A Recall the definition, "An element a of an extension field E of a field F is algebraic over F if f(a)=0 for some nonzero f(x) = F[x]. If a is not algebraic over F, then a is transcendental over F". Assume that √√ is not transcendental over Q. Then √√ is algebraic over Q. There exists f(x) = Q[x] such that ƒ(√)=0. E Comment Step 3 of 3^ Note that all odd-degree terms involve √√, and all even-degree terms involve . Move all odd- degree terms to the right side. Factor √ out from terms on the left, and then square both sides. The resulting equation shows that is algebraic over Q, which contradicts the fact that is transcendental over This completes the proof.

Answers

Answer 1

The given argument proves that if √√ is not transcendental over Q, then it must be algebraic over Q. By manipulating the equation and showing that √√ satisfies a polynomial equation with rational coefficients, the proof establishes the algebraic nature of √√ over Q, contradicting its assumed transcendental property.

The proof begins by assuming that √√ is not transcendental over Q. It then proceeds to show that √√ must be algebraic over Q. This is done by constructing a polynomial equation f(x) = Q[x] such that f(√√) = 0.

In the third step, the proof notes that all odd-degree terms involve √√ and all even-degree terms involve √. By moving all odd-degree terms to the right side, we obtain an equation where only even-degree terms involve √.

Next, the proof factors √ out from the terms on the left side and squares both sides of the equation. This simplification allows us to express √√ in terms of √.

Finally, the resulting equation shows that √√ satisfies a polynomial equation with rational coefficients, proving that it is algebraic over Q. This contradicts the initial assumption that √√ is transcendental over Q, completing the proof.

Learn more about polynomial equation here:

https://brainly.com/question/28947270

#SPJ11


Related Questions

: Find the derivative of the function. f(x) = √x - 2√√x f'(x) = Need Help? Read It Watch It

Answers

The derivative of the function f(x) = √x - 2√√x is f'(x) = (1/2√x) - (√(√x)/√x).

To find the derivative of the given function f(x) = √x - 2√√x, we can apply the rules of differentiation. Let's differentiate each term separately:

For the first term, √x, we can use the power rule for differentiation. The power rule states that if we have a function of the form f(x) = x^n, then the derivative is given by f'(x) = nx^(n-1). Applying this rule, we have:

d/dx (√x) = (1/2) * x^(-1/2) = (1/2√x).

For the second term, 2√√x, we need to use the chain rule since we have a composite function. The chain rule states that if we have a function of the form f(g(x)), then the derivative is given by f'(g(x)) * g'(x). Applying this rule, we have:

d/dx (2√√x) = 2 * d/dx (√√x) = 2 * (1/2√√x) * (1/2)x^(-1/4) = (√(√x)/√x).

Combining the derivatives of both terms, we get:

f'(x) = (1/2√x) - (√(√x)/√x).

Therefore, the derivative of the function f(x) = √x - 2√√x is f'(x) = (1/2√x) - (√(√x)/√x).

Learn more about derivative here:

https://brainly.com/question/25324584

#SPJ11

valuate the difference quotient for the given function. Simplify your answer. X + 5 f(x) f(x) = f(3) x-3 x + 1' Need Help?

Answers

The simplified form of the difference quotient for the given function is ((x + 5) / (x - 3) - undefined) / (x - 3).

To evaluate the difference quotient for the given function f(x) = (x + 5) / (x - 3), we need to find the expression (f(x) - f(3)) / (x - 3). First, let's find f(3) by substituting x = 3 into the function: f(3) = (3 + 5) / (3 - 3)= 8 / 0

The denominator is zero, which means f(3) is undefined. Now, let's find the difference quotient: (f(x) - f(3)) / (x - 3) = ((x + 5) / (x - 3) - f(3)) / (x - 3) = ((x + 5) / (x - 3) - undefined) / (x - 3)

Since f(3) is undefined, we cannot simplify the difference quotient further. Therefore, the simplified form of the difference quotient for the given function is ((x + 5) / (x - 3) - undefined) / (x - 3).

To learn more about difference quotient, click here: brainly.com/question/31059956

#SPJ11

show that for any in two converges x²+2x+4=0 quers the the Newton Rapheon method equation.

Answers

The Newton-Raphson method can be used to approximate the roots of a given equation. In this case, we are asked to show that for any initial guess x₀, the Newton-Raphson method equation can be used to find the roots of the equation x² + 2x + 4 = 0.

The Newton-Raphson method is an iterative numerical method used to find the roots of a function. It requires an initial guess, denoted as x₀, and iteratively refines the guess to approach the root of the equation.

To apply the Newton-Raphson method to the equation x² + 2x + 4 = 0, we start with an initial guess x₀. The iterative formula for the method is given by:

xₙ₊₁ = xₙ - f(xₙ) / f'(xₙ)

where f(x) is the function and f'(x) is its derivative.

For the equation x² + 2x + 4 = 0, we can define f(x) = x² + 2x + 4. The derivative f'(x) is 2x + 2.

By substituting f(x) and f'(x) into the Newton-Raphson iterative formula, we get:

xₙ₊₁ = xₙ - (xₙ² + 2xₙ + 4) / (2xₙ + 2)

This equation allows us to update our guess for the root of the equation with each iteration.

By repeatedly applying this formula, we can approximate the root of the equation x² + 2x + 4 = 0 for any initial guess x₀.

It's worth noting that the convergence of the Newton-Raphson method depends on the choice of the initial guess and the properties of the function. In some cases, the method may fail to converge or converge to a local minimum or maximum instead of the root.

To learn more about Newton-Raphson visit:

brainly.com/question/31618240

#SPJ11

Find the curvature of r(t) = (3t2, In(t), t In(t)) at the point (3, 0, 0). K=

Answers

The curvature of the curve r(t) = (3[tex]t^2[/tex], ln(t), t ln(t)) at the point (3, 0, 0) is given by the expression [tex]\sqrt{333 + 324 ln(3)^2}[/tex] / [tex]\sqrt{36t^2 + 1/t^2 + (ln(t) + 1)^2})^3[/tex].

To find the curvature of the curve given by the vector function r(t) = (3[tex]t^2[/tex], ln(t), t ln(t)) at the point (3, 0, 0), we need to compute the curvature formula using the first and second derivatives of the curve.

The first step is to find the first derivative of r(t).

Taking the derivative of each component of the vector function, we have:

r'(t) = (6t, 1/t, ln(t) + t/t)

Next, we find the second derivative by taking the derivative of each component of r'(t):

r''(t) = (6, -1/[tex]t^2[/tex], 1/t + 1)

Now, we can calculate the curvature using the formula:

K = |r'(t) x r''(t)| / |r'(t)|^3

where x represents the cross product.

Substituting the values of r'(t) and r''(t) into the curvature formula, we have:

K = |(6t, 1/t, ln(t) + t/t) x (6, -1/[tex]t^2[/tex], 1/t + 1)| / |(6t, 1/t, ln(t) + t/t)|^3

Now, evaluate the cross product:

(6t, 1/t, ln(t) + t/t) x (6, -1/[tex]t^2[/tex], 1/t + 1) = (-t, 6t ln(t) + t - t, -6t)

Simplifying the cross product, we get:

(-t, 6t ln(t), -6t)

Next, calculate the magnitude of the cross product:

|(6t, 1/t, ln(t) + t/t) x (6, -1/[tex]t^2[/tex], 1/t + 1)| = [tex]\sqrt{t^2 + (6t ln(t))^2 + (-6t)^2}[/tex] = [tex]\sqrt{t^2 + 36t^2 ln(t)^2 + 36t^2}[/tex]

Now, calculate the magnitude of r'(t):

|(6t, 1/t, ln(t) + t/t)| = [tex]\sqrt{(6t)^2 + (1/t)^2 + (ln(t) + t/t)^2}[/tex] = [tex]\sqrt{36t^2 + 1/t^2 + (ln(t) + 1)^2}[/tex]

Finally, substitute the values into the curvature formula:

K = [tex]\sqrt{t^2 + 36t^2 ln(t)^2 + 36t^2}[/tex] / ([tex]\sqrt{36t^2 + 1/t^2 + (ln(t) + 1)^2})^3[/tex]

Since we are interested in the curvature at the point (3, 0, 0), substitute t = 3 into the equation to find the curvature K at that point.

K = [tex]\sqrt{(3)^2 + 36(3)^2 ln(3)^2 + 36(3)^2}[/tex] / [tex](\sqrt{36(3)^2 + 1/(3)^2 + (ln(3) + 1)^2})^3[/tex]

Simplifying the equation further, we get:

K = [tex]\sqrt{9 + 36(9) ln(3)^2 + 36(9)} / (\sqrt{36(9) + 1/(3)^2 + (ln(3) + 1)^2})^3[/tex]

K = [tex]\sqrt{9 + 324 ln(3)^2 + 324} / (\sqrt{324 + 1/9 + (ln(3) + 1)^2})^3[/tex]

K = [tex]\sqrt{333 + 324 ln(3)^2} / (\sqrt{325 + (ln(3) + 1)^2})^3[/tex]

Therefore, the curvature of the curve r(t) = (3[tex]t^2[/tex], ln(t), t ln(t)) at the point (3, 0, 0) is given by the expression:

[tex]\sqrt{333 + 324 ln(3)^2}[/tex] / [tex]\sqrt{36t^2 + 1/t^2 + (ln(t) + 1)^2})^3[/tex].

Learn more about Equation here:

https://brainly.com/question/29018878

#SPJ11

True or false? For nonzero a, b = Z and a prime number p, if p | (ab) then pa or p | b.

Answers

The following statement is true:If p | (ab) then pa or p | b is true for nonzero a, b = Z, and a prime number p.

Explanation:

For nonzero a, b = Z and a prime number p, if p | (ab) then pa or p | b is a true statement.Let p | (ab) ⇒ (p | a) or (p | b) is true, it follows that either a or b (or both) has the prime factor p.Let a be any integer and p is a prime such that p | ab. Then either p | a or p | b. It can be said that if a is not divisible by p then it is prime to p. If b is not divisible by p then it is prime to p as well. Therefore, it is proven that for nonzero a, b = Z and a prime number p, if p | (ab) then pa or p | b.

To know more about integer  , visit;

https://brainly.com/question/929808

#SPJ11

pts 100 Details x = 3t² + 4t The position of an object at time t is given by the parametric equations y = 21² +7 Find the horizontal velocity, the vertical velocity, and the speed at the moment where t = 2. Do not worry about units in this problem. Horizontal Velocity- Vertical Velocity= Speed= Question Help: Video Message instructor Find the position vector for a particle with acceleration, initial velocity, and initial position given below. ä(t) = (4t, 3 sin(t), cos(5t)) (0) = (-3, 2, 3) F(0)= (-2,-2, 2) F(t) =

Answers

At t = 2, the horizontal velocity is 16, the vertical velocity is 0, and the speed is 16.

For the second part of the question, the information for F(t) is missing.

To find the horizontal velocity, vertical velocity, and speed at the moment when t = 2 for the given parametric equations, we'll start by finding the derivatives of x(t) and y(t).

Given:

x = 3t² + 4t

y = 21² + 7

Taking the derivative of x with respect to t:

dx/dt = d/dt(3t² + 4t)

= 6t + 4

Taking the derivative of y with respect to t:

dy/dt = d/dt(21² + 7)

= 0 (since it's a constant)

The horizontal velocity (Vx) is given by dx/dt, so when t = 2:

Vx = 6t + 4

= 6(2) + 4

= 12 + 4

= 16

The vertical velocity (Vy) is given by dy/dt, so when t = 2:

Vy = dy/dt

= 0

The speed (V) at the moment when t = 2 is the magnitude of the velocity vector (Vx, Vy):

V = √(Vx² + Vy²)

= √(16² + 0²)

= √(256)

= 16

Therefore, at t = 2, the horizontal velocity is 16, the vertical velocity is 0, and the speed is 16.

For the second part of the question, you provided the acceleration vector, initial velocity, and initial position. However, the information for F(t) is missing. Please provide the equation or any additional information for F(t) so that I can assist you further.

Learn more about parametric equations here:

https://brainly.com/question/30748687

#SPJ11

A bag contains 12 red marbles, 7 green marbles, and 1 black marble. Two marbles are picked without replacement. What’s the probability that both marbles are not the same color?

Answers

The probability that both marbles drawn are not the same color is 0.92 or 92%.

To find the probability that both marbles drawn are not the same color, we need to calculate the probabilities of two scenarios:

The first marble drawn is red and the second marble drawn is not red.

The first marble drawn is not red, and the second marble drawn is red.

Let's calculate these probabilities step by step:

The probability of drawing a red marble first: There are 12 red marbles out of a total of 20 marbles (12 red + 7 green + 1 black). So the probability of drawing a red marble first is 12/20.

Given that the first marble drawn was red, the probability of drawing a non-red marble second: Now there are 19 marbles left in the bag, with 11 red marbles, 7 green marbles, and 1 black marble. So the probability of drawing a non-red marble second is 19/19 (since we have one less marble now).

The probability of drawing a non-red marble first: There are 8 non-red marbles (7 green + 1 black) out of 20 marbles. So the probability of drawing a non-red marble first is 8/20.

Given that the first marble drawn was non-red, the probability of drawing a red marble second: Now there are 19 marbles left in the bag, with 12 red marbles, 6 green marbles, and 1 black marble. So the probability of drawing a red marble second is 12/19.

To calculate the overall probability that both marbles are not the same color, we need to sum the probabilities of the two scenarios:

Probability = (Probability of drawing a red marble first * Probability of drawing a non-red marble second) + (Probability of drawing a non-red marble first * Probability of drawing a red marble second)

Probability = (12/20) * (19/19) + (8/20) * (12/19)

Simplifying the expression, we get:

Probability = (12/20) + (8/20) * (12/19)

Probability = 0.6 + 0.32

Probability = 0.92

Therefore, the probability that both marbles drawn are not the same color is 0.92 or 92%.

for such more question on probability

https://brainly.com/question/13604758

#SPJ8

Line segment SU is dilated to create S'U' using point Q as the center of dilation.

The scale factor of the dilation is

Answers

The scale factor used in the dilation is 2

Determining the scale factor used in the dilation

From the question, we have the following parameters that can be used in our computation:

SQ = 4

S'Q = 4 + 4

So, we have

S'Q = 8

The scale factor is calculated as

Scale factor  = S'Q/SQ

Substitute the known values in the above equation, so, we have the following representation

Scale factor  = 8/4

Evaluate

Scale factor = 2

Hence, the scale factor used in the dilation is 2

Read more about scale factor at

brainly.com/question/32805792

#SPJ1

Find f(t) if (f) equals e-7s NOTE: Use u to represent the Heaviside function. 82 f(t) =

Answers

f(t) = L^(-1){F(s)} = L^(-1){1/(s + 7)} = e^(-7t). Hence, f(t) = e^(-7t). To find f(t) given (f) = e^(-7s), we can use the Laplace transform.

The Laplace transform of (f) is given by: F(s) = L{(f)} = ∫[0,∞] e^(-st) f(t) dt Now, let's apply the Laplace transform to both sides of the equation (f) = e^(-7s): F(s) = L{(f)} = L{e^(-7s)}. Using the property of the Laplace transform: L{e^(at)} = 1/(s - a), we can rewrite the equation as: F(s) = 1/(s - (-7)) = 1/(s + 7)

Therefore, we have F(s) = 1/(s + 7). To find f(t), we need to find the inverse Laplace transform of F(s). Using the property of the inverse Laplace transform: L^(-1){1/(s + a)} = e^(-at), we can write: f(t) = L^(-1){F(s)} = L^(-1){1/(s + 7)} = e^(-7t). Hence, f(t) = e^(-7t).

To learn more about Laplace transform, click here: brainly.com/question/30759963

#SPJ11

What is the answer to x 4^5x=(1/32)^1-x

Answers

The value of x that satisfies the equation [tex]x 4^{5x} = (1/32)^{(1-x)[/tex] is x = -0.5.

1. Start by simplifying both sides of the equation:

  x * [tex]4^{(5x)} = (1/32)^{(1-x)[/tex]

2. Rewrite [tex]4^{(5x[/tex]) as [tex](2^2)^{(5x)[/tex] and simplify further:

  x * [tex]2^{(10x)} = (1/32)^{(1-x)[/tex]

3. Rewrite (1/32) as [tex]2^{(-5)[/tex]:

  x * [tex]2^{(10x)} = 2^{(-5(1-x)})[/tex]

4. Apply the exponent rule that states when two exponents with the same base are equal, their exponents must be equal:

  10x = -5(1-x)

5. Distribute -5 to both terms inside the parentheses:

  10x = -5 + 5x

6. Combine like terms by subtracting 5x from both sides:

  10x - 5x = -5

7. Simplify the left side:

  5x = -5

8. Divide both sides by 5 to solve for x:

  x = -5/5

9. Simplify the fraction:

  x = -1

10. Therefore, the solution to the equation [tex]x 4^{5x} = (1/32)^{(1-x)[/tex] is x = -1.

Please note that the above answer is incorrect. My previous response stating the solution was an error. I apologize for the confusion.

For more such questions on value, click on:

https://brainly.com/question/843074

#SPJ8

For the function f(x) = - Inz, find the equation of the linear function that goes through the point (e, f(e)), and that has slope m = -1/e.

Answers

To find the equation of the linear function that passes through the point (e, f(e)) on the graph of f(x) = -ln(x) and has a slope of m = -1/e, we will use the point-slope form of a linear equation.

The point-slope form of a linear equation is given by y - y₁ = m(x - x₁), where (x₁, y₁) is a point on the line and m is the slope of the line. In this case, the point is (e, f(e)) and the slope is m = -1/e.

Substituting the values into the point-slope form, we have:

y - f(e) = -1/e(x - e).

Since our function is f(x) = -ln(x), we can substitute f(e) with -ln(e), which simplifies to -1. Therefore, the equation becomes:

y + 1 = -1/e(x - e).

Rearranging the equation, we get:

y = -1/e(x - e) - 1.

So, the equation of the linear function that passes through the point (e, f(e)) and has a slope of -1/e is y = -1/e(x - e) - 1.

To learn more about linear functions visit:

brainly.com/question/28070625

#SPJ11

Find the value(s) of k such that lim→1 f(x) exist where: 7x² - k²x, f(x) = 15 + 8kx² + k cos(1-x), if x < 1, if x > 1,

Answers

The problem involves finding the area of the region bounded by the curves y = 8 and y = 4 + x. The area can be calculated by finding the points of intersection and integrating the difference between the curves.

To find the area of the region bounded by the curves y = 8 and y = 4 + x, we need to determine the points of intersection between the curves. Setting the equations equal to each other, we get 8 = 4 + x, which gives x = 4.

Next, we need to integrate the difference between the curves from x = 0 to x = 4. The lower curve is y = 4 + x and the upper curve is y = 8.

Setting up the integral, we have ∫[0, 4] (8 - (4 + x)) dx. Simplifying, we get ∫[0, 4] (4 - x) dx.

Evaluating the integral, we have [4x - (x^2/2)] from 0 to 4. Plugging in the values, we get (4(4) - (4^2/2)) - (0 - (0^2/2)).

Simplifying further, we get (16 - 8) - (0 - 0) = 8.

Therefore, the area of the region bounded by the curves is 8 square units.

Learn more about  difference between the curves: brainly.com/question/14696049

#SPJ11

Determine the following limit. 2 24x +4x-2x lim 3 2 x-00 28x +x+5x+5 Select the correct choice below and, if necessary, fill in the answer box to complete your choice. 3 24x³+4x²-2x OA. lim (Simplify your answer.) 3 2 x-00 28x + x + 5x+5 O B. The limit as x approaches [infinity]o does not exist and is neither [infinity] nor - [infinity]0. =

Answers

To determine the limit, we can simplify the expression inside the limit notation and analyze the behavior as x approaches infinity.

The given expression is:

lim(x->∞) (24x³ + 4x² - 2x) / (28x + x + 5x + 5)

Simplifying the expression:

lim(x->∞) (24x³ + 4x² - 2x) / (34x + 5)

As x approaches infinity, the highest power term dominates the expression. In this case, the highest power term is 24x³ in the numerator and 34x in the denominator. Thus, we can neglect the lower order terms.

The simplified expression becomes:

lim(x->∞) (24x³) / (34x)

Now we can cancel out the common factor of x:

lim(x->∞) (24x²) / 34

Simplifying further:

lim(x->∞) (12x²) / 17

As x approaches infinity, the limit evaluates to infinity:

lim(x->∞) (12x²) / 17 = ∞

Therefore, the correct choice is:

B. The limit as x approaches infinity does not exist and is neither infinity nor negative infinity.

Learn more about integral here:

brainly.com/question/27419605

#SPJ11

Suppose that the population P(t) of a country satisfies the differential equation =kP(400-P) with k constant. Its population in 1960 dP dt was 200 million and was then growing at the rate of 3 million per year. Predict this country's population for the year 2030. This country's population in 2030 will be million. (Type an integer or decimal rounded to one decimal place as needed.)

Answers

The population of the country in 2030 will be approximately 358.8 million.

We are given the differential equation dP/dt = kP(400 - P), where P(t) represents the population of the country at time t, and k is a constant.

We are also given that in 1960, dP/dt = 3 million, which means the population was growing at a rate of 3 million per year.

At that time, the population was 200 million.

To solve for the constant k, we can substitute the given values into the differential equation. We have:

3 million = k * 200 million * (400 million - 200 million)

Simplifying the expression inside the parentheses, we get:

3 million = k * 200 million * 200 million

Solving for k, we find:

k = 3 million / (200 million * 200 million) = 7.5 * 10^(-12)

Now we can solve the differential equation to predict the population in 2030. We integrate both sides of the equation:

∫(1 / (P(400 - P))) dP = ∫k dt

The integral on the left side can be evaluated using partial fractions. After integrating, we obtain:

ln|P(400 - P)| = kt + C

To find the value of the constant C, we use the initial condition that in 1960, the population was 200 million. Plugging in t = 0 and P = 200 million, we get:

ln|200(400 - 200)| = 0 + C

ln(400) = C

Now we can find the population in 2030 by plugging in t = 70 (since 2030 - 1960 = 70) into the equation:

[tex]ln|P(400 - P)| = (7.5 * 10^{-12}) * 70 + ln(400)[/tex]

Solving for P, we find:

[tex]P(400 - P) = e^{(7.5 * 10^{-12})} * 70 + ln(400))[/tex]

Simplifying the expression on the right side, we get:

P(400 - P) ≈ 358.8 million

Therefore, the country's population in 2030 will be approximately 358.8 million.

To learn more about differential equation visit:

brainly.com/question/28099315

#SPJ11

A triangular parcel of land has sides of lengths 330 feet, 900 feet and 804 feet. a) What is the area of the parcel of land? Area = 131953.70 b) If land is valued at 2400 per acre (1 acre is 43,560 feet²), what is the value of the parcel of land? value=

Answers

Therefore, the value of the parcel of land is approximately $7272.

To find the value of the parcel of land, we need to calculate the area in acres and then multiply it by the value per acre.

a) Area of the parcel of land:

We can use Heron's formula to calculate the area of a triangle given its side lengths. Let's denote the side lengths as a = 330 feet, b = 900 feet, and c = 804 feet. The semiperimeter (s) of the triangle is calculated as (a + b + c) / 2.

s = (330 + 900 + 804) / 2

s = 1034

Now we can calculate the area (A) using Heron's formula:

A = √(s(s - a)(s - b)(s - c))

A = √(1034(1034 - 330)(1034 - 900)(1034 - 804))

A ≈ 131953.70 square feet

b) Value of the parcel of land:

To find the value in acres, we divide the area by the conversion factor of 43,560 square feet per acre:

Value = (131953.70 square feet) / (43560 square feet per acre)

Value ≈ 3.03 acres

Finally, we multiply the value in acres by the value per acre:

Value = 3.03 acres * $2400 per acre

Value ≈ $7272

To know more about value,

https://brainly.com/question/17201004

#SPJ11

The domain for all variables in the expressions below is the set of real numbers. Determine whether each statement is true or false.
(i) ∀x ∃y (x + y ≥ 0)
∃x ∀y (x · y > 0)
Translate each of the following English statements into logical expressions.
(i) There are two numbers whose ratio is less than 1.
The reciprocal of every positive number is also positive.

Answers

the translations of the given English statements into logical expressions are:

∃x∃y(xy < 1) ∀x(x > 0 ⇒ 1/x > 0).

The given logical expressions are:(i) ∀x ∃y (x + y ≥ 0)∃x ∀y (x · y > 0)

Given expressions are true for all values of the variables given.

Domain for all variables in the given expressions is the set of real numbers.

Translation of given English statements into logical expressions:(i) There are two numbers whose ratio is less than 1.Let the two numbers be x and y.

The given statement can be translated into logical expressions as xy

There are two numbers whose ratio is less than 1.

∃x∃y(xy < 1)(ii) The reciprocal of every positive number is also positive.

The given statement can be translated into logical expressions as ∀x(x > 0 ⇒1/x > 0)

Therefore, the translations of the given English statements into logical expressions are:

∃x∃y(xy < 1) ∀x(x > 0 ⇒ 1/x > 0).

learn more about variables here

https://brainly.com/question/28248724

#SPJ11

Suppose that x and y are related by the given equation and use implicit differentiation to determine dx y4 - 5x³ = 7x ……. dy II

Answers

This is the derivative of x with respect to y, given the equation y^4 - 5x^3 = 7x.

The equation relating x and y is y^4 - 5x^3 = 7x. Using implicit differentiation, we can find the derivative of x with respect to y.

Taking the derivative of both sides of the equation with respect to y, we get:

d/dy (y^4 - 5x^3) = d/dy (7x)

Differentiating each term separately using the chain rule, we have:

4y^3(dy/dy) - 15x^2(dx/dy) = 7(dx/dy)

Simplifying the equation, we have:

4y^3(dy/dy) - 15x^2(dx/dy) - 7(dx/dy) = 0

Combining like terms, we get:

(4y^3 - 7)(dy/dy) - 15x^2(dx/dy) = 0

Now, we can solve for dx/dy:

dx/dy = (4y^3 - 7)/(15x^2 - 4y^3 + 7)

This is the derivative of x with respect to y, given the equation y^4 - 5x^3 = 7x.

Learn more about differentiation here:

https://brainly.com/question/31383100

#SPJ11

Which statement correctly compares the spreads of the distributions? Team A's scores ㅏ ㅁ 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 Team B's scores ㅏ 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100​

Answers

Answer:

5

Step-by-step explanation:

dy 2x+5 Solving with the condition yield a particular solution of the form Ax³ +By+Dx² + Ey²+Fx+ Gy=C 3y² +2y-1 dx D What is A B D+E+F+G? QUESTION S What is lim 84T8 sin KIN 1 7

Answers

Solving with the condition yield a particular solution of the form Ax³ +By+Dx² + Ey²+Fx+ Gy=C 3y² +2y-1 dx D  A + B + D + E + F + G is equal to 7 2/3.

Given the differential equation dy/dx = 2x + 5 and the condition 3y² + 2y - 1 = dx/d, we need to find the particular solution of the form Ax³ + By + Dx² + Ey² + Fx + Gy = C.

Let's start by differentiating the particular solution y = x² + 5x + C with respect to x, which gives us dy/dx = 2x + 5. This matches the given differential equation, so we have found the particular solution.

Next, let's differentiate the given condition 3y² + 2y - 1 = dx/dy. We obtain dx/dy = 6y + 2. Substituting this into the given condition, we have 3y² + 2y - 1 = 6y + 2.

Simplifying, we get 3y² - 4y + 3 = 0. Solving this quadratic equation, we find y = (2 ± i√2)/3.

Substituting C = -11/3 into the particular solution y = x² + 5x + C, we can determine the values of A, B, D, E, F, G. We find A = 1, B = 0, D = 5, E = 0, F = 0, G = -11/3.

The sum of A, B, D, E, F, G is 1 + 0 + 5 + 0 + 0 - 11/3 = 7 2/3.

Therefore, A + B + D + E + F + G is equal to 7 2/3.

For the second question, the expression "84T8sin(KIN)/1 + 7" is not clear and seems to contain some typing errors or missing information.

Learn more about particular solution

https://brainly.com/question/20372952

#SPJ11

the partition where the bundle branches are located is called the

Answers

The partition where the bundle branches are located is called the interventricular septum. The interventricular septum is a wall of tissue that separates the ventricles of the heart. It plays a crucial role in electrical conduction within the heart.

Within the interventricular septum, there are specialized bundles of cardiac muscle fibers known as the bundle branches. These bundle branches are responsible for transmitting electrical signals from the atrioventricular (AV) node to the ventricles, coordinating the contraction and pumping of blood.

The bundle branches consist of the left bundle branch and the right bundle branch. The left bundle branch further divides into the anterior and posterior fascicles, while the right bundle branch extends towards the right ventricle. These branches distribute electrical impulses to specific regions of the ventricles, ensuring synchronized and efficient contraction.

In summary, the partition where the bundle branches are located is known as the interventricular septum. It serves as a pathway for electrical signals to reach the ventricles, facilitating coordinated contraction and efficient pumping of blood.

know more about interventricular septum.

https://brainly.com/question/29103032

#SPJ11

Barooj wants to save $6000 for a trip she plans to take in 4 years. What deposit should she make now in an account that earns 6% per year compounded semi-annually? [3 marks]

Answers

To determine the deposit Barooj should make now, we can use the formula for compound interest:

A = P(1 + r/n)^(nt)

Where:

A is the future value (amount to be saved),

P is the principal (initial deposit),

r is the annual interest rate (in decimal form),

n is the number of times interest is compounded per year, and

t is the number of years.

In this case, Barooj wants to save $6000 in 4 years with an interest rate of 6% per year, compounded semi-annually. Therefore, we have:

A = $6000,

r = 0.06 (6%),

n = 2 (semi-annual compounding),

t = 4.

Substituting these values into the formula, we can solve for P, the required deposit.

To know more about compound interest click here: brainly.com/question/14295570

 #SPJ11

Use continuity to evaluate the limit. lim 2 sin(x + sin(x))

Answers

To evaluate the limit lim x→0, 2 sin(x + sin(x)), we can use the property of continuity. By substituting the limit value directly into the function, we can determine the value of the limit.

The function 2 sin(x + sin(x)) is a composition of continuous functions, namely the sine function. Since the sine function is continuous for all real numbers, we can apply the property of continuity to evaluate the limit.

By substituting the limit value, x = 0, into the function, we have 2 sin(0 + sin(0)) = 2 sin(0) = 2(0) = 0.

Therefore, the limit lim x→0, 2 sin(x + sin(x)) evaluates to 0. The continuity of the sine function allows us to directly substitute the limit value into the function and obtain the result without the need for further computations.

Learn more about limits here:

https://brainly.com/question/12211820

#SPJ11

If d is metric on x.then show that
d"(x,y)=[1-d(x,y)]/1+d(x,y) is not a metric on x

Answers

The function d"(x, y) = [1 - d(x, y)] / [1 + d(x, y)] is not a valid metric on X. Since d"(x, y) fails to satisfy the non-negativity, identity of indiscernibles, and triangle inequality properties, it is not a valid metric on X.

To prove that d"(x, y) is not a metric on X, we need to show that it fails to satisfy at least one of the three properties of a metric: non-negativity, identity of indiscernibles, and triangle inequality.

Non-negativity: For any x, y in X, d"(x, y) should be non-negative. However, this property is violated when d(x, y) = 1, as d"(x, y) becomes undefined (division by zero).

Identity of indiscernibles: d"(x, y) should be equal to zero if and only if x = y. Again, this property is violated when d(x, y) = 0, as d"(x, y) becomes undefined (division by zero).

Triangle inequality: For any x, y, and z in X, d"(x, z) ≤ d"(x, y) + d"(y, z). This property is not satisfied by d"(x, y). Consider the case where d(x, y) = 0 and d(y, z) = 1. In this case, d"(x, y) = 0 and d"(y, z) = 1, but d"(x, z) becomes undefined (division by zero).

Since d"(x, y) fails to satisfy the non-negativity, identity of indiscernibles, and triangle inequality properties, it is not a valid metric on X.

Learn more about Triangle inequality here:

https://brainly.com/question/22559201

#SPJ11

If a set S contains exactly n elements, we say n is the cardinality or size of S and write |S| = n. There exists a useful formula for determining the cardinality of any power set: If |S| = n, then |P(S)| = 2¹. Using this fact, answer the following questions regarding the power set. Remember that the Numbas syntax for {1, 2, 3} is set (1,2,3). Note also that Numbas syntax uses ^ for exponentiation. For example, 39 should be entered as 3^9. For any set A, we know that P(A) must contain the elements {} and A itself. Consider the case where A = {} is the empty set. What is P({})? Show steps (Your score will not be affected.) Answer: b) Given that | B| = 1, what is |P(P(P(B)))|? Show steps (Your score will not be affected.

Answers

there are 16 such subsets, so the cardinality of the power set of the set of these two subsets of B is 2^4 = 16.

a) If A = {} is the empty set, then the only subsets of A are the empty set and itself. So, P(A) = { {}, { A } } = { {} }.

Hence, P({}) = { {} }.

Steps:

For any set A, we know that P(A) must contain the elements {} and A itself. But since A is an empty set, the only element in P(A) is {} .b)

Given | B| = 1, B has exactly one element. Then the elements in the power set of B are {}, { b }. Then, we need to find the cardinality of the power set of the set of these two subsets of B.

There are 4 such subsets, and each of them can either be in or out of the power set.

Therefore, the cardinality of the power set of the set of these two subsets of B is 2^4 = 16.So, |P(P(P(B)))|

= 16.Steps:

We know that | B| = 1, therefore we know that B has exactly one element.

Now the elements in the power set of B are {}, { b }.

Therefore, the power set of these two subsets of B will be

{ {}, { {} }, { { b } }, { {}, { b } }, { { b }, {} }, { { b }, { b } }, { { {}, { b } } }, { { b }, { {}, { b } } }, { {}, { b }, { {}, { b } } }, { { b }, { {}, { b } } }, { { b }, { b }, { {}, { b } } }, { {}, { b }, { b }, { {}, { b } } }, { { b }, { b }, { {}, { b } }, { { b }, { {}, { b } } } }, { {}, { b }, { b }, { {}, { b } }, { { b }, { {}, { b } } } }, { { b }, { b }, { {}, { b } }, { { b }, { {}, { b } } }, { {}, { b }, { {}, { b } } }, { { b }, { {}, { b } }, { {}, { b } } }, { { b }, { b }, { {}, { b } }, { {}, { b } } } }

And there are 16 such subsets, so the cardinality of the power set of the set of these two subsets of B is 2^4 = 16.

learn more about subsets here

https://brainly.com/question/28705656

#SPJ11

Sand falls from an overhead bin and accumulates in a conical pile with a radius that is always three times its height. Suppose the height of the pile increases at a rate of 2 cm/s when the pile is 12 cm high. At what rate is the sand leaving the bin at that instant? 1 (note: the volume of a cone is V = r²h)

Answers

The rate at which sand is leaving the bin when the pile is 12 cm high is determined. It involves a conical pile with a height that increases at a given rate and a known relationship between the height and radius.

In this problem, a conical pile of sand is formed as it falls from an overhead bin. The radius of the pile is always three times its height, which can be represented as r = 3h. The volume of a cone is given by V = (1/3)πr²h.

To find the rate at which sand is leaving the bin when the pile is 12 cm high, we need to determine the rate at which the volume of the cone is changing at that instant. We are given that the height of the pile is increasing at a rate of 2 cm/s when the height is 12 cm.

Differentiating the volume equation with respect to time, we obtain dV/dt = (1/3)π[(2r)(dr/dt)h + r²(dh/dt)]. Substituting r = 3h and given that dh/dt = 2 cm/s when h = 12 cm, we can calculate dV/dt.

The resulting value of dV/dt represents the rate at which sand is leaving the bin when the pile is 12 cm high. It signifies the rate at which the volume of the cone is changing, which in turn corresponds to the rate at which sand is being added or removed from the pile at that instant.

Learn more about relationship between the height and radius: brainly.com/question/30583444

#SPJ11

Use linear approximation, i.e. the tangent line, to approximate 125.09 as follows. Let f(x)=√x and find the equation of the tangent line to f(x) at X = = 125 in the form y = mx + b. Note: The values of m and b are rational numbers which can be computed by hand. You need to enter expressions which give m and b exactly. You may not have a decimal point in the answers to either of these parts. m = b = Using these values, find the approximation. 125.09~ Note: You can enter decimals for the last part, but it will has to be entered to very high precision (correct for 6 places past the decimal point).

Answers


To approximate 125.09 using linear approximation, we consider the function f(x) = √x and find the equation of the tangent line to f(x) at x = 125. By computing the values of m and b in the form y = mx + b, we can determine the approximation. The values of m and b are rational numbers, and the approximation can be expressed as 125.09~.


The equation of the tangent line to f(x) at x = 125 can be found using the slope-intercept form y = mx + b, where m represents the slope and b is the y-intercept. First, we find the derivative of f(x):

f'(x) = 1 / (2√x)

Evaluating f'(x) at x = 125:

f'(125) = 1 / (2√125) = 1 / (2 * 5 * √5) = 1 / (10√5)

The slope, m, of the tangent line is equal to f'(125). Next, we find the value of f(125):

f(125) = √125 = √(5^2 * 5) = 5√5

Using the point-slope form of a line, we can substitute the values of m, x, y, and solve for b:

y - f(125) = m(x - 125)
y - 5√5 = (1 / (10√5))(x - 125)
y = (1 / (10√5))(x - 125) + 5√5

The equation of the tangent line is y = (1 / (10√5))(x - 125) + 5√5, where m = 1 / (10√5) and b = 5√5. Finally, we can approximate 125.09 by substituting x = 125.09 into the equation and solving for y:

y = (1 / (10√5))(125.09 - 125) + 5√55
y = (1 / (10√5))(0.09) + 5√5
y ≈ 0.009√5 + 5√5 ≈ 0.009(2.236) + 5(2.236) ≈ 0.0201 + 11.18 ≈ 11.2001

Therefore, 125.09 can be approximated as 11.2001~ using linear approximation.

Learn more about function here: brainly.com/question/30721594

#SPJ11

Obtain frequency response of the following system. Compute inverse Fourier transform of the frequency response to find the impulse response. d'y dy dx +y(t) +2x(t) +2 dt² dt dt =

Answers

Then, we found the impulse response by taking the inverse Fourier transform of the frequency response, resulting in h(t) = -sin(t) + e^(-2t)sin(t).

To obtain the frequency response of the given system, we can start by taking the Fourier transform of both sides of the differential equation. Let's denote the Fourier transform of a function x(t) as X(ω), where ω represents the angular frequency.

Applying the Fourier transform to the given differential equation, we have:

jωY(ω) + jωY'(ω) + Y(ω) + 2X(ω) + 2ω²Y(ω) = 0

Now, we can rearrange the equation to solve for the frequency response H(ω), which represents the transfer function of the system:

H(ω) = Y(ω) / X(ω) = -2 / [jω + jω + 2 + 2ω²]

Simplifying the expression further, we get:

H(ω) = -2 / [2jω + 2ω²]

Next, we need to find the inverse Fourier transform of the frequency response to obtain the impulse response h(t) of the system. This can be done by using inverse Fourier transform techniques, such as the method of residues or partial fraction decomposition.

Taking the inverse Fourier transform of H(ω), we can decompose the expression into partial fractions:

H(ω) = -1 / jω + 1 / (jω + 2ω²)

Applying inverse Fourier transforms to the partial fractions, we get:

h(t) = -sin(t) + e^(-2t)sin(t)

Therefore, the impulse response of the system is h(t) = -sin(t) + e^(-2t)sin(t).

Learn more about differential equation here:

https://brainly.com/question/32645495

#SPJ11

Given the differential equation y'' - 3y' - 4y = 0, y(0) = -2, y'(0) = 1 Apply the Laplace Transform and solve for Y(s) = L{y} Y(s) = Now solve the IVP by using the inverse Laplace Transform y(t) = L-¹{Y(s)} y(t) = SUBMIT A PHOTO OF YOUR HANDWRITTEN WORK HERE.

Answers

The solution to the given initial value problem, y'' - 3y' - 4y = 0, y(0) = -2, y'(0) = 1, is y(t) = 0. This means that the function y(t) is identically zero, indicating no non-trivial solution exists for the given initial conditions in this case.

Applying the Laplace Transform to the given differential equation, we obtain the following algebraic equation in terms of Y(s):

[tex]s^2Y(s) - 3sY(s) - 4Y(s) = 0.[/tex]

We can factor out Y(s) and rearrange the equation as follows:

[tex]Y(s)(s^2 - 3s - 4) = 0.[/tex]

To solve for Y(s), we divide both sides by [tex](s^2 - 3s - 4)[/tex]and obtain:

Y(s) = 0.

Next, we need to find the inverse Laplace Transform of Y(s) to determine the solution y(t) to the initial value problem. Taking the inverse Laplace Transform of Y(s) = 0 gives us:

y(t) = 0.

Therefore, the solution to the given initial value problem, y'' - 3y' - 4y = 0, y(0) = -2, y'(0) = 1, is y(t) = 0. This means that the function y(t) is identically zero, indicating no non-trivial solution exists for the given initial conditions in this case.

Learn more about Laplace Transform here:

https://brainly.com/question/30759963

#SPJ11

Given the differential equation y'' - 3y' - 4y = 0, y(0) = -2, y'(0) = 1 Apply the Laplace Transform and solve for Y(s) = L{y} Y(s) = Now solve the IVP by using the inverse Laplace Transform y(t) = L-¹{Y(s)} y(t) =

Prove or disprove. If A and B are positive definite n × ʼn matrices, then A + B must be positive definite.

Answers

The statement is true. If A and B are positive definite n × n matrices, then A + B is also positive definite. To prove this, we need to show that for any nonzero vector x, the quadratic form [tex]x^T(A + B)x[/tex] is positive.

Since A and B are positive definite matrices, we know that for any nonzero vector x, the quadratic forms [tex]x^TAx[/tex] and [tex]x^TBx[/tex] are positive. Let's consider the quadratic form [tex]x^T(A + B)x[/tex]. We can expand this as

[tex]x^TAx[/tex]+ [tex]x^TBx[/tex] . Since both [tex]x^TAx[/tex] and [tex]x^TBx[/tex]  are positive, their sum

[tex]x^TAx[/tex] + [tex]x^TBx[/tex]  will also be positive.

To be more precise, let λ1 and λ2 be the eigenvalues of A and B, respectively. Since A and B are positive definite, we have λ1 > 0 and λ2 > 0. Now, let's consider the quadratic form [tex]x^T(A + B)x[/tex]. Using the properties of matrix addition and the distributive property of matrix multiplication, we can rewrite this as [tex]x^TAx[/tex] + [tex]x^TBx[/tex] . Since A and B are positive definite, the eigenvalues of A and B are positive, and thus [tex]x^TAx[/tex]and [tex]x^TBx[/tex]  are positive for any nonzero vector x. Therefore, their sum [tex]x^TAx[/tex] + [tex]x^TBx[/tex]  is also positive. This shows that A + B is positive definite.

Learn more about matrix here: https://brainly.com/question/29132693

#SPJ11

Calculate the velocity and acceleration vectors and the speed of r(t) = ( 72² 72²) at the time t = 3. (Use symbolic notation and fractions where needed. Give your answer in the vector form.) v(3) = 6 256 (i+j) 31 4352 (i+j) Incorrect Calculate the speed of r(t) at the time t = 3. (Use symbolic notation and fractions where needed.) 6 v(3) = 256 √2 Incorrect a(3) = Incorrect

Answers

The velocity vector of r(t) = (72t^2)i + (72t^2)j at t = 3 is v(3) = 432i + 432j. The acceleration vector at t = 3 is a(3) = 144i + 144j. The speed of r(t) at t = 3 is incorrect, as the given value does not match the calculated values.

To find the velocity vector, we take the derivative of r(t) with respect to t:

r'(t) = (144t)i + (144t)j

Substituting t = 3 into r'(t), we get the velocity vector:

v(3) = 144(3)i + 144(3)j = 432i + 432

To find the acceleration vector, we take the derivative of v(t) = r'(t) with respect to t

v'(t) = (144)i + (144)j

Again, substituting t = 3 into v'(t), we get the acceleration vector:

a(3) = 144i + 144j

The speed of r(t) at t = 3 can be calculated by finding the magnitude of the velocity vector:

|v(3)| = √((432)^2 + (432)^2) = √(186,624 + 186,624) = √373,248 = 612

However, the given speed of 256√2 does not match the calculated value of 612, so it is incorrect.

In summary, the velocity vector at t = 3 is v(3) = 432i + 432j, and the acceleration vector is a(3) = 144i + 144j. The speed of r(t) at t = 3 is incorrect, as the given value does not match the calculated value.

Learn more about vector here:

https://brainly.com/question/24256726

#SPJ11

Other Questions
Frankie is struggling to pay his monthly rent and he goes to PayDay Loan down the street to take out a 2-week loan in order to get through the next several weeks before his May 15 th paycheck. Identify the APR on the loan. a. Frankie is offered a $800 two-week loan at . 45% interest. Identify the APR on this loan and what will Frankie have to pay back on May 16 th? Which of the following would be included in the calculation of GDP? A. Repairs to your car done by yourself B. A $10,000 fee paid to an attorney for legal fees C. The purchase of a 1993 Nissan pickup from your best friend D. A barter transaction between two students Can University tuition fees be securitised? Explain your answerin 250 words or less, and use at least 2 academic references. Berman & Jaccor Corporation's current sales and partial balance sheet are shown below. This year Sales $ 1,000 Balance Sheet: Assets Cash $ 200 Short-term investments $ 90 Accounts receivable $ 100 Inventories $ 300 Total current assets $ 690 Net fixed assets $ 400 Total assets $ 1,090 Sales are expected to grow by 12% next year. Assuming no change in operations from this year to next year, what are the projected total operating assets? (sec-x) dx (A) - sin x (B) tan x sec x 1 (C) 2/1-(+) 1 (D) 21-(+) = The diagnostic term for a chronic respiratory disease characterized by paroxysms of coughing, wheezing, and panting with shortness of breath is ______. he average (arithmetic mean) of 100 measurements is 23, and the average of 50 additional measurements is 27 Quantity A uantity HB The average of the 150 measurements 25 Quantity A is greater Quantity B is greater . Assume that Turkey's money growth rate is currently15%and Turkey's output growth rate is9%. Europe's money growth rate is4%and its output growth rate is3%. Also, assume that the world real interest rate is1.75%. For the questions below, use the conditions associated with the general monetary model. Treat Turkey as the home country and define the exchange rate as Turkish lira per euro,EL/. a. Calculate the nominal interest rate in Turkey and in Europe. ( 1 point) b. Calculate the expected rate of depreciation in the Turkish lira relative to the euro. c. Suppose the central bank of the Republic of Turkey increases the money growth rate from15%to18%. If nothing in Europe changes, what is the new inflation rate in Turkey? ( 1 point) d. Illustrate how the change in (c) affects the following variables:MT,PT, real money supply,iT, andELeover time. ( 2 points) e. Suppose Turkey wants to maintain a fixed exchange rate relative to the euro. What money growth rate and nominal interest rate would achieve this objective? a stroke that joins two parts of a letter is called You believe that your boss insulted you and placed you in a bad light in the eyes of your peers. You are angry. Is this constructive or destructive conflict? Which strategy will be most effective? Why? A company retired $85 million of its 5% bonds at 104 ($88.4 million) before their scheduled maturity. At the time, the bonds had a remaining discount of $3 million.Prepare the journal entry to record the redemption of the bonds. (Enter your answers in millions rounded to 1 decimal place (i.e., 5,500,000 should be entered as 5.5). If no entry is required for a transaction/event, select "No journal entry required" in the first account field.) in reflected appraisal, messages received from significant others are particularly powerful. true or false You need the right answer and the whole process Question 1: Price ChangesSuppose that we are in a national economy given by the following AEF Curve:AEF = 1,000 + 0.75YGiven this information, answer the following questions:Suppose that for every $1 increase in price, autonomous consumption decreases by 3 units and desired exports decreases by another 1 unit. Assume that this holds true for any given change in prices. Suppose that the AEF is the AEF associated with a price of $200.a) Suppose therefore that price increase by $50, what would be the increase in Y* in this example?b) Use both of these points to draw out the AD curve. What is the functional form for Aggregate Demand?c) How does the value of the simple multiplier affect the AD curve? You've trained for this (ECO 101).Now suppose that the economy has an aggregate supply curve given by: A weather balloon is rising vertically. After t hours, its distance above the ground, measuredin kilometers, is given by the formula s (t) = 8t-t2. Find the average velocity of the weather balloon from t=2h to t= 5h. Special Order Decisions [LO13-4] Polaski Company manufactures and sells a single product called a Ret. Operating at capacity, the company can produce and sell 36,000 Rets per year. Costs associated with this level of production and sales are given below: The Rets normally sell for $58 each. Fixed manufacturing overhead is $324,000 per year within the range of 29,000 through 36,000 Rets per year. Required: 1. Assume that due to a recession, Polaski Company expects to sell only 29,000 Rets through regular channels next year. A large retail chain has offered to purchase 7,000 Rets if Polaski is willing to accept a 16% discount off the regular price. There would be no sales commissions on this order; thus, variable selling expenses would be slashed by 75%. However, Polaski Company would have to purchase a special machine to engrave the retail chain's name on the 7,000 units. This machine would cost $14,000. Polaski Company has no assurance that the retail chain will purchase additional units in the future. What is the financial advantage (disadvantage) of accepting the special order? (Round your intermediate calculations to 2 decimal places.) 2. Refer to the original data. Assume again that Polaski Company expects to sell only 29,000 Rets through regular channels next year. The U.S. Army would like to make a one-time-only purchase of 7,000 Rets. The Army would reimburse Polaski for all of the variable and fixed production costs assigned to the units by the company's absorption costing system, plus it would pay an additional fee of $1.40 per unit. Because the army would pick up the Rets with its own trucks, there would be no variable selling expenses associated with this order. What is the financial advantage (disadvantage) of accepting the U.S. Army's special order? 3. Assume the same situation as described in (2) above, except that the company expects to sell 36,000 Rets through regular channels next year. Thus, accepting the U.S. Army's order would require giving up regular sales of 7,000 Rets. Given this new information, what is the financial advantage (disadvantage) of accepting the U.S. Army's special order? Lazy River Resort opened for business on May 1, 2020. Its trial balance befara adiuwtment on May 31 is as follows. In addition to those accounts listed on the trial balance, the chart of accounts for Lazy River Resort also contains the following accounts and account numbers: No. 142 Accumulated Depreciation-Buildings, Na. 150 Accumulated Depreciation-Equipment, Na. 212 Salaries and Wages Payable, No. 230 interest Payable. No.619 Depreciation Expense, No. 631 Supplies Expense, No 718 Interest Expense, and No. 722 Insurance Expense. Other data: 1. Prepaid insurance is a 1-year policy starting May 1,2020. 2. A count of supplies shows 700 of unused supplies on May 31 . 3. Annual depreciation is 3,816 on buildings and 2,880 on equipment. 4. The mortgage interest rate is 6%. (The mortgage was taken out on May 1.) 5. Two-thirds of the unearned rent revenue is recognized as revenue. 7. Salaries of 800 are accrued and unpaid at May 31 . Let f(x, y, z) = In (2-x + y). (a) Evaluate f(3, -4,7). 0.693 X (b) Find the domain of f. (Enter your answers as a comma-separated list of inequalities.) { 2-1-1>0} X Photos of foods or food dishes that have the carbohydrates nutrient in them (Recipes that have ) . You have gathered the following vehicle costs: a. Calculate the annusl variable and fixed costs of the vehicle. b. Compute the operoting cost per mile. Complete this question by entering your answers in the tabs below. Caiculate the annual variable and fixed cots of the vehicie. Note: Do not round intermediate caicuiations. Round answer to nearest whole number. Compare and contrast the "stages model" and "born analytical" pathways to becoming an analyticalcompetitor. What pathways have Amazon and Netflix followed to become analytical competitors, have they followed the same or different pathways and where do they currently sit on their analytical journeys? (What factors do you think influences the choices of firms in pursuing the stages versus the born analyticalpathways?)