Answer:if power factor =1 is possible for that.
Explanation:when pf is unity. means 1.
c) Also known as moral philosophy, Et hics is a branch of phil osophy which
seeks to address questions about morality; that is, about concepts like good and bad, right and wrong, justice, virtue, etc. There is quite a number of approaches to the study of ethical issues. With clear illustrations, compare and contrast Duty-based and Out come – based ethics
It should be noted that duty-based ethics is the intent of an action while outcome-based ethics means the outcome of an action.
What are ethics?It should be noted that ethics are the moral principles that govern a person's behaviour or the conducting of an activity.
Here, duty-based ethics are what people are talking about when they refer to the principle of the thing.
Also, duty-based ethics teaches that some acts are right or wrong based on how they're viewed in the society.
It should be noted that outcome-based ethics simply dictates that the decision to act in a particular way should be beneficial to the people and have a positive impact on them. In this case, the focus is on the result.
Learn more about ethics on:
https://brainly.com/question/13969108
#SPJ1
The factor of safety for a machine element depends on the particular point selected for the analysis.
This bar is made of AISI 1006 cold-drawn steel (Sy=280MPa) and it is loaded by the forces F=0.55kN, P=8.0kN and T=30N.m. Based upon the Von Misses theory, determine the safety factor for points A and B.
Based upon the Von Mises theory, the safety factor for points A and B are 2.77 and 6.22 respectively.
How to calculate the safety factor for points A and B?From the diagram of this bar made of AISI 1006 cold-drawn steel shown in the image attached below, we can logically deduce the following parameters:
Stress, Sy = 280 MPa.Force, F = 0.55 kN to N = 550 N.Pressure, P = 8.0 kN to N = 800 N.Surface tension, T = 30 Nm.Length, l = 100 mm to m = 0.1 m.Diameter, d = 200 mm to m = 0.02 m.At point A, the stress is given by this equation:
σx = Mc/I + P/Area
[tex]\sigma_x = \frac{Fl(\frac{d}{2}) }{\frac{\pi d^2}{64} } +\frac{P}{\frac{\pi d^2}{4} } \\\\[/tex]
σx = 32Fl/πd³ + 4P/πd²
Substituting the given parameters into the formula, we have;
σx = 32(550)(0.1)/π(0.02)³ + 4(800)/π(0.02)²
σx = 95.49 MPa.
Next, we would determine the torque:
Mathematically, torque can be calculated by using this formula:
τxy = Tr/J = 16T/πd³
τxy = 16(30)/π(0.02)³
τxy = 19.10 MPa.
From Von Misses theory, we have:
σVM = √(σx² + 3τxy²)
σVM = √(95.49² + 3(19.10)²)
σVM = 101.1 MPa.
Now, we can calculate the safety factor for point A:
n = Sy/σVM
n = 280/101.1
n = 2.77.
At point B, the stress is given by this equation:
σx = 4P/πd²
σx = 4(800)/π(0.02)²
σx = 25.47 MPa.
Next, we would determine the torque:
Mathematically, torque can be calculated by using this formula:
τxy = Tr/J = 16T/πd³ + 4V/3A
τxy = 16(30)/π(0.02)³ + 4(550)/3π(0.02)³
τxy = 21.43 MPa.
From Von Mises theory, we have:
σVM = √(σx² + 3τxy²)
σVM = √(25.47² + 3(21.43)²)
σVM = 45.02 MPa.
Now, we can calculate the safety factor for point B:
n = Sy/σVM
n = 280/45.02
n = 6.22.
Read more on Von Mises theory here: https://brainly.com/question/12976779
#SPJ1
Cd, also called blank______, was the first widely available optical format for pc users.
Answer: Compact Disc
Both copper and stainless steel are being considered as a wall material for a liquid cooled rocket nozzle. The cooled exterior of the wall is maintained at 150°C, while the combustion gases within the nozzle are at 2750°C. The gas side heat transfer coefficient is known to be hᵢ = 2×10⁴ W/m²-K, and the radius of the nozzle is much larger than the wall thickness. Thermal limitations dictate that the temperature of copper must not exceed 540°C, while that of the steel must not exceed 980°C. What is the maximum wall thickness that could be employed for each of the two materials? For Cu, ρ = 8933 kg/m³, k = 378 W/m-K and for stainless steel, ρ = 7900 kg/m³, k = 23.2 W/m-K
a. The maximum thickness of the copper nozzle is 3.3 mm
b. The maximum thickness of the steel nozzle is 0.054 mm
The question has to do with heat transfer
What is heat transfer?Heat transfer is the movement of heat energy from one body to anotrher.
How to calculate the maximum wall thickness?Since the rate of heat loss by the gas equal rate of heat gain by the metal.
Rate of heat loss by gasThe rate of heat loss by gas is P = -hA(T - T') where
h = heat transfer coefficient of gas = 2 × 10⁴ W/m²-K, A = surface area of nozzle, T = maximum temperature of metal and T = Temperature of gas = 2750°CRate of heat gain by metalThe rate of heat gain by metal is given by P' = kA(T - T")/t where
k = thermal coefficient of metal, A = surface area of nozzle, T = maximum temperature of metal, T" = temperature of exterior wall of nozzle = 150°C and t = thickness of nozzle. Maximum thickness of nozzle.Since P = P', we have that
-hA(T - T') = kA(T - T")/t
Making t subject of the formula, we have
t = -k(T - T")/h(T - T')
a. Maximum thickness for copper nozzleGiven that for copper
T = 540°C and k = 378 W/m-KSubstituting the values of the variables into t, we have
t = -k(T - T")/h(T - T')
t = -378 W/m-K(540°C - 150°C)/[2 × 10⁴ W/m²-K(540°C - 2750°C)]
t = -378 W/m-K(390°C)/[2 × 10⁴ W/m²-K(-2210°C)]
t = 147420 W/m/4420 × 10⁴ W/m²
t = 147420 W/m/44200000 W/m²
t = 0.0033 m
t = 3.3 mm
So, the maximum thickness of the copper nozzle is 10.71 cm
b. Maximum thickness for steel nozzleGiven that for steel
T = 980°C and k = 23.2 W/m-KSubstituting the values of the variables into t, we have
t = -k(T - T")/h(T - T')
t = -23.2 W/m-K(980°C - 150°C)/[2 × 10⁴ W/m²-K(980°C - 2750°C)]
t = -23.2 W/m-K(830°C)/[2 × 10⁴ W/m²-K(-1770°C)]
t = 19256 W/m/3540 × 10⁴ W/m²
t = 19256 W/m/35400000 W/m²
t = 0.0000544 m
t = 0.0544 mm
t ≅ 0.054 mm
So, the maximum thickness of the steel nozzle is 0.054 mm
Learn more about heat transfer here:
https://brainly.com/question/27673846
#SPJ1