A sine function has an amplitude of 2, a period of π, and a phase shift of -π/4 . what is the y-intercept of the function?
a. 2
b. 0
c. -2
d. π/4

Answers

Answer 1

The y-intercept of the given sine function is 2

a. 2

How to find the y-intercept

To determine the y-intercept of the sine function with the given properties, we need to identify the vertical shift or displacement of the function.

y = A sin (B(x - C)) + D

Where:

A represents the amplitude,

B represents the reciprocal of the period (B = 2π/period),

C represents the phase shift, and

D represents the vertical shift.

In this case, we are given:

Amplitude (A) = 2

Period (T) = π (since the period is equal to 2π/B, and here B = 2)

Phase shift (C) = -π/4

The formula for frequency (B) is B = 2π / T. Substituting the given period, we have B = 2π / π = 2.

the equation for the sine function becomes

y = 2 sin (2(x + π/4 ))

Substituting x = 0 in the equation, we get:

y = 2 sin (2(0 + π/4) )

= 2sin(π/2)

= 2 * 1

= 2

Learn more about sine function at

https://brainly.com/question/21902442

#SPJ4


Related Questions

Given the general form of the circle 3x^2 − 24x + 3y^2 + 36y = −141
a.) Write the equation of the circle in standard (center-radius) form (x−h)^2+(y−k)^2=r^2
=
b.) The center of the circle is at the point ( , )

Answers

a) The standard form of the given circle is (x − 4)² + (y + 6)²/9 = 0

b) the center of the circle is at (h, k) = (4, -6).

The given equation of the circle is: 3x² − 24x + 3y² + 36y = −141

a.) Write the equation of circle in standard (center-radius) form (x−h)² + (y−k)² = r²

General equation of a circle is given as:x² + y² + 2gx + 2fy + c = 0

Comparing the above equation with the given circle equation, we have:

3x² − 24x + 3y² + 36y = −1413x² − 24x + 36y + 3y² = −141

Rearranging the above equation, we get:

3x² − 24x + 36y + 3y² + 141

= 03(x² − 8x + 16) + 3(y² + 12y + 36)

= 03(x − 4)² + 3(y + 6)² = 0

Comparing the above equation with (x−h)² + (y−k)² = r²,

we get:(x − 4)² + (y + 6)²/3² = 0

Hence, the standard form of the given circle is (x − 4)² + (y + 6)²/9 = 0

b.) The center of the circle is at the point (4, −6).

Hence, the center of the circle is at (h, k) = (4, -6).

Know more about the equation of circle

https://brainly.com/question/24810873

#SPJ11

triangle d has been dilated to create triangle d 4, 3, 1/3, 1/4

Answers

Triangle D has been dilated to create Triangle D' with scale factors of 4, 9, and 4/3 for the corresponding sides.

To understand the dilation of Triangle D to create Triangle D', we can examine the ratio of corresponding sides.

Given that the corresponding sides of Triangle D and Triangle D' are in the ratio of 4:1, 3:1/3, and 1/3:1/4, we can determine the scale factor of dilation for each side.

The scale factor for the first side is 4:1, indicating that Triangle D' is four times larger than Triangle D in terms of that side.

For the second side, the ratio is 3:1/3. To simplify this ratio, we can multiply both sides by 3, resulting in a ratio of 9:1. This means that Triangle D' is nine times larger than Triangle D in terms of the second side.

Finally, the ratio for the third side is 1/3:1/4. To simplify this ratio, we can multiply both sides by 12, resulting in a ratio of 4:3. This means that Triangle D' is four-thirds the size of Triangle D in terms of the third side.

For more such questions on Triangle

https://brainly.com/question/25215131

#SPJ8

find a geometric power series for the function, centered at 0, by the following methods. f(x) = 1 7 x (a) by the technique shown in examples 1 and 2

Answers

The geometric power series for the function f(x) = [tex]\frac{1}{(7x)}[/tex], centered at 0, is Σ [tex](\frac{1}{7^n})[/tex] * [tex]x^n[/tex].

How can we express f(x) = [tex]\frac{1}{(7x)}[/tex] as a geometric power series centered at 0?

A geometric power series is a series in the form Σ [tex](a_n * x^n),[/tex] where '[tex]a_n[/tex]' represents the nth term and 'x' is the variable.

To find the geometric power series for the function f(x) = [tex]\frac{1}{(7x)}[/tex], centered at 0, we can use the technique shown in examples 1 and 2.

Identify the pattern

The function f(x) = [tex]\frac{1}{(7x)}[/tex] can be rewritten as f(x) = ([tex]\frac{1}{7}[/tex]) * ([tex]\frac{1}{x}[/tex]). Notice that ([tex]\frac{1}{7}[/tex]) is a constant term, and (1/x) can be expressed as [tex]x^{(-1)}[/tex]. This gives us the pattern [tex](\frac{1}{7}) * x^{(-1)}[/tex].

Express the pattern as a series

To obtain the geometric power series, we express the pattern [tex](\frac{1}{7}) * x^{(-1)}[/tex]as a series.

We use the property that ([tex]\frac{1}{7})^n[/tex] can be expressed as [tex](\frac{1}{7})^n[/tex].

Therefore, the geometric power series for f(x) is given by Σ [tex](\frac{1}{7}^n) * x^n,[/tex] where Σ denotes the summation notation.

Learn more about the Geometric power series.

brainly.com/question/32324465

#SPJ11

A single channel queuing system has an average service time of 8 minutes and an average time between arrivals of 10 minutes. What is the arrival rate? A. 8 per hour B. 6 per hour C. 2 per hour D. 5 per hour

Answers

Answer:

  B.  6 per hour

Step-by-step explanation:

You want to know the arrival rate if the average time between arrivals is 10 minutes.

Rate

The rate is the inverse of the period.

  (1 arrival)/(10 minutes) = (1 arrival)/(1/6 h) = 6 arrivals/h

The arrival rate is 6 per hour.

<95141404393>

Therefore, the arrival rate is 6 per hour. Only option B has the same value as calculated, that is, 6 per hour.

A single-channel queuing system has an average service time of 8 minutes and an average time between arrivals of 10 minutes.

The arrival rate can be determined using the following formula:λ=1/twhere,λ is the arrival rate and t is the average time between arrivals. Substitute t=10 in the above equation, we getλ=1/10=0.1Now, let’s check which of the given options is equal to 0.1.5 per hour is equal to 5/60 per minute=1/12 per minute≠0.1.8 per hour is equal to 8/60 per minute=2/15 per minute≠0.1.6 per hour is equal to 6/60 per minute=1/10 per minute=0.1 (Correct)2 per hour is equal to 2/60 per minute=1/30 per minute≠0.1. Therefore, the correct answer is option B, 6 per hour. Explanation: Arrival rate=λ=1/tWhere t is the average time between arrivals. Given, the average time between arrivals =10 minutes, therefore,λ=1/10=0.1For the given options, only option B has the same value as calculated, that is, 6 per hour.

Therefore, the arrival rate is 6 per hour. Only option B has the same value as calculated, that is, 6 per hour.

To learn more about the average visit:

https://brainly.com/question/20118982

#SPJ11

Consider the function below.

g(x, y, z) = ln(42 − x2 − y2 − z2)

(a) Evaluate

g(3, −4, 4).


(b) Find the domain of g.

(c) Find the range of g. (Enter your answer using interval notation.)

Answers

a. g(3,−4,4) = 0. ; b. domain of the function g(x, y, z). - 42 − x2 − y2 − z2 > 0x2 + y2 + z2 < 42 ; c. The range of the function g(x, y, z) = ln(42 − x2 − y2 − z2) is [0, ∞).

a)  g(3,−4,4)

The function is:g(x, y, z) = ln(42 − x2 − y2 − z2)

To evaluate g(3,−4,4), substitute x = 3, y = −4, and z = 4 into the function:

g(3, −4, 4) = ln(42 − 32 − (−4)2 − 42)= ln(42 − 9 − 16 − 16)= ln(1) = 0

Therefore, g(3,−4,4) = 0.

b) Domain of g

To find the domain of the function g(x, y, z) = ln(42 − x2 − y2 − z2), we need to determine all values of (x, y, z) for which the function is defined.

Since the natural logarithm is defined only for positive values, we have: 42 − x2 − y2 − z2 > 0x2 + y2 + z2 < 42

This is the domain of the function g(x, y, z).

c) Range of g

The range of a function is the set of all possible values of the function.

To find the range of the function g(x, y, z) = ln(42 − x2 − y2 − z2), we note that the natural logarithm is a monotonically increasing function.

Therefore, to find the range of g, we can find the range of the expression h(x, y, z) = 42 − x2 − y2 − z2:

Minimum value of h occurs when x = y = z = 0, giving h(0,0,0) = 42.

Maximum value of h occurs when x2 + y2 + z2 is maximum, i.e., when x = y = 0 and z = ±√42.

This gives h(0,0,±√42) = 0.

Therefore, the range of the function g(x, y, z) = ln(42 − x2 − y2 − z2) is [0, ∞).

Know more about the domain

https://brainly.com/question/28934802

#SPJ11

Given the sample −4, −10, −16, 8, −12, add one more sample value
that will make the mean equal to 3. Round to two decimal places as
necessary. If this is not possible, indicate "Cannot create

Answers

The number of the sample is 52.

Here, we have,

given that,

Given the sample −4, −10, −16, 8, −12, add one more sample value

that will make the mean equal to 3.

let, the number be x

so, we get,

new sample =  −4, −10, −16, 8, −12, x

now, we have,

mean = ∑X/n

here, we have,

3 =  −4 + −10 + −16 + 8 + −12 + x /6

or, 18 = -34 + x

or, x = 18 + 34

or, x = 52

Hence, The number of the sample is 52.

learn more on mean :

https://brainly.com/question/32621933

#SPJ4

Kevin was asked to solve the following system of inequali-
ties using graphing and then identify a point in the solution
set.
Kevin said (2, 5) is a point in the solution set. Kevin's point
is not in the solution set.
Look at Kevin's graph to determine his mistake and how to
fix it.
2. Kevin was asked to solve the following system of
inequalities using graphing and then identify a
point in the solution set.
(y> 2x-1
lys-x+5
Kevin said (2, 5) is a point in the solution set.
Kevin's p
's point i
int is not in the solution set.
Look at Kevin's graph to determine his mistake and
how to fix it.
Kevin's mistake was...
He can fix this by...

Answers

Given statement solution is :-  Kevin's point (2, 5) is not in the solution set. To fix his mistake, Kevin needs to correctly identify a point in the solution set. By observing the shaded region in the graph where the two inequalities overlap, he can select any point within that region as a valid solution. He should choose a point that lies within the overlapping region, such as (1, 4), (0, 3), or any other point that satisfies both inequalities.

Kevin's mistake was incorrectly identifying (2, 5) as a point in the solution set of the system of inequalities. To determine his mistake and how to fix it, let's examine the given system of inequalities:

y > 2x - 1

y ≤ x + 5

To graph these inequalities, we need to plot their corresponding boundary lines and determine the regions that satisfy the given conditions.

For inequality 1, y > 2x - 1, we draw a dashed line with a slope of 2 passing through the point (0, -1). This line separates the plane into two regions: the region above the line satisfies y > 2x - 1, and the region below does not.

For inequality 2, y ≤ x + 5, we draw a solid line with a slope of 1 passing through the point (0, 5). This line separates the plane into two regions: the region below the line satisfies y ≤ x + 5, and the region above does not.

Now, we need to determine the overlapping region that satisfies both inequalities. In this case, we shade the region below the solid line (inequality 2) and above the dashed line (inequality 1). The overlapping region is the region that satisfies both conditions.

Upon examining the graph, we can see that the point (2, 5) lies above the dashed line (inequality 1), which means it does not satisfy the condition y > 2x - 1. Therefore, Kevin's point (2, 5) is not in the solution set.

To fix his mistake, Kevin needs to correctly identify a point in the solution set. By observing the shaded region in the graph where the two inequalities overlap, he can select any point within that region as a valid solution. He should choose a point that lies within the overlapping region, such as (1, 4), (0, 3), or any other point that satisfies both inequalities.

For such more questions on Graphing Mistake

https://brainly.com/question/31512519

#SPJ8

The radius of the wheel on a bike is 21 inches. If the wheel is revolving at 154 revolutions per minute, what is the linear speed of the bike, in miles per hour? Round your answer to the nearest tenth, and do not include units in your answer.

Answers

Answer:

  19.2 mph

Step-by-step explanation:

Given a bike wheel with a radius of 21 inches turning at 154 rpm, you want to know the speed of the bike in miles per hour.

Distance

A wheel with a radius of 21 inches will have a diameter of 42 inches, or 3.5 feet. In one turn, it will travel ...

  C = πd

  C = π(3.5 ft) . . . . per revolution

In one minute, the bike travels this distance 154 times, so a distance of ...

  (3.5π ft/rev)(154 rev/min) = 1693.318 ft

Speed

The speed is the distance divided by the time:

  (1693.318 ft)/(1/60 h) × (1 mi)/(5280 ft) ≈ 19.2 mi/h

__

Additional comment

We could use the conversion factor 88 ft/min = 1 mi/h.

Bike wheel diameters are typically 26 inches or less, perhaps 29 inches for road racing. A 42-inch wheel would be unusually large.

On the other hand, the chainless "penny farthing" bicycle has a wheel diameter typically 44-60 inches. It would be real work to pedal that at 154 RPM.

<95141404393>

the speed of the bike in miles per hour is;[51408π/63360]/[1/60] mph= 30.9 mph (approx)Hence, the linear speed of the bike, in miles per hour, is 30.9 mph.

To find the linear speed of the bike, in miles per hour, given the radius of the wheel of the bike as 21 inches and the wheel revolving at 154 revolutions per minute, we can use the formula for the circumference of a circle as;C = 2πrWhere r is the radius of the circle and C is the circumference of the circle.From the given information, we can find the circumference of the wheel as;C = 2π(21) inches= 132π inchesTo find the distance traveled by the bike per minute, we can multiply the circumference of the wheel by the number of revolutions per minute;Distance traveled per minute = 154 × 132π inches= 51408π inchesTo find the speed of the bike in miles per hour, we need to convert the units of distance from inches to miles and the units of time from minutes to hours as;1 inch = 1/63360 miles (approx) and1 minute = 1/60 hours (approx)Therefore, the speed of the bike in miles per hour is;[51408π/63360]/[1/60] mph= 30.9 mph (approx)Hence, the linear speed of the bike, in miles per hour, is 30.9 mph.

To know more about linear speed Visit:

https://brainly.com/question/30397189

#SPJ11

A. F(x) = -x2² - 3
B. F(x) = 0.2x² - 3
C. F(x)=x²-3
D. F(x) = 2x² - 3p

Answers

Answer:

B. F(x) = .2x^2 - 3

F(4) = F(-4) = .2

Luke was planning to hike a trail while camping. He knew he could stay on the path provided which was 8 city block west and 15 city block east. He knew he could take a short cut by hiking along the river which was the exact diagonal to the path. How much longer is it to hike along the diagonal using the river?

Answers

Hiking along the diagonal using the river is 6 city blocks shorter than staying on the path.

To determine how much longer it is to hike along the diagonal using the river compared to staying on the path, we need to calculate the difference in distance between the two routes.

The path is divided into two sections: 8 city blocks west and 15 city blocks east. This creates a right-angled triangle, where the two legs represent the distances walked west and east, and the diagonal represents the direct distance between the starting and ending points.

Using the Pythagorean theorem, we can calculate the length of the diagonal:

Diagonal^2 = (8 blocks)^2 + (15 blocks)^2

Diagonal^2 = 64 + 225

Diagonal^2 = 289

Diagonal = √289

Diagonal = 17 blocks

Therefore, the length of the diagonal along the river is 17 city blocks.

Comparing this to the sum of the distances on the path (8 blocks west + 15 blocks east = 23 blocks), we can calculate the difference:

Difference = Diagonal - Path Length

Difference = 17 blocks - 23 blocks

Difference = -6 blocks

The negative sign indicates that the diagonal along the river is actually shorter by 6 city blocks compared to staying on the path.

for more such questions on diagonal

https://brainly.com/question/2936508

#SPJ8

The linear transformation L defined by : \(L(p(x)) = p^{'}(x) + p(0) \) maps P3into P2. Find the matrix representation of L with respect to the ordered Bases [x^2, x, 1] and [2, 1-x]. For each of the following vectors p(x) in P3, find the coordinates of L(p(x)) with respect to the ordered basis [2, 1-x].

a) x^2 + 2x -3

b) x^2 + 1

c) 3x

d)4x^2 + 2x

Answers

To find the matrix representation of the linear transformation  [tex]\(L\)[/tex] with respect to the given bases, we need to find the images of the basis vectors [tex]\([x^2, x, 1]\)[/tex] under [tex]\(L\)[/tex] and express them as linear combinations of the basis vectors [tex]\([2, 1-x]\).[/tex]

Let's start by finding the image of [tex]\(x^2\)[/tex] under [tex]\(L\):[/tex]

[tex]\(L(x^2) = (x^2)' + (x^2)(0) = 2x\)[/tex]

We can express [tex]\(2x\)[/tex] as a linear combination of the basis vectors [tex]\([2, 1-x]\):\(2x = 2(2) + 0(1-x)\)[/tex]

Next, let's find the image of [tex]\(x\)[/tex] under [tex]\(L\):[/tex]

[tex]\(L(x) = (x)' + (x)(0) = 1\)[/tex]

We can express [tex]\(1\)[/tex] as a linear combination of the basis vectors [tex]\([2, 1-x]\):\(1 = 0(2) + 1(1-x)\)[/tex]

Finally, let's find the image of the constant term [tex]\(1\)[/tex] under [tex]\(L\):[/tex]

[tex]\(L(1) = (1)' + (1)(0) = 0\)[/tex]

We can express [tex]\(0\)[/tex] as a linear combination of the basis vectors [tex]\([2, 1-x]\):\(0 = 0(2) + 0(1-x)\)[/tex]

Now, we can arrange the coefficients of the linear combinations in a matrix to obtain the matrix representation of [tex]\(L\)[/tex] with respect to the given bases:

[tex]\[\begin{bmatrix}2 & 0 & 0 \\0 & 1 & 0 \\2 & 1 & 0\end{bmatrix}\][/tex]

To find the coordinates of [tex]\(L(p(x))\)[/tex] with respect to the ordered basis [tex]\([2, 1-x]\)[/tex], we can simply multiply the matrix representation of [tex]\(L\)[/tex] by the coordinate vector of [tex]\(p(x)\)[/tex] with respect to the ordered basis [tex]\([x^2, x, 1]\).[/tex]

Let's calculate the coordinates for each given vector [tex]\(p(x)\):[/tex]

a) [tex]\(p(x) = x^2 + 2x - 3\)[/tex]

The coordinate vector of [tex]\(p(x)\)[/tex] with respect to [tex]\([x^2, x, 1]\) is \([1, 2, -3]\).[/tex] Multiplying the matrix representation of [tex]\(L\)[/tex] by this coordinate vector:

[tex]\[\begin{bmatrix}2 & 0 & 0 \\0 & 1 & 0 \\2 & 1 & 0\end{bmatrix}\begin{bmatrix}1 \\2 \\-3\end{bmatrix}= \begin{bmatrix}2 \\2 \\-4\end{bmatrix}\][/tex]

So, the coordinates of [tex]\(L(p(x))\)[/tex] with respect to [tex]\([2, 1-x]\) are \([2, 2, -4]\).[/tex]

b) [tex]\(p(x) = x^2 + 1\)[/tex]

The coordinate vector of [tex]\(p(x)\)[/tex] with respect to [tex]\([x^2, x, 1]\) is \([1, 0, 1]\).[/tex]

Multiplying the matrix representation of [tex]\(L\)[/tex] by this coordinate vector:

[tex]\[\begin{bmatrix}2 & 0 & 0 \\0 & 1 & 0 \\2 & 1 & 0\end{bmatrix}\begin{bmatrix}1 \\0 \\1\end{bmatrix}= \begin{bmatrix}2 \\0 \\2\end{bmatrix}\][/tex]

So, the coordinates of [tex]\(L(p(x))\)[/tex] with respect to [tex]\([2, 1-x]\) are \([2, 0, 2]\).[/tex]

c) [tex]\(p(x) = 3x\)[/tex]

The coordinate vector of [tex]\(p(x)\)[/tex] with respect to [tex]\([x^2, x, 1]\) is \([0, 3, 0]\).[/tex]

Multiplying the matrix representation of [tex]\(L\)[/tex] by this coordinate vector:

[tex]\[\begin{bmatrix}2 & 0 & 0 \\0 & 1 & 0 \\2 & 1 & 0\end{bmatrix}\begin{bmatrix}0 \\3 \\0\end{bmatrix}= \begin{bmatrix}0 \\3 \\0\end{bmatrix}\][/tex]

So, the coordinates of [tex]\(L(p(x))\)[/tex] with respect to [tex]\([2, 1-x]\) are \([0, 3, 0]\).[/tex]

d) [tex]\(p(x) = 4x^2 + 2x\)[/tex]

The coordinate vector of [tex]\(p(x)\)[/tex] with respect to [tex]\([x^2, x, 1]\) is \([4, 2, 0]\).[/tex]

Multiplying the matrix representation of [tex]\(L\)[/tex] by this coordinate vector:

[tex]\[\begin{bmatrix}2 & 0 & 0 \\0 & 1 & 0 \\2 & 1 & 0\end{bmatrix}\begin{bmatrix}4 \\2 \\0\end{bmatrix}= \begin{bmatrix}8 \\2 \\8\end{bmatrix}\][/tex]

So, the coordinates of [tex]\(L(p(x))\)[/tex] with respect to \([2, 1-x]\) are \([8, 2, 8]\).

To know more about coefficients visit-

brainly.com/question/32642130

#SPJ11

3, 7, 8, 5, 6, 4, 9, 10, 7, 8, 6, 5 Using the previous question 's scores, If three points were added to every score in the distribution as a population, what would be the new mean? If three points we

Answers

The new mean of the distribution would be 8.6667.

The given data set is as follows: 3, 7, 8, 5, 6, 4, 9, 10, 7, 8, 6, 5.

The mean is calculated by adding all the values of a data set and dividing the sum by the total number of values in the data set. Therefore, the mean (μ) can be calculated as follows:

μ = (3 + 7 + 8 + 5 + 6 + 4 + 9 + 10 + 7 + 8 + 6 + 5) / 12

μ = 70 / 12

μ = 5.8333

If three points are added to each score, the new data set will be as follows: 6, 10, 11, 8, 9, 7, 12, 13, 10, 11, 9, 8.

The mean of the new data set can be calculated as follows:

μ' = (6 + 10 + 11 + 8 + 9 + 7 + 12 + 13 + 10 + 11 + 9 + 8) / 12

μ' = 104 / 12

μ' = 8.6667

To know more about distribution visit:

https://brainly.com/question/29664127

#SPJ11

determine whether the geometric series is convergent or divergent. [infinity] 1 ( 3 )n n = 0

Answers

The geometric series `[infinity] 1 ( 3 )n n = 0` is divergent. Here's why:The given geometric series has the first term (n=0) variableas 1.

Also, the common ratio is 3.The summation formula of a geometric series can be written as:`S = a(1 - r^n)/(1-r)`Where a = 1 (the first term), r = 3 (common ratio), and n = infinity (tending to infinity).Substituting these values in the above formula:`S = 1(1 - 3^n)/(1-3)`

Now, the value of 3^n increases infinitely as n tends to infinity. Therefore, the denominator (1-3) becomes negative infinity. And, the numerator (1 - 3^n) also increases infinitely. So, the value of S becomes infinite. Therefore, the given geometric series is divergent..

To know more about variable visit:

https://brainly.com/question/2466865

#SPJ11

Customers arrive at the CVS Pharmacy drive-thru at an average rate of 5 per hour. What is the probability that more than 6 customers will arrive at the drive-thru during a randomly chosen hour? 0.146

Answers

The probability that more than 6 customers will arrive at the drive-thru during a randomly chosen hour is approximately 0.2374 or 0.24 (rounded to two decimal places).

The Poisson distribution formula is used for probability problems that involve counting the number of events that happen in a certain period of time or space. It is given as:P(X = x) = (e^-λ) (λ^x) / x!

Where:X is the number of eventsλ is the average rate at which events occur.

e is a constant with a value of approximately 2.71828x is the number of events that occur in a specific period of time or spacex! = x * (x - 1) * (x - 2) * ... * 2 * 1 is the factorial of xIn the given problem, the average rate at which customers arrive at the CVS Pharmacy drive-thru is 5 per hour, and we need to find the probability that more than 6 customers will arrive at the drive-thru during a randomly chosen hour.

P(X > 6) = 1 - P(X ≤ 6)For calculating P(X ≤ 6), we can use the Poisson distribution formula as:

P(X ≤ 6) = (e^-5) (5^0) / 0! + (e^-5) (5^1) / 1! + (e^-5) (5^2) / 2! + (e^-5) (5^3) / 3! + (e^-5) (5^4) / 4! + (e^-5) (5^5) / 5! + (e^-5) (5^6) / 6!P(X ≤ 6) ≈ 0.7626

Substituting this value in the previous equation, we get:

P(X > 6) = 1 - P(X ≤ 6)

≈ 1 - 0.7626

= 0.2374

Hence, the probability that more than 6 customers will arrive at the drive-thru during a randomly chosen hour is approximately 0.2374 or 0.24 (rounded to two decimal places).

Know more about probability   here:

https://brainly.com/question/251701

#SPJ11

To complete a home repair a carpenter is renting a tool from the local hardware store. The expression 20x+60 represents the total charges, which includes a fixed rental fee and an hourly fee, where x is the hours of the rental. What does the first term of the expression represent?

Answers

The first term, 20x, captures the variable cost component of the rental charges and reflects the relationship between the number of hours rented (x) and the corresponding cost per hour (20).

The first term of the expression, 20x, represents the hourly fee charged by the hardware store for renting the tool.

In this context, the term "20x" indicates that the carpenter will be charged 20 for every hour (x) of tool usage.

The coefficient "20" represents the cost per hour, while the variable "x" represents the number of hours the tool is rented.

For example, if the carpenter rents the tool for 3 hours, the expression 20x would be

[tex]20(3) = 60.[/tex]

This means that the carpenter would be charged 20 for each of the 3 hours, resulting in a total charge of $60 for the rental.

For such more questions on variable cost

https://brainly.com/question/6337340

#SPJ11

Solve dydx=(y?1)(y+1) if the solution passes through the point (x,y)=(2,0). Graph the solution.y(x)=??

Answers

To graph the solution, plot the function y(x) over the specified interval.

Solve the differential equation dy/dx = (y-1)(y+1) with the initial condition y(2) = 0 and graph the solution.

To solve the given differential equation, we can use separation of variables. Let's proceed with the solution:

dy/dx = (y-1)(y+1)

We can rewrite the equation as:

dy/(y-1)(y+1) = dx

Now, we integrate both sides:

∫(dy/(y-1)(y+1)) = ∫dx

Using partial fraction decomposition, we can express the integrand as:

1/2 * (∫(1/(y-1))dy - ∫(1/(y+1))dy)

Integrating each term separately:

1/2 * (ln|y-1| - ln|y+1|) = x + C

Applying the initial condition (x,y) = (2,0):

1/2 * (ln|-1| - ln|1|) = 2 + C

ln(1) - ln(1) = 4 + 2C

0 = 4 + 2C

C = -2

Substituting C back into the equation:

1/2 * (ln|y-1| - ln|y+1|) = x - 2

ln|y-1| - ln|y+1| = 2x - 4

Taking the exponential of both sides:

|y-1| / |y+1| = e^(2x-4)

Considering the positive and negative cases separately:

y - 1 = ± (y + 1) * e^(2x-4)

Now, solving for y in both cases:

y - 1 = (y + 1) * e^(2x-4)

Simplifying the equation:

y - y*e^(2x-4) = 1 + e^(2x-4)

Factoring out y:

y(1 - e^(2x-4)) = 1 + e^(2x-4)

Dividing both sides by (1 - e^(2x-4)):

y = (1 + e^(2x-4)) / (1 - e^(2x-4))

y - 1 = - (y + 1) * e^(2x-4)

Simplifying the equation:

y + y*e^(2x-4) = 1 - e^(2x-4)

Factoring out y:

y(1 + e^(2x-4)) = 1 - e^(2x-4)

Learn more about specified

brainly.com/question/31537570

#SPJ11

in a randomly generated list of numbers from 0 to 9, what is the probability that each number will occur?

Answers

The probability that each number will occur in a randomly generated list of numbers from 0 to 9 is 1 in 3,628,800.

To understand the probability, let's consider the total number of possible outcomes in the randomly generated list. In this case, we have 10 possible numbers (0 to 9) and the list length is also 10. So, the total number of possible outcomes is given by 10 factorial (10!).

The formula for factorial is n! = n * (n-1) * (n-2) * ... * 2 * 1. Therefore, 10! = 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 = 3,628,800.

Now, let's determine the number of favorable outcomes, which is the number of ways each number can occur exactly once in the list. Since the list is randomly generated, the occurrence of each number is equally likely.

To calculate the number of favorable outcomes, we can use the concept of permutations. The first number in the list can be any of the 10 available numbers, the second number can be any of the remaining 9 numbers, the third number can be any of the remaining 8 numbers, and so on.

Using the formula for permutations, the number of favorable outcomes is given by 10! / (10-10)! = 10!.

So, the probability that each number will occur in the randomly generated list is the number of favorable outcomes divided by the total number of possible outcomes, which is 10! / 10! = 1 in 3,628,800.

Learn more about Probability

brainly.com/question/31828911

#SPJ11

Find the critical value t* for the following situations. ​
a) a ​98% confidence interval based on df=27
​b) a ​% confidence interval based on df=7
a) What is the critical value of t for a 98�

Answers

The critical value of the t-distribution, with a 98% confidence level and 27  df, is given as follows:

t* = 2.4727.

How to obtain the critical value of the t-distribution?

To obtain the critical value of the t-distribution, we must insert these following parameters into a two-tailed t-distribution calculator:

Degrees of freedom.Significance level.

The parameters for this problem are given as follows:

27 df.1 - 0.98 = 0.02 significance level.

Hence the critical value is given as follows:

t* = 2.4727.

Missing Information

Item b is incomplete, however a similar procedure to item a must be used to obtain the critical value.

More can be learned about the t-distribution at https://brainly.com/question/17469144

#SPJ1

How many ways can a group of 20​, including six boys and fourteen ​girls, be formed into two ten​-person volleyball teams with no​ restrictions?
​(b) How many ways can a group of 20​, including six boys and fourteen ​girls, be formed into two ten​-person volleyball teams so that each team has three of the​ boys? ​
(c) How many ways can a group of 20​, including six boys and fourteen ​girls, be formed into two ten​-person volleyball teams so that all of the boys are on the same​ team?

Answers

a) The number of ways a group of 20, including six boys and fourteen girls, can be formed into two ten-person volleyball teams with no restrictions is given by the combination formula. Since the order of selection doesn't matter in this case, we can use the combination formula to calculate the total number of combinations.

The formula for combination is: nCr = n! / (r!(n-r)!)

Where n is the total number of individuals and r is the number of individuals in each team.

In this scenario, we have 20 individuals in total, and we need to form two teams of ten individuals each. Therefore, the number of ways to form the teams without any restrictions is:

20C10 = 20! / (10!(20-10)!) = 184,756 ways.

(b) In this case, we want each team to have three boys. Since we have six boys in total, we need to select three boys for each team. The remaining slots will be filled by the girls.

The number of ways to select three boys from six is given by the combination formula: 6C3 = 6! / (3!(6-3)!) = 20 ways.

After selecting the boys, we have 14 girls remaining, and we need to select seven girls for each team. The number of ways to select seven girls from 14 is: 14C7 = 14! / (7!(14-7)!) = 3432 ways.

To calculate the total number of ways to form the teams, we multiply the number of ways to select the boys and the number of ways to select the girls:

20 ways (boys) * 3432 ways (girls) = 68,640 ways.

(c) In this case, we want all of the boys to be on the same team. We need to select all six boys and distribute the remaining slots among the girls.

The number of ways to select six boys from six is 6C6 = 6! / (6!(6-6)!) = 1 way.

After selecting the boys, we have 14 girls remaining, and we need to select four girls for each team. The number of ways to select four girls from 14 is: 14C4 = 14! / (4!(14-4)!) = 1001 ways.

To calculate the total number of ways to form the teams, we multiply the number of ways to select the boys and the number of ways to select the girls:

1 way (boys) * 1001 ways (girls) = 1001 ways.

Learn more about combinations and permutations in combinatorial mathematics to explore various methods for counting and arranging elements in a set.

#SPJ11

please help with question 5 and 6
DETAILS ASK YOUR TEACHER Verify the identity. (Simplify at each step.) sin(+ x) = (cos(x) + √3 sin(x)) sin + = sin + = 40 ))+( ==(cos(x) + √3 sin(x)) Need Help? Read It 6. [-/1 Points] DETAILS 5.

Answers

The value of sin(x/2) is −(3√10/10).

Answer: −(3√10/10).

The identity that we need to verify is sin(π/3 + x) = cos(x) + √3 sin(x). Simplifying at each step:

We can use the following identities:

sin(A + B) = sinA cosB + cosA sinB

cos(A + B) = cosA cosB − sinA sinB

cos(π/3) = 1/2, sin(π/3) = √3/2

sin(π/3 + x) = sin(π/3) cos(x) + cos(π/3) sin(x) = (√3/2) cos(x) + (1/2) sin(x)

By rearranging, we have: sin(π/3 + x) = cos(x) + √3 sin(x).

Hence, we have verified the given identity. Therefore, the value of sin(π/3 + x) is cos(x) + √3 sin(x).

Answer: cos(x) + √3 sin(x). 6. We are to find the value of sin(x/2) if cos(x) = -4/5 and π/2 < x < π.We can start by drawing the unit circle for angles between 90° and 180°.

We can see that the y-coordinate of the point is negative, which means that sin(x/2) is also negative.

To find the value of sin(x/2), we can use the following identity:

sin(x/2) = ±√[(1 − cos(x))/2]

Since sin(x/2) is negative in this case, we can take the negative square root:

sin(x/2) = −√[(1 − cos(x))/2]

= −√[(1 + 4/5)/2] = −√[9/10]

= −(3/√10) × (√10/√10) = −(3√10/10)

Therefore, the value of sin(x/2) is −(3√10/10).

Answer: −(3√10/10).

To know more about sin visit:

https://brainly.com/question/19213118

#SPJ11

which function in vertex form is equivalent to f(x) = x2 8 – 16x?f(x) = (x – 8)2 – 56f(x) = (x – 4)2 0f(x) = (x 8)2 – 72f(x) = (x 4)2 – 32

Answers

The given function f(x) = x² - 8x can be rewritten in vertex form using the process of completing the square. The vertex form of a quadratic function is f(x) = a(x - h)² + k, where (h, k) is the vertex of the parabola. The process of completing the square involves adding and subtracting a constant term to the expression in such a way that it becomes a perfect square trinomial.

So, f(x) = x² - 8x = (x² - 8x + 16) - 16 = (x - 4)² - 16. Therefore, the function f(x) = x² - 8x is equivalent to f(x) = (x - 4)² - 16 in vertex form. Now, we need to check which function in vertex form is equivalent to f(x) = x² - 8x from the given options:Option A: f(x) = (x - 8)² - 56Comparing it with the vertex form f(x) = a(x - h)² + k, we can see that h = 8, which is not equal to -4. So, this function is not equivalent to f(x) = x² - 8x.

Option B: f(x) = (x - 4)² + 0Comparing it with the vertex form f(x) = a(x - h)² + k, we can see that h = 4, which is equal to -(-4). So, this function is equivalent to f(x) = x² - 8x.Option C: f(x) = (x + 8)² - 72Comparing it with the vertex form f(x) = a(x - h)² + k, we can see that h = -8, which is not equal to -4. So, this function is not equivalent to f(x) = x² - 8x.Option D: f(x) = (x + 4)² - 32Comparing it with the vertex form f(x) = a(x - h)² + k, we can see that h = -4, which is equal to -(-4). So, this function is equivalent to f(x) = x² - 8x.Therefore, the function in vertex form equivalent to f(x) = x² - 8x is f(x) = (x - 4)² - 16.

To know more  about parabola visit:

https://brainly.com/question/11911877

#SPJ11

How do you find the average value of
f(x)=√x as x varies between [0,4]?

Answers

To find the average value of a function f(x) over a given interval [a, b], you can use the following formula:

Average value of f(x) = (1 / (b - a)) * ∫[a to b] f(x) dx

In this case, we want to find the average value of f(x) = √x over the interval [0, 4]. Applying the formula, we have:

Average value of √x = (1 / (4 - 0)) * ∫[0 to 4] √x dx

Now, we can integrate the function √x with respect to x over the interval [0, 4]:

∫√x dx = (2/3) * x^(3/2) evaluated from 0 to 4

         = (2/3) * (4^(3/2)) - (2/3) * (0^(3/2))

         = (2/3) * 8 - 0

         = 16/3

Substituting this value back into the formula, we get:

Average value of √x = (1 / (4 - 0)) * (16/3)

                          = (1/4) * (16/3)

                          = 4/3

Therefore, the average value of f(x) = √x as x varies between [0, 4] is 4/3.

To know more about formula visit-

brainly.com/question/31384573

#SPJ11

Which of the following is a true statement about the first movies made in hollywood?
A. Music was recorded as part of ghe film B. They were silent films C. they only lasted 30 minutes
D. they were filmed in color

Answers

The correct statement about the first movies made in Hollywood is: B. They were silent films.

During the early days of Hollywood, which refers to the late 19th and early 20th centuries, movies were primarily silent films. This means that there was no synchronized sound accompanying the visuals on screen. The technology for recording and reproducing sound in movies had not yet been developed.

Instead of recorded sound, music was often performed live in theaters during the screenings of these silent films. Musicians would play instruments or provide live vocal accompaniment to enhance the viewing experience. However, this music was not recorded as part of the film itself.

Additionally, during this time, color film technology was still in its early stages of development. Most films were shot and presented in black and white, as color film processes were not yet widely available or affordable.

To know more about Hollywood,

https://brainly.com/question/28045134

#SPJ11

Bank Will Sell The Bond For A Commission Of 2.1%. The Market Yield Is Currently 7.6% On Twenty-Year Zero-Coupon Bonds. If Rawlings Wants To Issue A Zero-Coupon Bond, How Many Bonds Will It Need To Sell To Raise The $37,100,000? Assume That The bond is semiannual and issued at a per value of $1,000?

Answers

Rawlings will need to sell approximately 46,678 zero-coupon bonds to raise $37,100,000.

To calculate the number of bonds Rawlings needs to sell, we can use the formula for the present value of a bond. The formula is:

PV = (FV / [tex](1 + r)^n[/tex])

Where PV is the present value (the amount Rawlings wants to raise), FV is the future value (the face value of the bonds), r is the market yield, and n is the number of periods.

Given that Rawlings wants to raise $37,100,000, the face value of each bond is $1,000 (per value), and the market yield is 7.6% (or 0.076 as a decimal), we can rearrange the formula to solve for n:

n = ln(FV / PV) / ln(1 + r)

Substituting the values, we get:

n = ln(1000 / 37100000) / ln(1 + 0.076)

Using a financial calculator or spreadsheet software, we can calculate n, which comes out to be approximately 46,678. This means that Rawlings will need to sell around 46,678 zero-coupon bonds to raise the desired amount of $37,100,000.

Learn more about zero-coupon bonds

brainly.com/question/14473546

#SPJ11

The accompanying table shows students' scores for the final exam in a history course. Scores Cumulative Frequency 50 up to 60 14 60 up to 70 32 70 up to 80 67 80 up to 90 92 90 up to 100 100 How many of the students scored at least 70 but less than 90? Multiple Choice 29 36 60 93 O O O

Answers

25 students scored at least 70 but less than 90.

To find the number of students who scored at least 70 but less than 90, we need to sum up the frequencies in the corresponding cumulative frequency interval. Looking at the table, we can see that the cumulative frequency for the interval "70 up to 80" is 67, and the cumulative frequency for the interval "80 up to 90" is 92.

To calculate the number of students in the desired range, we subtract the cumulative frequency of the lower interval from the cumulative frequency of the upper interval:

Number of students = Cumulative frequency (80 up to 90) - Cumulative frequency (70 up to 80)

= 92 - 67

= 25

Therefore, 25 students scored at least 70 but less than 90.

To know more about cumulative frequencies, visit:

https://brainly.com/question/31417530

#SPJ11

Let X represent the full height of a certain species of tree. Assume that X has a normal probability distribution with = 36.1 ft and o- 6.8 ft. You intend to measure a random sample of n = 81 trees. What is the mean of the distribution of sample means? the What is the standard deviation of the distribution of sample means (i.e., the standard error in estimating the mean)? (Report answer accurate to 4 decimal places.) σ= Tip: Use the Desmos calculator...

Answers

The standard deviation of the distribution of sample means, or the standard error in estimating the mean, is approximately 0.7569 ft, rounded to 4 decimal places.

To find the mean of the distribution of sample means, we use the formula:

Mean of sample means = Mean of the population

In this case, the mean of the population is given as μ = 36.1 ft.

Therefore, the mean of the distribution of sample means is also 36.1 ft.

To find the standard deviation of the distribution of sample means, also known as the standard error, we use the formula:

Standard error = Standard deviation of the population / √(Sample size)

In this case, the standard deviation of the population is given as σ = 6.8 ft, and the sample size is n = 81.

Plugging in these values into the formula, we have:

Standard error = 6.8 / √(81)

Calculating this expression, we find:

Standard error ≈ 0.7569

Therefore, the standard deviation of the distribution of sample means, or the standard error in estimating the mean, is approximately 0.7569 ft, rounded to 4 decimal places.

To know more about standard deviation, visit:

https://brainly.com/question/13899066

#SPJ11

Suppose that the functions q and r are defined as follows. q(x)=-4x+1 r(x) = 3x-2 Find the following. (gor)(1) = 0 (rog) (1) = 0 x 6 ?

Answers

The value of (gor)(1) is 0, indicating that the composition of the functions g and r, evaluated at x = 1, results in an output of 0. Similarly, the value of (rog)(1) is also 0, indicating that the composition of the functions r and g, evaluated at x = 1, also gives an output of 0.

The composition of two functions, denoted as (fog)(x), is obtained by substituting the output of the function g into the input of the function f. In this case, we have two functions q(x) = -4x + 1 and r(x) = 3x - 2. To evaluate (gor)(1), we first evaluate the inner composition (or the composition of g and r) by substituting x = 1 into r(x). This gives us r(1) = 3(1) - 2 = 1. Next, we substitute this result into q(x), obtaining q(r(1)) = q(1) = -4(1) + 1 = -3. Therefore, (gor)(1) = -3.

Similarly, to evaluate (rog)(1), we first evaluate the inner composition (or the composition of r and g) by substituting x = 1 into g(x). This gives us g(1) = -4(1) + 1 = -3. Next, we substitute this result into r(x), obtaining r(g(1)) = r(-3) = 3(-3) - 2 = -11. Therefore, (rog)(1) = -11.

Since the given task asks to find when the compositions of the functions are equal to 0, neither (gor)(1) nor (rog)(1) is equal to 0.

Learn more about functions here:

https://brainly.com/question/30721594

#SPJ11

Need help answering questions 5 and 6
Practice Problems for Chapter four 1. Calculate the following range of scores for a continuous variable: 9, 8, 7,6,5,4,3,2. Use upper and lower real limits to calculate your answer. 2. Calculate the f

Answers

5. The continuous variable in the range 2, 3, 4, 5, 6, 7, 8, 9 has a lower real limit of 1.5 and an upper real limit of 9.5.a) The width of each interval is equal to: [tex]$$\frac{9.5-1.5}{5}[/tex] = 2$$$$\text{ Width of each interval is }2.$$b)

Since the interval from 2 to 4 has 2 as its lower real limit and its width is 2, its upper real limit is equal to $2+2=4$. Therefore, the upper real limits of the following intervals will be $4, 6, 8,$ and $10$.c) The frequency of the first interval is 2 and the frequency of the second interval is 1. Hence, the relative frequency of the first interval is [tex]$\frac{2}{3}$[/tex]and the relative frequency of the second interval is[tex]$\frac{1}{3}$.6[/tex]. The continuous variable is in the range 2, 3, 4, 5, 6, 7, 8, 9 has a lower real limit of 1.5 and an upper real limit of 9.5. Since the range is continuous, the frequency polygon will be a line that connects the midpoints of the intervals.The width of each interval is equal to $2$. The midpoint of the first interval is[tex]$\frac{2+4}{2}=3$[/tex]. The midpoint of the second interval is[tex]$\frac{4+6}{2}=5$[/tex]. The midpoint of the third interval is [tex]$\frac{6+8}{2}=7$[/tex]. The midpoint of the fourth interval is [tex]$\frac{8+10}{2}=9$[/tex]. Hence, the frequency polygon will connect the points [tex]$(3, \frac{2}{8}), (5, \frac{1}{8}), (7, 0),$ and $(9, 0)$[/tex]. Therefore, the final answer is shown in the image below.

To know more about variable,visit

https://brainly.com/question/15078630

#SPJ11

The range of scores using upper and lower real limits for the given data is:2: 1.5 - 2.53: 2.5 - 3.54: 3.5 - 4.55: 4.5 - 5.56: 5.5 - 6.57: 6.5 - 7.58: 7.5 - 8.59: 8.5 - 9.5.

The median is the middle value of a set of data. When the data has an odd number of scores, the median is the middle score, which is easy to find. However, when there is an even number of scores, the middle two scores must be averaged. Therefore, to find the median of the following data, we first have to order the numbers:

60, 70, 80, 90, 100, 110

The median is the middle number, which is 85.

Finding the mean: We sum all the numbers and divide by the total number of numbers:

60 + 70 + 80 + 90 + 100 + 110 = 5106 numbers

Sum of numbers = 510

Mean of the data = Sum of numbers / Number of scores

= 510/6

= 85

f= mean/median

= 85/85

= 1

The upper and lower real limits of 2 is 1.5 and 2.5. The upper and lower real limits of 3 is 2.5 and 3.5. The upper and lower real limits of 4 is 3.5 and 4.5. The upper and lower real limits of 5 is 4.5 and 5.5. The upper and lower real limits of 6 is 5.5 and 6.5. The upper and lower real limits of 7 is 6.5 and 7.5. The upper and lower real limits of 8 is 7.5 and 8.5. The upper and lower real limits of 9 is 8.5 and 9.5.

Therefore, the range of scores using upper and lower real limits is:

2: 1.5 - 2.53: 2.5 - 3.54: 3.5 - 4.55: 4.5 - 5.56: 5.5 - 6.57: 6.5 - 7.58: 7.5 - 8.59: 8.5 - 9.5.

To know more about range visit

https://brainly.com/question/29463327

#SPJ11

A survey found that 20 out of 50 women voted for the proposition and 11 out of 54 men voted for the proposition. Find the absolute value of the test statistic when testing the claim that the proportion of women who voted for the proposition is greater than the proportion of men who voted for the proposition. (Round your answer to nearest hundredth. Hint: The correct test statistic is positive.)

Answers

The absolute value of the test statistic when testing the claim that the proportion of women who voted for the proposition is greater than the proportion of men who voted for the proposition is approximately 1.86.

To test the claim that the proportion of women who voted for the proposition is greater than the proportion of men who voted for the proposition, we can use the two-sample z-test for proportions.

Let p1 be the proportion of women who voted for the proposition and p2 be the proportion of men who voted for the proposition.

The test statistic is calculated as:

z = (p1 - p2) / sqrt((p1(1 - p1) / n1) + (p2(1 - p2) / n2))

In this case, p1 = 20/50 = 0.4 (proportion of women who voted for the proposition), p2 = 11/54 ≈ 0.204 (proportion of men who voted for the proposition), n1 = 50 (sample size of women), and n2 = 54 (sample size of men).

Substituting these values into the formula, we have:

z = (0.4 - 0.204) / sqrt((0.4(1 - 0.4) / 50) + (0.204(1 - 0.204) / 54))

Calculating this expression, we find that the absolute value of the test statistic is approximately 1.86 (rounded to the nearest hundredth).

To know more about test statistic refer here:

https://brainly.com/question/31746962#

#SPJ11

What is the common ratio for the geometric sequence?
24,−6,32,−38,...

Answers

the common ratio of the geometric sequence 24, −6, 32, −38, ... is -1.5.

The common ratio for the geometric sequence 24, −6, 32, −38, ... is -1.5.What is a geometric sequence?A geometric sequence is a sequence in which each term after the first is found by multiplying the preceding term by a fixed number. It is a sequence in which each term is obtained by multiplying the previous term by a constant value or ratio.In a geometric sequence, the ratio between any two consecutive terms is the same. The nth term of a geometric sequence can be represented as an = a1rn-1, where a1 is the first term, r is the common ratio, and n is the number of terms.Using the given terms 24, −6, 32, −38, ...The ratio between the second term and the first term is given as : (-6)/24 = -1/4Similarly, the ratio between the third term and the second term is given as: 32/(-6) = -16/3The ratio between the fourth term and the third term is given as: (-38)/32 = -19/16So, the sequence is not a constant ratio because the ratios are not the same for all of the terms.However, if you observe the ratios, you'll find that the ratio between any two consecutive terms is obtained by dividing the second term by the first term and it's the same as the ratio between the third term and the second term, and it's also the same as the ratio between the fourth term and the third term.

To know more about, sequence visit

https://brainly.com/question/30262438

#SPJ11

Other Questions
A car, travelling in a straight line, slows from a speed of 18.0 m/s to rest in 5.0 s. If the acceleration of the car was constant, how far did it travel in that time? O 40 m 45 m O 80 m O 90 m O None the program produces a run-time error. why? rewrite the functions allocatecell and main so that the program runs correctly. At the beginning of current year, CFAS Company was organized and authorized to issue 100,000 shares with P50 par value.During the current year, the entity 1 had the following: transactions relating to shareholders equity:Issued 10,000 shares.at P70 per share.Issued 20,000 shares at P80 per share.Reported net income of P 1,000,000.Paid dividends of P200,000.Purchased 3,000 treasury shares at P100 per share.What amount should be reported as share capital at year end? [ Select ] ["P1,500,000", "P1,200,000", "P3,300,000", "P1,800,000"]What amount should be reported as share premium at year end? [ Select ] ["P600,000", "P800,000", "P0", "P200,000"]What is the total shareholders equity at year-end? [ Select ] ["P2,800,000", "P3,300,000", "P2,000,000", "P3,000,000"]What is the contributed capital at year end? [ Select ] ["P1,500,000", "P2,000,000", "P2,300,000", "P3,000,000"] Suppose a US investor purchases a UK equity. Let the expected pound return on the U.K. equity be 20%, and let its volatility (measured by standard deviation) be 30%. The volatility of the dollar/pound exchange rate is 10%. The risk-free rate in the U.S. (denoted rf) is 2%. 1) Compute the volatility of the dollar return on the U.K. equity when the correlation (denoted as r) between the U.K. equity's return in pounds and changes in the dollar/pound exchange rate is 0.5. 2) Suppose the correlation between the U.K. equity return in pounds and the exchange rate change is 0.5. What expected exchange rate change would you expect if the U.K. equity investment is to have a Sharpe ratio of 1? 3) If the Sharpe ratio of the U.S. equities is greater than the Sharpe ratio of the U.K. equities, can a US investor benefit from investing abroad? Explain graphically the benefits of international diversification. Write JavaScript statements to accomplish each of the followingtasks:a) Display the value of the seventh element ofarray f .b) Initialize each of the five elementsof one-dimensional array g 1) If you invest $100 in a stock, borrowing 90 percent of the $100 at 10 percent interest, and the stock price rises by 20 percent, what is the return on your investment? The Midpoint Vs Point elasticity Exercise Q: The quantity of demand for a commodity was 240 when its price was 90 monetary units. And when its price rose to 110 monetary units, the required quantity became 160 units.A. Calculate the arc elasticity of demand B. Calculate elasticity at the price of 90 monetary unitsQ1=240 Q2 =160 P2=110 P1-90 How does each society determine who will consume what is produced? a) based on its needs and wants b) based on economic equity c) based on the amount of factor payments d) based on its unique combination of social values and goals to which type of physical activity does the term exercise refer? In the "Port Huron Statement." Tom Hayden expressed all of the following concerns EXCEPT this one: Nuclear weapons threaten the future of the world. Communist infiltration of the government threatens American democracy, America's economic prosperity has not brought justice to African-Americans and other oppressed groups. Most Americans are complacent, and fear any change to the status quo. 1. The entry to record the requisition of indirect materials in a job cost system includes a:a) debit to Work in Process Inventory.b) None of the answer choices is correct.c) credit to Work in Process Inventory.d) credit to Accounts Payable.e) debit to Manufacturing Overhead.2. Records at Sandy Inc. indicate that indirect materials totaling $800 were requisitioned and placed in production. Which one of the following journal entries should Sandy record for this transaction?a) Raw Materials Inventory 800Work in Process Inventory 800b) Raw Materials Inventory 800Accounts Payable 800c) Manufacturing Overhead 800Raw Materials Inventory 800d) None of the answer choices is correct.e) Work in Process Inventory 800Raw Materials Inventory 8003. T or F: The predetermined overhead rate is calculated as the estimated activity in the allocation base divided by the estimated overhead costs.4. T or F: All account names for job costing systems in service organizations are the same as those used by manufacturing companies.5. T or F: When a manufacturing company purchases raw materials, the Raw Materials Inventory account is debited.6. If the Manufacturing Overhead account has a credit balance after overhead has been applied to products, manufacturing overhead:a) is overapplied.b) has been closed.c) is underapplied.d) has been applied incorrectly.e) None of the answer choices is correct.7. All of the following are reasons that companies prefer normal costing except:a) Normal costing averages overhead costs and levels out overhead fluctuations that might occur from month to month.b) None of the answer choices is correct.c) Normal costing simplifies recordkeeping.d) Normal costing provides information for managers to quote customers the price of products based on estimated costs.e) Normal costing tracks actual direct materials, actual direct labor costs, and actual manufacturing overhead costs.8. Which of the following accounts would probably not be found in the Job Costing accounts of a service organization?a) None of the answer choices is correct.b) Finished Goods.c) Cost of Services.d) Supplies Inventory.e) Overhead. 11 (10 points): Suppose that X is a normal random variable with mean 0 and standard deviation 16. Calculate the chance that the random variable Y = 3X + 4 is more than the random variable Z = X 4X + what is the mass of insoluble lead(ii) iodide (461.0 g/mol) produced from 0.830 g of potassium iodide (166.00 g/mol) and aqueous lead(ii) nitrate? The equation, with a restriction on x, is the terminal side of an angle 8 in standard position. -4x+y=0, x20 www. Give the exact values of the six trigonometric functions of 0. Select the correct choi independent variables are the age of the worker (Age) and a dummy variable for management position (Manager: 1 = yes, 0 = no). The results of the regression analysis are given below: Regression Statis (Related to Checkpoint 9.6) (Inflation and interest rates) What would you expect the nominal rate of interest to be if the real rate is percent and the expected inflation rate is percent? Question content area bottom Part 1 The nominal rate of interest would be enter your response here%. (Round to two decimalplaces.) Which of the following may NOT be accrued as a contingent liability?a) potential income tax refundsb)threat of expropriation of assetsc)guarantees of indebtedness of otherd) pending or threatened litigation Do the following processes make low-level conditions more stable or less stable? Use the selection boxes to choose the best answers. Nocturnal radiational cooling at the Earth's surface: Cold air flowing over a warm lake surface: Descent without convergence: Convergence without vertical motion: What is an observable implication? Explain exactly how observable implications permit ""measurement"" to perform its crucial ""bridging"" function. JUNIOR SPORTSWEAR / SIX MONTH FALL FINANCIAL PLAN AUG SEPT OCT NOV DEC JAN FEB 275.0 300.0 250.0 400.0 475.0 225.0 400.0 500.0 475.0 625.0 700.0 375.0 400.0 SALES STOCK MARKDOWNS 40.0 50.0 50.0 80.0 60.0 45.0 PLAN PURCHASES 415.0 325.0 450.0 550.0 210.0 295.0 FOLLOWING QUESTIONS: a. What are the average weekly sales for the month of September? Use financial notation to answer this question. S pts.) b. During which month does this department get the most receipts? (5 pts.) c. What is the average stock for the six month period? Use financial notation to answer this question. S d. What is the Stock to Sale ratio for the month of September? (5 pts.) e. What is the planned Markdown % for this department for the Fall season % (5 pts.) 1925.0 USE THE ABOVE INFORMATION TO ANSWER (5 pts.)