the steps outlined above, the spreadsheet will calculate the maximum price of a house that the person or couple can afford based on the given guidelines and information.
For more questions on spreadsheet
https://brainly.com/question/14475051
#SPJ8
Calculate partial derivatives of second order and mixed partial derivatives of f (x, y) = arctan (x + y/l - x y).
The partial derivatives of the second order and mixed partial derivatives of f(x, y) = arctan(x + y/l - x*y) are:
f_xx = -2y/(l^2*(1 + (x + y/l - xy)^2))
f_yy = -2x/(l^2(1 + (x + y/l - xy)^2))
f_xy = -1/(l^2(1 + (x + y/l - x*y)^2))
To find the partial derivatives of f(x, y), we differentiate the function with respect to each variable while holding the other variable constant.
Partial derivatives of the first order:
Differentiating f(x, y) with respect to x, we get:
f_x = (1 + y/l - y) / (1 + (x + y/l - x*y)^2)
Differentiating f(x, y) with respect to y, we get:
f_y = x/(l(1 + (x + y/l - x*y)^2))
Partial derivatives of second order:
Differentiating f_x with respect to x, we get:
f_xx = -2y/(l^2*(1 + (x + y/l - x*y)^2))
Differentiating f_y with respect to y, we get:
f_yy = -2x/(l^2*(1 + (x + y/l - x*y)^2))
Mixed partial derivative:
Differentiating f_x with respect to y, we get:
f_xy = -1/(l^2*(1 + (x + y/l - x*y)^2))
These formulas represent the partial derivatives of the second order and mixed partial derivatives of f(x, y) with respect to x and y.
For more questions like Variable click the link below:
https://brainly.com/question/17344045
#SPJ11
Suppose that the intervals between car accidents at a known accident blackspot can be modelled by an exponential distribution with unknown parameter θ, θ > 0. The p.d.f. of this distribution is f(x; θ) = θ e−θx, x> 0. The four most recent intervals between accidents (in weeks) are x1 = 4.5, x2 = 1.5, x3 = 6, x4 = 4.4; these values are to be treated as a random sample from the exponential distribution. (a) Show that the likelihood of θ based on these data is given by L(θ) = θ4 e−16.4
The likelihood of θ based on these data is given by L(θ) = θ⁴ e^(-16.4).
The likelihood function for the given data is given by
L(θ) = f(x1;θ).f(x2;θ).f(x3;θ).f(x4;θ)= θ.e^(-θx1).θ.e^(-θx2).θ.e^(-θx3).θ.e^(-θx4)= θ⁴ e^(-θ(x1+x2+x3+x4))= θ⁴ e^(-θ(16.4))
Therefore, the likelihood of θ based on these data is given by L(θ) = θ⁴ e^(-16.4).
Hence, the required result is obtained.
To know more about the likelihood function visit:
https://brainly.in/question/14601941
#SPJ11
Researchers studying the learning of speech often compare measurements made on the recorded speech of adults and children. One variable of interest is called the voice onset time (VOT). Here are the results for 6-year-old children and adults asked to pronounce the word "bees". The VOT is measured in milliseconds and can be either positive or negative.
Group n x-bar s
Children 10 -3.67 33.89
Adults 20 -23.17 50.74
Give a P-value and state your conclusions.
P is between _______ and ________.
The Pvalue of the study described in the problem given is between 0.1 and 0.2.
Calculating the standard error values using the relation:
SE = √(s1²/n1 + s2²/n2)
SE = √(33.89²/10 + 50.74²/20) = 17.81
Obtaining the test statistic :
t = (x1 - x2)/SE
Where x1 and x2 are the mean values of the samples
t = (-3.67 - (-23.17))/17.81 = 0.62
Looking up the t-statistic in a t-table. The t-table will tell us the P-value associated with a t-statistic of 0.62.
The P-value is 0.156.
Hence, the Pvalue is between 0.1 and 0.2
Learn more on p-value: https://brainly.com/question/4621112
#SPJ4
Activity 17:
Directions: The three sides of a triangle are 8, 9, and 11. On a separate sheet of paper, sketch the triangle and find the measures of all the angles 0 (to the nearest degree). Then, using the Text Ed
The three angles are A = 47.9°, B = 79.1°, and C = 63.0°, rounded to the nearest degree.
A triangle's sides have a known length, namely 8, 9, and 11.
To find the angles, we can use the Law of Cosines, which states that, given a triangle ABC with sides a, b, and c, and angle A opposite side a, we have:
cos A = (b² + c² − a²) / (2bc)cos B = (a² + c² − b²) / (2ac)cos C = (a² + b² − c²) / (2ab)
Let us now compute the angles of the given triangle using these equations.
To begin, let's write down the length of each side:
a = 8b = 9c = 11
Now let us solve for the three angles in turn:
A = cos⁻¹[(9² + 11² − 8²) / (2 · 9 · 11)]
= cos⁻¹[0.6727] = 47.9°B
= cos⁻¹[(8² + 11² − 9²) / (2 · 8 · 11)]
= cos⁻¹[0.1894] = 79.1°C
= cos⁻¹[(8² + 9² − 11²) / (2 · 8 · 9)]
= cos⁻¹[0.4938]
= 63.0°
Thus, the three angles are A = 47.9°, B = 79.1°, and C = 63.0°, rounded to the nearest degree.
To know more about Law of Cosines visit:
https://brainly.com/question/30766161
#SPJ11
what is the probability that a randomly selected patient is 0-12 years old given that the patient suffers from knee pain?
To find the probability that a randomly selected patient is 0-12 years old given that the patient suffers from knee pain,
we need to use conditional probability.The conditional probability formula is:P(A|B) = P(A ∩ B) / P(B)where P(A|B) denotes the probability of A given that B has occurred. Here, A is "patient is 0-12 years old" and B is "patient suffers from knee pain".
Thus, the probability that a randomly selected patient is 0-12 years old given that the patient suffers from knee pain can be expressed as:P(0-12 years old | knee pain) = P(0-12 years old ∩ knee pain) / P(knee pain)The joint probability of 0-12 years old and knee pain can be busing the multiplication rule:P(0-12 years old ∩ knee pain) = P(0-12 years old) × P(knee pain|0-12 years old)where P(knee pain|0-12 years old) is the probability of knee pain given that the patient is 0-12 years old. We are not given this value, so we cannot calculate the joint probability.
To know more about probability visit:
https://brainly.com/question/11234923
#SPJ11
online homework manager Course Messages Forums Calendar Gradebook Home > MAT120 43550 Spring2022 > Assessment Homework Week 7 Score: 14/32 11/16 answered X Question 6 < > Score on last try: 0 of 2 pts
Answer:.
Step-by-step explanation:
The approximate percentage of 1-mile long roadways with potholes numbering between 41 and 61, using the empirical rule, is 81.5%.
The empirical rule, also known as the 68-95-99.7 rule, states that for a bell-shaped distribution (normal distribution), approximately 68% of the data falls within one standard deviation of the mean, approximately 95% falls within two standard deviations, and approximately 99.7% falls within three standard deviations.
In this case, the mean of the distribution is 49, and the standard deviation is 4. To find the percentage of 1-mile long roadways with potholes numbering between 41 and 61, we need to calculate the percentage of data within one standard deviation of the mean.
Since the range from 41 to 61 is within one standard deviation of the mean (49 ± 4), we can apply the empirical rule to estimate the percentage. According to the rule, approximately 68% of the data falls within this range.
Therefore, the approximate percentage of 1-mile long roadways with potholes numbering between 41 and 61 is 68%.
To know more about potholes refer here:
https://brainly.com/question/31171979#
#SPJ11
Complete Question:
online homework manager Course Messages Forums Calendar Gradebook Home > MAT120 43550 Spring2022 > Assessment Homework Week 7 Score: 14/32 11/16 answered X Question 6 < > Score on last try: 0 of 2 pts. See Details for more. > Next question Get a similar question You can retry this question below The number of potholes in any given 1 mile stretch of freeway pavement in Pennsylvania has a bell- shaped distribution. This distribution has a mean of 49 and a standard deviation of 4. Using the empirical rule, what is the approximate percentage of 1-mile long roadways with potholes numbering between 41 and 61? Do not enter the percent symbol. ans = 81.5 % Question Help: Post to forum Calculator Submit Question ! % & 5 B tab caps Hock A N 2 W S X #3 E D C $ 54 R T G 6 Y H 7 00 * 8 J K 1
when choosing a sample size for a population proportion a practitioner is considering either setting p* = 0.5, or, using a preliminary estimate of p-hat = 0.7. which is true?
When choosing a sample size for a population proportion, a practitioner may consider setting p* = 0.5 or using a preliminary estimate of p-hat = 0.7.
The practitioner must consider the amount of content loaded when choosing a sample size for a population.
The amount of content loaded when choosing a sample size for a population refers to the fact that the size of the sample that is chosen should be large enough to get meaningful results, but it should not be too large as to waste time, effort, and resources.
The sample size should be determined such that the confidence interval is not too wide, but at the same time, it should not be too narrow that the estimate is not reliable enough.
Preliminary estimates of the population parameter can be based on historical data, expert opinion, or even small samples.
Using a preliminary estimate of p-hat = 0.7 provides better results than using p* = 0.5 because it is closer to the population proportion.
By using a preliminary estimate of p-hat = 0.7, the sample size can be determined more accurately, and the results will be more reliable as compared to using a default value like p* = 0.5.In conclusion, using a preliminary estimate of p-hat = 0.7 is more appropriate than setting p* = 0.5.
To know more about proportion visit:
https://brainly.com/question/31548894
#SPJ11
The population in certain town increasing linearly each year. The population at time 2460, where the number of years after 990_ 3 is 1285 and at time = 8 i5 If P(t) is the population at time which of these equations correctly epresents this siruation? Select the correcl answer below: a. P(t) = 235t + 580 b. P(t) = 240t + 540 c. P(t) = 240t + 565 d. P(t) = 230t + 595 e. P(t) = 230t + 620 f. P(t) = 235t + 610
The equation that correctly represents the population increase in the town is P(t) = 235t + 610.
We are given that the population in a certain town increases linearly each year. To determine the equation that represents this situation, we need to find the relationship between the population and time.
First, we are given two points on the line: (990, 3) and (1285, 8). Here, the time is measured in years, and the population is represented by P(t). We can use these two points to find the slope of the line, which represents the rate of population increase per year.
The slope (m) of a line passing through two points (x1, y1) and (x2, y2) is given by the formula: m = (y2 - y1) / (x2 - x1). Using the points (990, 3) and (1285, 8), we can calculate the slope:
m = (8 - 3) / (1285 - 990) = 5 / 295 ≈ 0.0169492
Now that we have the slope, we can substitute it into the slope-intercept form of a linear equation, y = mx + b, where m is the slope and b is the y-intercept.
Using the point (990, 3), we can solve for b:
3 = 0.0169492 * 990 + b
b ≈ 3 - 16.78644
b ≈ -13.78644
Therefore, the equation that represents the population increase is P(t) = 0.0169492t - 13.78644. However, none of the given answer options match this equation.
To find the correct answer, we can substitute the known point (2460, ???) into each of the answer options and determine which one gives the correct population value. By substituting (2460, ???) into each equation, we find that only P(t) = 235t + 610 correctly represents the population increase in the town, satisfying the given conditions.
Learn more about equation here:
https://brainly.com/question/10724260
#SPJ11