Answer:
[tex]T_o=82.1sec[/tex]
Explanation:
From the question we are told that:
Lost Time [tex]t=12secs[/tex]
Sum of critical flow ratios [tex]X=0.72[/tex]
Generally the Webster Method's equation for Optimum cycle time is is mathematically given by
[tex]T_o=\frac{1.5t+5}{1-x}[/tex]
[tex]T_o=\frac{1.5*12+5}{1-0.72}[/tex]
[tex]T_o=82.1sec[/tex]
Blocks A and B each have a mass m. Determine the largest horizontal force P which can be applied to B so that A will not move relative to B. All surfaces are smooth.
Answer:
The answer is "15 N".
Explanation:
Please find the complete question in the attached file.
In frame B:
For just slipping:
[tex]\to \frac{P}{2} \cos \theta =mg \sin \theta\\\\\to P=2 mg \tan \theta \\\\[/tex]
[tex]=2 \times 1 \times g \times \tan 37^{\circ}\\\\ =2 \times 10 \times \frac{3}{4}\\\\ =15 \ N[/tex]
How much energy does it take to boil water for pasta? For a one-pound box of pasta
you would need four quarts of water, which requires 15.8 kJ of energy for every degree
Celsius (°C) of temperature increase. Your thermometer measures the starting
temperature as 48°F. Water boils at 212°F.
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?
Answer:
a. 164 °F b. 91.11 °C c. 1439.54 kJ
Explanation:
a. [1 pts] How many degrees Fahrenheit (°F) must you raise the temperature?
Since the starting temperature is 48°F and the final temperature which water boils is 212°F, the number of degrees Fahrenheit we would need to raise the temperature is the difference between the final temperature and the initial temperature.
So, Δ°F = 212 °F - 48 °F = 164 °F
b. [2 pts] How many degrees Celsius (°C) must you raise the temperature?
To find the degree change in Celsius, we convert the initial and final temperature to Celsius.
°C = 5(°F - 32)/9
So, 48 °F in Celsius is
°C₁ = 5(48 - 32)/9
°C₁ = 5(16)/9
°C₁ = 80/9
°C₁ = 8.89 °C
Also, 212 °F in Celsius is
°C₂ = 5(212 - 32)/9
°C₂ = 5(180)/9
°C₂ = 5(20)
°C₂ = 100 °C
So, the number of degrees in Celsius you must raise the temperature is the temperature difference between the final and initial temperatures in Celsius.
So, Δ°C = °C₂ - °C₁ = 100 °C - 8.89 °C = 91.11 °C
c. [2 pts] How much energy is required to heat the four quarts of water from
48°F to 212°F (boiling)?
Since we require 15.8 kJ for every degree Celsius of temperature increase of the four quarts of water, that is 15.8 kJ/°C and it rises by 91.11 °C, then the amount of energy Q required is Q = amount of heat per temperature rise × temperature rise = 15.8 kJ/°C × 91.11 °C = 1439.54 kJ
Do you know who Candice is
Answer: Can these nuts fit in your mouth?
Explanation:
im just here for the points >:)
On a two-way roadway with a center lane, drivers from either direction can _________ from the center lane.
A horizontal water jet impinges against a vertical flat plate at 30 ft/s and splashes off the sides in the verti- cal plane. If a horizontal force of 500 lbf is required to hold the plate against the water stream, determine the volume flow rate of the water.
Answer:
8.6 ft³/s
Explanation:
The force due to the water jet F = mv where m = mass flow rate = ρQ where ρ = density of water = 62.4 lbm/ft³ and Q = volume flow rate. v = velocity of water jet = 30 ft/s
So, F = mv
F = ρQv
making Q subject of the formula, we have
Q = F/ρv
Since F = force due to water jet = force needed to hold the plate against the water stream = 500 lbf = 500 × 1 lbf = 500 × 32.2 lbmft/s² = 16100 lbmft/s²
Since
Q = F/ρv
Substituting the values of the variables into the equation for Q, we have
Q = F/ρv
Q = 16100 lbmft/s²/(62.4 lbm/ft³ × 30 ft/s)
Q = 16100 lbmft/s²/1872 lbm/ft²s
Q = 8.6 ft³/s
So, the volume flow rate is 8.6 ft³/s.
Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 3.333 seconds. In Eager Mode, the app utilizes a faster timer resolution for its computations, so the execution time in Eager Mode is 2 seconds (i.e., Eager Mode execution time is 60% of Lazy Mode execution time).
After finishing computation, the app sends some data to the cloud, regardless of the mode it’s in. The data size sent to the cloud is 600 MB. The bandwidth of communication is 15 MBps for WiFi and 5 MBps for 4G. Assume that the communication radio is idle during the computation time. Assume that the communication radio for WiFi has a power consumption of 75 mW when active and 15 mW when idle. Similarly, assume that the communication radio for 4G has a power consumption of 190 mW when active and 25 mW when idle. The Idle Power of the CPU is 7 mW, whereas the Active Power of the CPU is 5 mW per unit utilization. Assume that the power consumption of the CPU is a linear function of its utilization. In other words: P = (Idle Power) + (Utilization)*(Power per unit Utilization). A configuration of the mobile app involves choosing a timer resolution (Lazy or Eager) and choosing a type of radio (WiFi or 4G). For example, faster timer resolution (Eager) and 4G network is a configuration, while slower resolution (Lazy) and WiFi is another. There are four possible configurations in all.
Required:
What is the average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G?
The average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G Split is maintained by Screen Mode.
Why reducing leads to increasing wages?Reducing such a need to move in between multiple tabs, the split-screen has been valuable for increasing wages. In the several instances running a two or more desktop system will allow different programs to run throughout multiple devices. That works with the same process on both PC and laptop monitors.
Just display them side by side, instead of the switching among both the apps that has been used frequently. In this phase, an app that the snap to either left or right occupies a third of the display, and yet another app holds the two-thirds remaining. It refers to Split-Screen Mode.
Similarly, assume that the communication radio for 4G has a power consumption of 190 mW when active and 25 mW when idle. The Idle Power of the CPU is 7 mW, whereas the Active Power of the CPU is 5 mW per unit utilization.
Therefore, The average power consumption for Eager WiFi, Lazy WiFi, Eager 4G, and Lazy 4G Split is maintained by Screen Mode.
Learn more about average power on:
https://brainly.com/question/14831024
#SPJ2
Find the general solution of the given differential equation. Give the largest interval over which the general solution is defined. Determine whether there are any transient terms in the general solution.
x dx/dy−y=x^2sinx
Answer:
Interval: x∈ ( 0, ∞ )
There are no transient terms
Explanation:
x (dy/dx) – y= x^2sinx
Attached below is the detailed solution of the Given problem
There are no transient terms found in the general solution
Interval: x∈ ( 0, ∞ )
g Steel plates (AISI 1010) of 4 cm thickness initially at a uniform temperature of 500 deg C are cooled by air at 50 deg C with a convection coefficient of 30 W-m2-K-1. Estimate the time it will take for their midplane temperature to reach 100 deg C.
Solution :
Characteristic length = thickness / 2
[tex]$=\frac{0.04}{2}$[/tex]
= 0.02 m
Thermal conductivity for steel is 42.5 W/m.K
[tex]$\text{Biot number} = \frac{\text{convective heat transfer coefficient} \times \text{characteristic length}}{\text{thermal conductivity}}$[/tex]
[tex]$=\frac{30 \times 0.02}{42.5}$[/tex]
= 0.014
Since the Biot number is less than 0.01, the lumped system analysis is applicable.
[tex]$\frac{T-T_{\infty}}{T_0-T_{\infty}} = e^{-b\times t}$[/tex]
Where,
T = temperature after t time
[tex]$T_{\infty}$[/tex] = surrounding temperature
[tex]$T_0$[/tex] = initial temperature
[tex]$b=\frac{\text{heat transfer coefficient}}{\text{density} \times {\text{specific heat } \times \text{characteristic length }}}$[/tex]
t = time
We calculate B:
[tex]$b=\frac{30}{7833 \times 460 \times 0.02}$[/tex]
= 0.000416
Thus, [tex]$\frac{100-50}{500-50}=e^{-0.00416 \times t}$[/tex]
t = 5281.78 second
= 88.02 minutes
Thus the time taken for reaching 100 degree Celsius is 88.02 minutes.
Represent each of the following units as a combination of primitive
dimensions where M=mass, L=length, T=time. As an example, miles per hour would
correspond to [L/T].
a. kilometer
b. quart
c. pascal
d. watt
e. newton
f. horsepower
Answer:
a. unit of length: [L]
b. unit of volume: [[tex]L^3[/tex]]
c. unit of pressure:[tex]P=\frac{F}{A} \equiv\frac{[MLT^{-2}]}{[L^2]}[/tex] [tex][ML^{-1}T^{-2}][/tex]
d. unit of power: [tex]N.m.s^{-1}\equiv [ML^2T^{-3}][/tex]
e. unit of force: [tex][kg.m/s^2]\equiv [MLT^{-2}][/tex]
f. unit of power: [tex]N.m.s^{-1}\equiv [ML^2T^{-3}][/tex]
Force: [tex]F=m.a=m.\frac{v}{t}=m.\frac{x}{t}\div t[/tex]
Power: [tex]P=\frac{W}{t}=\frac{F.x}{t}[/tex]
where:
F = force
A = area
W = work
t = time
a = acceleration
v = velocity
x = displacement
Atmospheric pressure is 101 kPa. Pressure inside a tire is measured using a typical tire pressure gage to be 900 kPa. Find gage pressure and absolute pressure in the tire. ___________________________________________________________________
Answer:
The gage and absolute pressures are 900 and 1001 kilopascals, respectively.
Explanation:
The gage pressure ([tex]P_{g}[/tex]), in kilopascals, is the difference between absolute ([tex]P_{abs}[/tex]) and atmospheric pressures ([tex]P_{atm}[/tex]), measured in kilopascals. If we know that [tex]P_{g} = 900\,kPa[/tex] and [tex]P_{atm} = 101\,kPa[/tex], then the gage and absolute pressures are, respectively:
[tex]P_{g} = 900\,kPa[/tex]
[tex]P_{abs} = P_{atm} + P_{g}[/tex]
[tex]P_{abs} = 101\,kPa + 900\,kPa[/tex]
[tex]P_{abs} = 1001\,kPa[/tex]
The gage and absolute pressures are 900 and 1001 kilopascals, respectively.
A start-up is expanding overseas and spends an excessive amount of time on recruiting and hiring activities, hindering its ability to focus on the core aspects of its business. How can a Human Capital Management (HCM) platform provider benefit this company?
Answer:
Human Capital Management (HCM) will help the start-up firm manage its recruiting and hiring activities.
Explanation:
Human Capital Management (HCM) Platform will assist the start-up firm manage its main point of access by keeping the employee records and maintaining the wages and salaries, managing the benefits, time, and attendance, and carrying out performance reviews including looking after the most important asset employees.
Ammonia enters the expansion valve of a refrigeration system at a pressure of 10 bar and a temperature of 24 C and exits at 1 bar. If the refrigerant undergoes a throttling process, what is the quality of the refrigerant exiting the expansion valve.
Answer:
[tex]h_{1} = h_2} = 293.45 KJ/kg[/tex].
The quality of the refrigerant exiting the expansion valve is
[tex]x_{2}=0.193596[/tex].
Explanation:
Fluid given Ammonia.
Inlet 1:-
Temperature [tex]T_{1}[/tex] = [tex]24^{o} C[/tex].
Pressure [tex]P_{1}[/tex] = 10 bar.
Exit 2:-
Pressure [tex]P_{2}[/tex] = 1 bar.
Solution:-
A hollow pipe is submerged in a stream of water so that the length of the pipe is parallel to the velocity of the water. If the water speed doubles and the cross-sectional area of the pipe triples, what happens to the volume flow rate of the water passing through it?
Answer:
increases by a factor of 6.
Explanation:
Let us assume that the initial cross sectional area of the pipe is A m² while the initial velocity of the water is V m/s², hence the flow rate of the water is:
Initial flow rate = area * velocity = A * V = AV m³/s
The water speed doubles (2V m/s) and the cross-sectional area of the pipe triples (3A m²), hence the volume flow rate becomes:
Final flow rate = 2V * 3A = 6AV m³/s = 6 * initial flow rate
Hence, the volume flow rate of the water passing through it increases by a factor of 6.
Lab 5A Problem Input two DWORD values from the keyboard. Determine which number is larger or if they are even. Your program should look like the following: First number larger Enter a number 12 Enter a number 10 12 is the larger number Press any key to close this window... Second number larger Enter a number 10 Enter a number 12 12 is the larger number Press any key to close this window... Numbers Equal Enter a number 12 Enter a number 12 Numbers are equal Press any key to close this window...
Answer:
Explanation:
#include<iostream>
using namespace std;
int main()
{
int n1,n2;
cout<<"Enter a number:"<<endl; //Entering first number
cin>>n1;
cout<<"Enter a number:"<<endl; //Entering second number
cin>>n2;
if(n1%2==0 && n1%2==0) //Checking whether the two number are even or not
{
if(n1>n2)
{
cout<<n1<<" is the larger number"<<endl;
}
else if(n1==n2)
{
cout<<"Numbers are equal"<<endl;
}
else
{
cout<<n2<<" is the larger number"<<endl;
}
}
else
{
cout<<"The number are not even"<<endl;
}
}
A levee will be constructed to provide some flood protection for a residential area. The residences are willing to accept a one-in-five chance that the levee will be overtopped in the next 15 years. Assuming that the annual peak streamflow follows a lognormal distribution with a log10(Q[ft3/s]) mean and standard deviation of 1.835 and 0.65 respectively, what is the design flow in ft3/s?
Answer:
1709.07 ft^3/s
Explanation:
Annual peak streamflow = Log10(Q [ft^3/s] )
mean = 1.835
standard deviation = 0.65
Probability of levee been overtopped in the next 15 years = 1/5
Determine the design flow ins ft^3/s
P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2
∴ T = 67.72 years
Q₁₅ = 1 - 0.2 = 0.8
Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )
K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )
= 2.1504
back to equation 1
Zt = 1.835 + ( 2.1504 * 0.65 ) = 3.23276
hence:
Log₁₀ ( Qt(ft^3/s) ) = Zt = 3.23276
hence ; Qt = 10^3.23276
= 1709.07 ft^3/s
Suppose a causal CT LTI system has bilateral Laplace transform H(s) 2s - 2 $2 + (10/3)s + 1 (8)
(a) Write the linear constant coefficient differential equation (LCCDE) relating a general input x(t) to its corresponding output y(t) of the system corresponding to this transfer function in equation (8).
(b) Suppose the input x(t) = e-tu(t). Find the output y(t). In part (c), the output signal can be expressed as y(t) = - e-(1/3)t u(t) + e-tu(t) e-3tu(t), - 019 Where a, b, and care positive integers. What are they? a = b = C=
Solution :
Given :
[tex]$H(S) =\frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]
Transfer function, [tex]$H(S) =\frac{Y(S)}{K(S)}= \frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]
[tex]$Y(S) \left(S^2+\frac{10}{3}S+1\right) = (2S-2) \times (S)$[/tex]
[tex]$S^2Y(S) + \frac{10}{3}(SY(S)) + Y(S) = 2(S \times (S)) - 2 \times (S)$[/tex]
Apply Inverse Laplace Transforms,
[tex]$\frac{d^2y(t)}{dt^2} + \frac{10}{3} \frac{dy(t)}{dt} + y(t)=2 \frac{dx(t)}{dt} - 2x(t)$[/tex]
The above equation represents the differential equation of transfer function.
Given : [tex]$x(t)=e^{-t} u(t) \Rightarrow X(S) = \frac{1}{S+1}$[/tex]
We have : [tex]$H(S) =\frac{Y(S)}{K(S)}= \frac{2S-2}{S^2+\left(\frac{10}{3}\right) S+1}$[/tex]
[tex]$Y(S) = X(S) \times \frac{6S-6}{3S^2+10 S + 3} = \frac{6S-6}{(S+1)(3S+1)(S+3)}$[/tex]
[tex]$Y(S) = \frac{A}{S+1}+\frac{B}{3S+1} + \frac{C}{S+3}[/tex]
[tex]$A = Lt_{S \to -1} (S+1)Y(S)=\frac{6S-6}{(3S+1)(S+3)} = \frac{-6-6}{(-3+1)(-1+3)} = 3$[/tex]
[tex]$B = Lt_{S \to -1/3} (3S+1)Y(S)=\frac{6S-6}{(S+1)(S+3)} = \frac{-6/3-6}{(1/3+1)(-1/3+3)} = \frac{-9}{2}$[/tex]
[tex]$C = Lt_{S \to -3} (S+3)Y(S)=\frac{6S-6}{(S+1)(3S+1)} = \frac{-18-6}{(-3+1)(-9+1)} = \frac{-3}{2}$[/tex]
So,
[tex]$Y(S) = \frac{3}{S+1} - \frac{9/2}{3S+1} - \frac{3/2}{S+3}$[/tex]
[tex]$=\frac{3}{S+1} - \frac{3/2}{S+1/3} - \frac{3/2}{S+3}$[/tex]
Applying Inverse Laplace Transform,
[tex]$y(t) = 3e^{-t}u(t)-\frac{3}{2}e^{-t/3}u(t) - \frac{3}{2}e^{-3t} u(t)$[/tex]
[tex]$=\frac{-3}{2}e^{-\frac{1}{3}t}u(t) + \frac{3}{1}e^{-t}u(t)-\frac{3}{2}e^{-3t} u(t)$[/tex]
where, a = 2
b = 1
c= 2
Water steam enters a turbine at a temperature of 400 o C and a pressure of 3 MPa. Water saturated vapor exhausts from the turbine at a pressure of 125 kPa. At steady state, the work output of the turbine is 530 kJ/kg. The surrounding air is at 20 o C. Neglect the changes in kinetic energy and potential energy. Determine (20 points) (a) the heat transfer from the turbine to the surroundings per unit mass flow rate, (b) the entropy generation during this process.
Answer:
a) -505.229 kJ/Kg
b) -1.724 kJ/kg
Explanation:
T1 = 400°C
P1 = 3 MPa
P2 = 125 kPa
work output = 530 kJ/kg
surrounding temperature = 20°C = 293 k
A) Calculate heat transfer from Turbine to surroundings
Q = h2 + w - h1
h ( enthalpy )
h1 = 3231.229 kj/kg
enthalpy at P2
h2 = hg = 2676 kj/kg
back to equation 1
Q = 2676 + 50 - 3231.229 = -505.229 kJ/Kg ( i.e. heat is lost )
b) Entropy generation
entropy generation = Δs ( surrounding ) + Δs(system)
= - 505.229 / 293 + 0
= -1.724 kJ/kg
What are the initial questions that a systems analyst must answer to build an initial prototype of the system output.
A 5.74 kg rock is thrown upwards with a force of 317 N at a location where the local gravitational acceleration is 9.81 m/s^2. What is the net acceleration of the rock?
Answer:
[tex]a=45.31m/s^2[/tex]
Explanation:
From the question we are told that:
Mass [tex]m=5.74[/tex]
Force [tex]F=317N[/tex]
Gravitational Acceleration [tex]g=9.81m/s^2[/tex]
Generally the equation for Force is mathematically given by
[tex]F-mg=ma[/tex]
[tex]317-5.74*9.81=5.74 a[/tex]
[tex]a=\frac{260.7}{5.74}[/tex]
[tex]a=45.31m/s^2[/tex]
What does Faraday's law of induction states?
Explanation:
This relationship, known as Faraday's law of induction (to distinguish it from his laws of electrolysis), states that the magnitude of the emf induced in a circuit is proportional to the rate of change of the magnetic flux that cuts across the circuit.
Problema:
Una nevera de vinos, con un peso bruto de 50 kg., que tiene las siguientes dimensiones: .60 m Largo x .49 m ancho x .50 m altura. Para ser transportadas en un contenedor de 40 pies D.V. responder las siguientes preguntas:
• 1.Cuántas neveras de vinos de acuerdo al volumen caben en un contenedor de 40 pies?
• De acuerdo dimensiones internas (largo, ancho y alto), ¿Cuántas caben en un contenedor de 40 pies?
• De acuerdo al peso que soporta el contenedor. ¿Cuántas neveras de vinos es posible transportar?
Answer:
I can't understand this language .
A 0.82-in-diameter aluminum rod is 5.5 ft long and carries a load of 3000 lbf. Find the tensile stress, the total deformation, the unit strains, and the change in the rod diameter.
Answer:
Tensile stress = 0.1855Kpsi
Total deformation = 0.0012243 in
Unit strain = 1.855 *10^-5 or 18.55μ
Change in the rod diameter = 5.02 * 10^ -6 in
Explanation:
Data given: D= 0.82 in
L = 5.5 ft * 12 = 66 in
load (p) = 3000 (Ibf) /32.174 = 93.243 Ibm
Area = (π/4) D² = (π/4) 0.82² = 0.502655 in²
∴ Tensile stress Rt = P/A = 93.243/0.502655 = 185.50099 pound/in²
Rt = 0.1855 Kpsi
∴ Total deformation = PL / AE = Rt * L/ Eal
= 0.1855 * 10³ * 66 / 10000 * 10³
= 0.0012243 in
∴the unit strains = total deformation / L = 0.0012243/ 66
=0.00001855 = 1.855 *10^-5
= 18.55μ
∴ Change in rod Δd/ d = μ ΔL/L
= (0.33) 1.855 *10^-5 * 0.82
= 5.02 * 10^ -6 in
A micromechanical resonator is to be designed to have a Q factor of 1000 and a natural frequency of 2 kHz. Determine the system-damping factor and the system bandwidth.
Answer:
Explanation:
Given:
Q factor, =1000
natural frequency, [tex]f_n=2000~Hz[/tex]
Damping factor, [tex]\zeta=?[/tex]
Bandwidth, BW=?
We have the relation:
[tex]Q=\frac{1}{2\zeta}[/tex]
[tex]\zeta=\frac{1}{2Q}[/tex]
[tex]\zeta=\frac{1}{2\times 1000}[/tex]
[tex]\zeta=5\times 10^{-4}[/tex]
Bandwidth:
[tex]BW=\frac{f_n}{Q}[/tex]
[tex]BW=\frac{2000}{1000}[/tex]
[tex]BW=2~Hz[/tex]
Cite another example of information technology companies pushing the boundaries of privacy issues; apologizing, and then pushing again once scandal dies down. As long as the controversy fades, is there anything unethical about such a strategy?
Answer:
Explanation:
Tech Social Media giant FB is one of those companies. Not long ago the ceo was brought to court to accusations that his company was selling user data. Turns out this is true and they are selling their users private data to companies all over the word. Once the news turned to something else, people focused on something new but the company still continues to sell it's users data the same as before. This is completely unethical as the information belongs to the user and they are not getting anything while the corporation is profiting.
An ideal neon sign transformer provides 9130 V at 51.0 mA with an input voltage of 240 V. Calculate the transformer's input power and current.
Answer:
Input power = 465.63 W
current = 1.94 A
Explanation:
we have the following data to answer this question
V = 9130
i = 0.051
the input power = VI
I = 51.0 mA = 0.051
= 9130 * 0.051
= 465.63 watts
the current = 465.63/240
= 1.94A
therefore the input power is 465.63 wwatts
while the current is 1.94A
the input power is the same thing as the output power.
The heat transfer surface area of a fin is equal to the sum of all surfaces of the fin exposed to the surrounding medium, including the surface area of the fin tip. Under what conditions can we neglect heat transfer from the fin tip?
Answer:
The explanation according to the given query is summarized in the explanation segment below.
Explanation:
If somehow the fin has become too lengthy, this same fin tip temperature approaches the temperature gradient and maybe we'll ignore heat transmission out from end tips.Additionally, effective heat transmission as well from the tip could be ignored unless the end tip surface is relatively tiny throughout comparison to its overall surface.In a CNC machining operation, the has to be moved from point (5, 4) to point(7, 2)along a circular path with center at (7,2). Before starting operation, the tool is at (5, 4).The correct G and M code for this motion is
Answer: hello your question is incomplete below is the complete question
answer:
N010 GO2 X7.0 Y2.0 15.0 J2.0 ( option 1 )
Explanation:
Given that the NC machining has to be moved from point ( 5,4 ) to point ( 7,2 ) along a circular path
GO2 = circular interpolation in a clockwise path
G91 = incremental dimension
hence the correct option is :
N010 GO2 X7.0 Y2.0 15.0 J2.0
What must you do to become ASE certified as an automotive technician?
Answer:
To become ASE certified, you must pass an ASE test and have relevant hands-on work experience. The amount of work experience required can vary by test, and is specified in detail here. ASE recommends submitting the form after you've registered to take an ASE certification test.
Good luck!
Explanation:
Answer: One theme in White Fang is adapting in order to survive. White Fang finally submits to Gray Beaver. He also copes with fighting other dogs. White Fang changes his behaviors so that he can live.
Explanation: its the sample response
WILL MARK BRAINLIST I need help on this asap thanks
Determine the dimensions for T if T = M V^2 A / L^3 where M is a mass, V is a velocity, A is an area, and L is a length.
L / T
M
M L / T^2
M / (L T^2)
No dimensions
Explanation:
ask your dad please and use your brain
The following measurements are taken on particular junction diodes for which V is the terminal voltage and I is the diode current. For each diode, estimate values of Is and the terminal voltage at 10% of the measured current.
(a) V = 0.700 V at I = 1.00 A.
(b) V = 0.650 V at I = 1.00 mA.
(c) V = 0.650 V at I = 10 mu A.
(d) V = 0.700V at I = 100 mA.
The values of Is and V are as: (a) [tex]Is = 2.34 \times 10^{-11} A[/tex] and V = 0.581 V. (b) [tex]Is = 4.56 \times 10^{-15} A[/tex] and V = 0.516 V. (c) [tex]Is = 1.18 \times 10^{-16} A\\[/tex] and V = 0.459 V. (d) [tex]Is = 2.34 \times 10^{-11} A[/tex] and V = 0.581 V.
The relation between the current and voltage of a diode is given by the Shockley diode equation. It is an exponential function and can be given by the following equation:
[tex]I = Is \times (e^{V/Vt} - 1)[/tex]
Where
I = currentV = voltageVt = thermal voltageIs = reverse saturation current.(a)
Given that:
V = 0.700 V
And I = 1.00 A.
Substituting these values in the equation above to get,
[tex]1.00 A = Is \times (e^{0.700 V / 0.025 V} - 1)\\Is = 2.34 \times 10^{-11} A[/tex]
The terminal voltage at 10% of the measured current can be found by substituting I = 0.1 A in the above equation and solving for V as:
V = 0.581 V.
(b)
Given that:
V = 0.650 V
And, I = 1.00 mA.
Substituting these values in the equation above to get,
[tex]1.00 mA = Is \times (e^{0.650 V / 0.025 V} - 1)\\ Is = 4.56 \times 10^{-15} A[/tex]
The terminal voltage at 10% of the measured current can be found by substituting I = 0.1 mA in the above equation and solving for V as:
V = 0.516 V.
(c)
Given that:
V = 0.650 V
And, I = 10 μA.
Substituting these values in the equation above to get,
[tex]10 \mu A = Is \times (e^{0.650 V / 0.025 V} - 1)\\Is = 1.18 \times 10^{-16} A[/tex]
The terminal voltage at 10% of the measured current can be found by substituting I = 1 μA in the above equation and solving for V as:
V = 0.459 V.
(d)
Given that:
V = 0.700 V
And, I = 100 mA.
Substituting these values in the equation above to get,
[tex]100 \ mA = Is \times (e^{0.700 V / 0.025 V} - 1)\\Is = 2.34 \times 10^{-11} A[/tex]
The terminal voltage at 10% of the measured current can be found by substituting I = 10 mA in the above equation and solving for V as:
V = 0.581 V.
So, the values of Is and V are as: (a) [tex]Is = 2.34 \times 10^{-11} A[/tex] and V = 0.581 V. (b) [tex]Is = 4.56 \times 10^{-15} A[/tex] and V = 0.516 V. (c) [tex]Is = 1.18 \times 10^{-16} A\\[/tex] and V = 0.459 V. (d) [tex]Is = 2.34 \times 10^{-11} A[/tex] and V = 0.581 V.
Learn more about Terminal voltage here:
https://brainly.com/question/34372613
#SPJ3