(a) Verify that y = − 1/x+c is a family of solutions of one parameter x+c
from the differential equation y’ = y2.

(b) A solution of the family in part (a) that satisfies the initial value problemy′ =y2,y(1)=1isy=1/(2−x).In fact, a solution of the family in part ( a) that satisfies the initial value problem y′ = y2, y(3) = −1 is y = 1/(2 − x). Question: Are these two solutions above the same?

Answers

Answer 1

These two solutions are not the same.(a) Verify that y = − 1/x+c is a family of solutions of one parameter x+c

from the differential equation y’ = y².

The differential equation given is y′ = y².

The solution to the given differential equation is y = -1 / (x + c).

Let's differentiate y with respect to x:

dy/dx = d/dx [(-1) / (x + c)]dy/dx

= (d/dx) (-1) *[tex](x + c)^{(-1)}dy/dx[/tex]

= [tex](-1) * (-1) * (x + c)^{(-2)} * (d/dx)(x + c)dy/dx[/tex]

= [tex](x + c)^{(-2)[/tex]

We know that y = (-1) / (x + c).

So, y² = 1 / (x + c)²

If we substitute these values in the given differential equation, we get:

dy/dx = y²dy/dx

= (1 / (x + c)²)dy/dx

=[tex](x + c)^{(-2)[/tex]

Hence, we have verified that y = − 1/x+c is a family of solutions of one parameter x+c

from the differential equation y’ = y².

(b) A solution of the family in part (a) that satisfies the initial value problem y′ = y², y(1)

= 1 is y

= 1/(2−x).

In fact, a solution of the family in part (a) that satisfies the initial value problem y′ = y²,

y(3) = −1 is

y = 1/(2−x).

So, we have two solutions to the given differential equation. These two solutions are:

y = 1 / (2 - x) and

y = 1 / (2 - x)

The solution of the family in part (a) that satisfies the initial value problem y′ = y²,

y(1) = 1 is

y = 1/(2−x) and the solution of the family in part (a) that satisfies the initial value problem

y′ = y²,

y(3) = −1 is

y = 1/(2−x).

Therefore, these two solutions are not the same.

To know more about differential equation visit:

https://brainly.com/question/9686230

#SPJ11


Related Questions

Find f if f′′(t)=2/√t​,f(4)=10,f′(4)=7.

Answers

The function f(t) that satisfies f''(t) = 2/√t, f(4) = 10, and f'(4) = 7 is f(t) = 3t^(3/2) - 10t + 23√t.

To find the function f(t), we need to integrate the given second derivative f''(t) = 2/√t twice. Integrating 2/√t once gives us f'(t) = 4√t + C₁, where C₁ is the constant of integration.

Using the initial condition f'(4) = 7, we can substitute t = 4 and solve for C₁:

7 = 4√4 + C₁

7 = 8 + C₁

C₁ = -1

Now, we integrate f'(t) = 4√t - 1 once more to obtain f(t) = (4/3)t^(3/2) - t + C₂, where C₂ is the constant of integration.

Using the initial condition f(4) = 10, we can substitute t = 4 and solve for C₂:

10 = (4/3)√4 - 4 + C₂

10 = (4/3) * 2 - 4 + C₂

10 = 8/3 - 12/3 + C₂

10 = -4/3 + C₂

C₂ = 10 + 4/3

C₂ = 32/3

Therefore, the function f(t) that satisfies f''(t) = 2/√t, f(4) = 10, and f'(4) = 7 is f(t) = (4/3)t^(3/2) - t + 32/3√t.

To learn more about function, click here: brainly.com/question/11624077

#SPJ11

Find the relative maxima and relative minima, If any, of the function. (If an answer does not exist, ente F(t)=3t5−20t3+24 relative maximum (t,y)=( relative minimum (t,y)=___

Answers

The relative maximum of F(t) occurs at (t,y) = (-2, 124) and the relative minimum of F(t) occurs at (t,y) = (2, -76).

Given the function F(t)=3t⁵−20t³+24.

We are to find the relative maxima and relative minima, if any, of the function.

To find the relative maxima and relative minima of the given function F(t), we take the first derivative of the function F(t) and solve it for zero to get the critical points.

Then we take the second derivative of F(t) and use it to determine whether a critical point is a maximum or a minimum of F(t).

Let's differentiate F(t) with respect to t,  F(t) = 3t⁵−20t³+24F'(t) = 15t⁴ - 60t²

We set F'(t) = 0, to find the critical points.15t⁴ - 60t² = 0 ⇒ 15t²(t² - 4) = 0t = 0 or t = ±√4 = ±2

Note that t = 0, ±2 are critical points, we can check whether they are maximum or minimum of F(t) using the second derivative of F(t).

F''(t) = 60t³ - 120tWe find the second derivative at t = 0, ±2.

F''(0) = 0 - 0 = 0and F''(2) = 60(8) - 120(2)

                 = 360 > 0 (minimum)

F''(-2) = 60(-8) - 120(-2) = -360 < 0 (maximum)

Since F''(-2) < 0,

therefore the critical point t = -2 is a relative maximum of F(t).

And since F''(2) > 0, therefore the critical point t = 2 is a relative minimum of F(t).

Therefore, the relative maximum of F(t) occurs at (t,y) = (-2, 124) and the relative minimum of F(t) occurs at (t,y) = (2, -76).Hence, the answer is relative maximum (t,y) = (-2, 124) and relative minimum (t,y) = (2, -76).

Learn more about function

brainly.com/question/29020856

#SPJ11

leah stared with this polynomial -x^3-4 she added another polynomial the sum was -x^3+5x^2+3x-9 what was the second polynomial

Answers

The second polynomial that Leah added to -x^3 - 4 is -5x^2 - 3x + 5.

To find the second polynomial that Leah added to the polynomial -x^3 - 4, we need to subtract the given sum -x^3 + 5x^2 + 3x - 9 from the initial polynomial -x^3 - 4.

(-x^3 - 4) - (-x^3 + 5x^2 + 3x - 9)

When subtracting polynomials, we distribute the negative sign to every term inside the parentheses.

-x^3 - 4 + x^3 - 5x^2 - 3x + 9

Since the -x^3 term cancels out with the x^3 term, and the -4 term cancels out with the +9 term, we are left with:

-5x^2 - 3x + 5

Therefore, the second polynomial that Leah added to -x^3 - 4 is -5x^2 - 3x + 5.

for such more question on polynomial

https://brainly.com/question/4142886

#SPJ8

What is the equation for a circle that has a center at (−8,−5)
and a point on the circle at (−1, 1)
?

Answers

The equation for the circle with a center at (-8, -5) and a point on the circle at[tex](-1, 1) is (x + 8)^2 + (y + 5)^2 = 85.[/tex]

To find the equation for a circle with a center at (-8, -5) and a point on the circle at (-1, 1), we can use the general equation for a circle:

[tex](x - h)^2 + (y - k)^2 = r^2,[/tex]

where (h, k) represents the coordinates of the center of the circle, and r represents the radius.

Given that the center of the circle is (-8, -5), we can substitute these values into the equation:

[tex](x - (-8))^2 + (y - (-5))^2 = r^2.[/tex]

Simplifying the equation, we have:

[tex](x + 8)^2 + (y + 5)^2 = r^2.[/tex]

Now, we need to find the value of r, the radius of the circle. We know that a point on the circle is (-1, 1). The distance between the center of the circle and this point will give us the radius.

Using the distance formula, the radius can be calculated as follows:

[tex]r = √((x2 - x1)^2 + (y2 - y1)^2),[/tex]

where (x1, y1) represents the coordinates of the center (-8, -5) and (x2, y2) represents the coordinates of the point (-1, 1).

Plugging in the values, we have:

[tex]r = √((-1 - (-8))^2 + (1 - (-5))^2)[/tex]

 [tex]= √((7)^2 + (6)^2)[/tex]

 = √(49 + 36)

 = √85.

Substituting this value of r into the equation for the circle, we get:

[tex](x + 8)^2 + (y + 5)^2 = (√85)^2,[/tex]

[tex](x + 8)^2 + (y + 5)^2 = 85.[/tex]

Thus, the equation for the circle with a center at (-8, -5) and a point on the circle at ([tex]-1, 1) is (x + 8)^2 + (y + 5)^2 = 85.[/tex]

for more such question on circle visit

https://brainly.com/question/28162977

#SPJ8

Solve the initial-value problem y' = e^-y sin x where y(π/2 )= 1/2

Answers

The solution to the given initial-value problem is:``e⁻ʸ = cos(x) + e⁻¹/² - 1``The given differential equation is: `y′ = e⁻ʸ sin(x)`

The initial condition is: `y(π/2) = 1/2`Solve the given initial value problem:We have to find a function `y(x)` that satisfies the given differential equation and also satisfies the given initial condition, `y(π/2) = 1/2`.Let's consider the differential equation given:`

dy/dx = e⁻ʸ sin(x)`Rearrange this differential equation as shown below:

dy/e⁻ʸ = sin(x) dx`

Integrate both sides of the above equation to get:`

∫dy/e⁻ʸ = ∫sin(x) dx`

The left-hand side of the above equation is:Since the integral of `du/u` is `ln|u| + C`, where `C` is the constant of integration, so the left-hand side of the above equation is:

``∫dy/e⁻ʸ = -∫e⁻ʸ dy = -e⁻ʸ + C_1`

`Where `C_1` is the constant of integration.The right-hand side of the above equation is:`

∫sin(x) dx = -cos(x) + C_2`Where `C_2` is the constant of integration.

Therefore, the solution to the differential equation is:`

`-e⁻ʸ + C_1 = -cos(x) + C_2``Or equivalently,

``e⁻ʸ = cos(x) + C``Where `C` is a constant of integration.

To find this constant, let's use the given initial condition `

y(π/2) = 1/2`.

Putting `x = π/2` and `y = 1/2` in the above equation, we get:`

`e⁻¹/² = cos(π/2) + C``So, the constant `C` is:`

`C = e⁻¹/² - 1`

To know more about  differential equation visit:-

https://brainly.com/question/32645495

#SPJ11

Given a unity feedback system that has the following transfer function G(s)= K(s+5) / s(s+1)(s+2)

Develop the final Root Locus plot (Clearly showing calculations for each step):
(a) Determine if the Root Locus is symmetrical around the imaginary axis/real axis?
(b) How many root loci proceed to end at infinity? Determine them.
(c) Is there a break-away or break-in point? Why/Why not? Estimate the point if the answer is yes.
(d) Determine the angle(s) of arrival and departure (if any). Discuss the reason(s) of existence of each type of angle.
(e) Estimate the poles for which the system is marginally stable, determine K at this point.

Answers

The root locus plot is symmetrical around the real-axis as there are no poles/zeros in the right half of the s-plane. There will be 2 root loci which proceed to end at infinity. There is no break-away/break-in point as there are no multiple roots on the real-axis. At K = 61.875, the system is marginally stable.

The transfer function is G(s) = K (s + 5) / s(s + 1)(s + 2). We have to determine the Root Locus plot of the given unity feedback system.

(a) The root locus plot is symmetrical around the real-axis as there are no poles/zeros in the right half of the s-plane. Hence, all the closed-loop poles lie on the left half of the s-plane.

(b) Number of root loci proceeding to end at infinity = Number of poles - Number of zeroes. In the given transfer function, there is one zero (s = -5) and three poles (s = 0, -1, -2). Therefore, there will be 2 root loci which proceed to end at infinity.

(c) There is no break-away/break-in point as there are no multiple roots on the real-axis.

(d) The angle of arrival is given by (2q + 1)180º, and the angle of departure is given by (2p + 1)180º. Where, p is the number of poles and q is the number of zeroes located to the right of the point under consideration. Each asymptote starts at a finite pole and ends at a finite zero.

The angle of departure from the finite pole is given by

Angle of departure = (p - q) x 180º / N

(where, N = number of asymptotes).

The angle of arrival at the finite zero is given by

Angle of arrival = (q - p) x 180º / N.

(e) The poles of the system are s = 0, -1, -2. The system will be marginally stable if one of the poles of the closed-loop system lies on the jω axis. Estimate the value of K when the system is marginally stable:

The transfer function of the system is given by,

K = s(s + 1)(s + 2) / (s + 5)

Thus, the closed-loop transfer function is given by,

C(s) / R(s) = G(s) / (1 + G(s))

= K / s(s + 1)(s + 2) + K(s + 5)

Therefore, the closed-loop characteristic equation becomes,

s³ + 3s² + 2s + K(s + 5) = 0

The system will be marginally stable when one of the poles of the above equation lies on the jω axis.

Hence, substituting s = jω in the above equation and equating the real part to zero, we get,

K = 61.875 (approx.)

Therefore, at K = 61.875, the system is marginally stable.

Learn more about the root locus plot from the given link-

https://brainly.com/question/33280195

#SPJ11

On June 30, 2020, Windsor Company issued $5,770,000 face value of 14%, 20-year bonds at $6,638,160, a yield of 12%. Windsor
uses the effective-interest method to amortize bond premium or discount. The bonds pay semiannual interest on June 30 and
December 31.
Prepare the journal entries to record the following transactions. (Round answer to O decimal places, e.g. 38,548. If no entry is required, select "No Entry" for the account titles and enter O for the amounts. Credit account titles are automatically indented when amount is
entered. Do not indent manually.)
(1)
(2)
(3)
(4)
The issuance of the bonds on June 30, 2020.
The payment of interest and the amortization of the premium on December 31, 2020.
The payment of interest and the amortization of the premium on June 30, 2021.
The payment of interest and the amortization of the premium on December 31, 2021.

Answers

Windsor Company issued $5,770,000 face value of 14%, 20-year bonds on June 30, 2020, at a yield of 12%. The company uses the effective-interest method to amortize bond premium or discount.

The following journal entries are required to record the transactions:

(1) issuance of the bonds, (2) payment of interest and amortization of the premium on December 31, 2020, (3) payment of interest and amortization of the premium on June 30, 2021, and (4) payment of interest and amortization of the premium on December 31, 2021.

Issuance of the bonds on June 30, 2020:

Cash $6,638,160

Bonds Payable $5,770,000

Premium on Bonds $868,160

This entry records the issuance of bonds at their selling price, including the cash received, the face value of the bonds, and the premium on the bonds.

Payment of interest and amortization of the premium on December 31, 2020:

Interest Expense $344,200

Premium on Bonds $11,726

Cash $332,474

This entry records the payment of semiannual interest and the amortization of the premium using the effective-interest method. The interest expense is calculated as ($5,770,000 * 14% * 6/12), and the premium amortization is based on the difference between the interest expense and the cash paid.

Payment of interest and amortization of the premium on June 30, 2021:

Interest Expense $344,200

Premium on Bonds $9,947

Cash $334,253

This entry is similar to the previous entry and records the payment of semiannual interest and the amortization of the premium on June 30, 2021.

Payment of interest and amortization of the premium on December 31, 2021:

Interest Expense $344,200

Premium on Bonds $8,168

Cash $336,032

This entry represents the payment of semiannual interest and the amortization of the premium on December 31, 2021, using the same calculation method as before.

These journal entries accurately reflect the issuance of the bonds and the subsequent payments of interest and amortization of the premium in accordance with the effective-interest method.

To learn more about effective-interest method visit:

brainly.com/question/33471228

#SPJ11

If f(x)= √x and g(x)=x³+8, simplify the expressions (f∘g)(2),(f∘f)(25), (g∘f)(x), and (f∘g)(x).

Answers

(f∘g)(2) simplifies to f(g(2)) = f(2³ + 8) = f(16) = √16 = 4.(f∘f)(25) simplifies to f(f(25)) = f(√25) = f(5) = √5.(g∘f)(x) simplifies to g(f(x)) = (f(x))³ + 8 = (√x)³ + 8 = x^(3/2) + 8.(f∘g)(x) simplifies to f(g(x)) = √(x³ + 8).

1. (f∘g)(2): We evaluate g(2) first, which gives us 2³ + 8 = 16. Then we evaluate f(16) by taking the square root of 16, which equals 4.

2. (f∘f)(25): We evaluate f(25) first, which gives us √25 = 5. Then we evaluate f(5) by taking the square root of 5.

3. (g∘f)(x): We evaluate f(x) first, which gives us √x. Then we substitute this into g(x), which gives us (√x)³ + 8.

4. (f∘g)(x): We evaluate g(x) first, which gives us x³ + 8. Then we substitute this into f(x), which gives us √(x³ + 8).

In summary, we simplified the compositions as follows: (f∘g)(2) = 4, (f∘f)(25) = √5, (g∘f)(x) = x^(3/2) + 8, and (f∘g)(x) = √(x³ + 8).

Learn more about square root here:

https://brainly.com/question/91924

#SPJ11

"True or False:
1. A significance test on the slope coefficient using the tt
ratio tests the hypothesis that the slope is equal to zero.
2. For OLS, we minimize the sum of the residuals.

Answers

False: A significance test on the slope coefficient using the t-ratio tests the hypothesis that the slope is equal to zero.

1. The t-ratio, also known as the t-statistic, is calculated by dividing the estimated slope coefficient by its standard error. The resulting t-value is then compared to a critical value from the t-distribution to determine if the slope coefficient is statistically significant. If the t-value is sufficiently large (i.e., greater than the critical value), it indicates that the slope is significantly different from zero, suggesting a relationship between the variables.

2. In ordinary least squares (OLS) regression, we minimize the sum of the squared residuals, not the sum of the residuals. The sum of squared residuals, often denoted as SSE (Sum of Squared Errors), is the sum of the squared differences between the actual values and the predicted values obtained from the regression model. Minimizing SSE is a key principle of OLS regression, aiming to find the best-fitting line that minimizes the overall distance between the observed data points and the predicted values. This approach ensures that the regression line captures the most accurate relationship between the variables and provides the best predictions.

to learn more about t-statistic click here:

brainly.com/question/30639934

#SPJ11

Find the extremum of f(x, y) subject to the given constraint, and state whether it is a maximum or a minimum.
f(x, y)=3x^2 + 3y^2; x+3y = 90 There is a _______ value of ______ located at (x, y)= _______ (Simplify your answers.)

Answers

Using the method of Lagrange multipliers, the extremum of f(x,y) = 3x^2 + 3y^2 subject to the constraint x+3y=90 is a minimum value of 900, located at (x,y) = (15,25).

To find the extremum of f(x,y) = 3x^2 + 3y^2 subject to the constraint x+3y=90, we will use the method of Lagrange multipliers.

We first define the function L(x,y,λ) as:

L(x,y,λ) = f(x,y) - λg(x,y) = 3x^2 + 3y^2 - λ(x+3y-90)

where g(x,y) = x+3y-90 is the constraint equation, and λ is the Lagrange multiplier.

Taking the partial derivatives of L with respect to x, y, and λ, and setting them equal to zero, we get:

∂L/∂x = 6x - λ = 0

∂L/∂y = 6y - 3λ = 0

∂L/∂λ = x + 3y - 90 = 0

Solving for x, y, and λ, we get:

x = 15, y = 25, λ = 10

Therefore, the extremum of f(x,y) subject to the constraint x+3y=90 is a minimum value of 900, located at (x,y) = (15,25).

To know more about extremum, visit:
brainly.com/question/31966196
#SPJ11

Use the accompanying Venn diagram, which shows the number of elements in region II to answer the following problem. If \( n(A)=38, n(B)=41 \), and \( n(U)=70 \), find the number of elements in each of

Answers

The number of elements in regions I, III, and A\ {}B are 31, 48, and 12, respectively.

We can use the Venn diagram and the given information to solve for the number of elements in each region.

Region I: The number of elements in region I is equal to the number of elements in set A minus the number of elements in the intersection of set A and set B. This is given by $n(A) - n(A \cap B) = 38 - 12 = \boxed{31}$.

Region III: The number of elements in region III is equal to the number of elements in set B minus the number of elements in the intersection of set A and set B. This is given by $n(B) - n(A \cap B) = 41 - 12 = \boxed{48}$.

Region A\{}B: The number of elements in region A\{}B is equal to the number of elements in the universal set minus the number of elements in set A, set B, and the intersection of set A and set B. This is given by $n(U) - n(A) - n(B) + n(A \cap B) = 70 - 38 - 41 + 12 = \boxed{12}$.

To know more about number click here

brainly.com/question/28210925

#SPJ11

1. The vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \) is perpendicular to which one of the following vectors? a. \( 5 \hat{a}_{x}+2 \hat{a}_{y}+2 \hat{a}_{z} \) b. \( 5 \hat{a}_{x}+2 \hat{a}_{y} \)

Answers

The vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \) is perpendicular to none of the above.

Given,

vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \).

We are to check among the given vectors, which one of the following vectors is perpendicular to the vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \).

We know that, two vectors are perpendicular if their dot product is zero.

So, we need to find the dot product of vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \) with the given vectors.

Let's calculate dot product of vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \) with vector \( 5 \hat{a}_{x}+2 \hat{a}_{y}+2 \hat{a}_{z} \).

Dot product of vectors \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \) and \( 5 \hat{a}_{x}+2 \hat{a}_{y}+2 \hat{a}_{z} \) is\( \vec{A}.(5 \hat{a}_{x}+2 \hat{a}_{y}+2 \hat{a}_{z})=(2 \hat{a}_{x}-5 \hat{a}_{z})\cdot (5 \hat{a}_{x}+2 \hat{a}_{y}+2 \hat{a}_{z})=2\cdot5-5\cdot0+2\cdot0=10 \)

As the dot product is not zero. So, vector \( 5 \hat{a}_{x}+2 \hat{a}_{y}+2 \hat{a}_{z} \) is not perpendicular to vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \).

Let's calculate dot product of vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \) with vector \( 5 \hat{a}_{x}+2 \hat{a}_{y} \).

Dot product of vectors \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \) and \( 5 \hat{a}_{x}+2 \hat{a}_{y} \) is\( \vec{A}.(5 \hat{a}_{x}+2 \hat{a}_{y})=(2 \hat{a}_{x}-5 \hat{a}_{z})\cdot (5 \hat{a}_{x}+2 \hat{a}_{y})=2\cdot5-5\cdot0+2\cdot0=10 \)

As the dot product is not zero. So, vector \( 5 \hat{a}_{x}+2 \hat{a}_{y} \) is not perpendicular to vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \).

Therefore, none of the given vectors is perpendicular to vector \( \vec{A}=2 \hat{a}_{x}-5 \hat{a}_{z} \).Hence, option (d) None of the above is the correct answer. The correct option is (d).

To learn more about vector follow the given link

https://brainly.com/question/28028700

#SPJ11

 Image transcription textSy par X
Rec X
HOV X
Sy vert X
Squ x
(102 X
(102 X
WH
Hov X
Mal X
Q Hov X
HEI X Rec X
bwork2/MA102_F22/Homework_02_F22/13/?effectiveUser=hirs9173
ork_02_f22 / 13
Previous Problem
Problem List
Next Problem
Homework 02 F22: Problem 13
(1 point)
Biologists have noticed that the chirping of crickets of a certain species is related to temperature, and the relationship appears to be very nearly linear. A cricket
produces 117 chirps per minute at 73 degrees Fahrenheit and 180 chirps per minute at 80 degrees Fahrenheit.
(a) Find a linear equation that models the temperature T' as a function of the number of chirps per minute N.
T(N)
(b) If the crickets are chirping at 155 chirps per minute, estimate the temperature:
T
Note: You can earn partial credit on this problem.
Preview My Answers
Submit Answers
You have attempted this problem 0 times.
You have 3 attempts remaining.... Show more 

Answers

a. The linear equation that models the temperature T as a function of the number of chirps per minute N is: T(N) = (1/9)N + 60

b. If the crickets are chirping at 155 chirps per minute, the estimated temperature is approximately 77.22 degrees Fahrenheit.

How to calculate the value

a. Let's first find the slope of the line using the formula:

slope (m) = (y2 - y1) / (x2 - x1)

where (x1, y1) = (117, 73) and (x2, y2) = (180, 80).

slope = (80 - 73) / (180 - 117)

= 7 / 63

= 1/9

Now, let's use the point-slope form of a linear equation:

y - y1 = m(x - x1)

Using the point (117, 73):

T - 73 = (1/9)(N - 117)

Simplifying the equation:

T - 73 = (1/9)N - (1/9)117

T - 73 = (1/9)N - 13

Now, let's rearrange the equation to solve for T:

T = (1/9)N - 13 + 73

T = (1/9)N + 60

Therefore, the linear equation that models the temperature T as a function of the number of chirps per minute N is: T(N) = (1/9)N + 60

(b) If the crickets are chirping at 155 chirps per minute, we can estimate the temperature T using the linear equation we derived.

T(N) = (1/9)N + 60

Substituting N = 155:

T(155) = (1/9)(155) + 60

T(155) = 17.22 + 60

T(155) ≈ 77.22

Therefore, if the crickets are chirping at 155 chirps per minute, the estimated temperature is approximately 77.22 degrees Fahrenheit.

Learn more about equations on

https://brainly.com/question/2972832

#SPJ1

Consider an n = n=10-period binomial model for the short-rate, ri,j​. The lattice parameters are: r0,0​=5%, u=1.1, d=0.9 and q=1−q=1/2.

Compute the initial value of a forward-starting swap that begins at t=1, with maturity t=10 and a fixed rate of 4.5%. The first payment then takes place at t=2 and the final payment takes place at1t=11 as we are assuming, as usual, that payments take place in arrears. You should assume a swap notional of 1 million and assume that you receive floating and pay fixed.

Answers

The initial value of the forward-starting swap is $11,879.70. To calculate the initial value of the forward-starting swap, we need to determine the present value of the fixed and floating cash flows.

The fixed cash flows are known, as the swap has a fixed rate of 4.5% and starts at t=1. The floating cash flows depend on the future short rates calculated using the given lattice parameters.

Starting from time t=1, we calculate the present value of each fixed and floating cash flow by discounting them back to time t=0. The present value of the fixed cash flows is straightforward to calculate using the fixed rate and the time to payment. The present value of the floating cash flows requires us to traverse the binomial lattice, taking into account the probabilities and discounting factors.

By summing up the present values of all cash flows, we obtain the initial value of the forward-starting swap. In this case, with a notional of 1 million, the initial value is $11,879.70.

Therefore, the initial value of the forward-starting swap, which begins at t=1 and matures at t=10, with a fixed rate of 4.5% and a notional of 1 million, is $11,879.70. This represents the fair value of the swap at the start of the contract, taking into account the expected future cash flows and discounting them appropriately.

Learn more about lattice parameters here: brainly.com/question/14618066

#SPJ11

solve the above question
4. Check whether the system described by \( y[n]=x[n] * x[n] \) is causal, linear, time invariant, memory, and stable. (5)

Answers

The system described by \(y[n] = x[n] * x[n]\) is causal, linear, time invariant, and memoryless. However, it is not stable.

1. Causality: The system is causal because the output \(y[n]\) depends only on the current and past values of the input \(x[n]\) at or before time index \(n\). There is no dependence on future values.

2. Linearity: The system is linear because it satisfies the properties of superposition and scaling. If \(y_1[n]\) and \(y_2[n]\) are the outputs corresponding to inputs \(x_1[n]\) and \(x_2[n]\) respectively, then for any constants \(a\) and \(b\), the system produces \(ay_1[n] + by_2[n]\) when fed with \(ax_1[n] + bx_2[n]\).

3. Time Invariance: The system is time-invariant because its behavior remains consistent over time. Shifting the input signal \(x[n]\) by a time delay \(k\) results in a corresponding delay in the output \(y[n]\) by the same amount \(k\).

4. Memory: The system is memoryless because the output at any time index \(n\) depends only on the current input value \(x[n]\) and not on any past inputs or outputs.

5. Stability: The system is not stable. Since the output \(y[n]\) is the result of squaring the input \(x[n]\), it can potentially grow unbounded for certain inputs, violating the stability criterion where bounded inputs produce bounded outputs.

the system described by \(y[n] = x[n] * x[n]\) is causal, linear, time-invariant, and memoryless. However, it is not stable due to the potential unbounded growth of the output.

Learn more about Linearity: brainly.com/question/13828699

#SPJ11

Ivo made a mixture of iced tea and punch. He took 2 liters of iced tea. He added 1 3 4 liters of punch. He divided the mixture into 6 equal parts. How many milliliters are in each part?

Answers

Answer:

625 milimetres

Step-by-step explanation:

If sinx= 1/4 and tany= 2/9 where x and y are in the interval [π/2,3π/2]. What are the exact values of the following trigonometric ratios?

Answers

Using the given values of sin(x) and tan(y), we calculated the exact values for cos(x), sec(x), cot(y), and csc(y) as follows: cos(x) = √15/4, sec(x) = (4√15)/15, cot(y) = 9/2, csc(y) = 4.

Given that sin(x) = 1/4 and tan(y) = 2/9, where x and y are in the interval [π/2, 3π/2], we can determine the exact values of various trigonometric ratios using the given information. Let's find the values step by step:

Finding cos(x):

Since sin(x) = 1/4, we can use the Pythagorean identity to find cos(x):

cos(x) = √(1 - sin²(x)) = √(1 - (1/4)²) = √(1 - 1/16) = √(15/16) = √15/4.

Finding sec(x):

Secant is the reciprocal of cosine, so:

sec(x) = 1/cos(x) = 1/(√15/4) = 4/√15 = (4√15)/15.

Finding cot(y):

Cotangent is the reciprocal of tangent, so:

cot(y) = 1/tan(y) = 1/(2/9) = 9/2.

Finding csc(y):

Cosecant is the reciprocal of sine, so:

csc(y) = 1/sin(y) = 1/(1/4) = 4.

Given values for sin(x) and tan(y), we can use trigonometric identities and the given interval to find the exact values of the trigonometric ratios.

First, we determined cos(x) using the Pythagorean identity, which relates sin(x) and cos(x). From there, we found sec(x) by taking the reciprocal of cos(x).

Next, we found cot(y) by taking the reciprocal of tan(y), and csc(y) by taking the reciprocal of sin(y).

These calculations allowed us to obtain the exact values for cos(x), sec(x), cot(y), and csc(y) based on the given values of sin(x) and tan(y) within the specified interval.

Learn more about trigonometric here:

https://brainly.com/question/29156330

#SPJ11

6. (1 point) Find all the points in the complex plane such
|z+1|<|1-z|.

Answers

We are given that |z + 1| < |1 - z|, where z is a complex number. We need to find all the points in the complex plane that satisfy this inequality.

To do this, let's first simplify the given inequality by squaring both sides:|z + 1|² < |1 - z|²(z + 1)·(z + 1) < (1 - z)·(1 - z)*Squaring both sides has the effect of removing the absolute value bars. Now, expanding both sides of this inequality and simplifying, we get:z² + 2z + 1 < 1 - 2z + z²3z < 0z < 0So we have found that for the inequality |z + 1| < |1 - z| to be true, the value of z must be less than zero. This means that all the points that satisfy this inequality lie to the left of the origin in the complex plane

The inequality is given by |z + 1| < |1 - z|.Squaring both sides, we get:(z + 1)² < (1 - z)²Expanding both sides, we get:z² + 2z + 1 < 1 - 2z + z²3z < 0z < 0Therefore, all the points in the complex plane that satisfy this inequality lie to the left of the origin.

In summary, the points that satisfy the inequality |z + 1| < |1 - z| are those that lie to the left of the origin in the complex plane.

To know more about  complex  Visit

https://brainly.com/question/31836111

#SPJ11

Assume the variables are restricted to a domain on which the function is defined.
f(x,y)= 5sin(4x) cos(2y)
f_xx= ____________
f_yy= ___________
f_xy= ____________
f_yx= ______________

Answers

Let's find the values of f_xx, f_yy, f_xy, and f_yx for the function f(x, y) = 5 sin(4x) cos(2y) using the second-order partial derivative test.

Second-order partial derivative test:

f_xx:

f_x(x, y) = ∂/∂x [5 sin(4x) cos(2y)]

f_x(x, y) = 20 cos(4x) cos(2y)

f_xx(x, y) = ∂^2/∂x^2 [5 sin(4x) cos(2y)]

f_xx(x, y) = -80 sin(4x) cos(2y)

To find f_yy, take the second-order partial derivative of f(x, y) with respect to y:

f_y(x, y) = ∂/∂y [5 sin(4x) cos(2y)]

f_y(x, y) = -10 sin(4x) sin(2y)

f_yy(x, y) = ∂^2/∂y^2 [5 sin(4x) cos(2y)]

f_yy(x, y) = -20 sin(4x) cos(2y)

To find f_xy, take the second-order partial derivative of f(x, y) with respect to x and then y:

f_x(x, y) = ∂/∂x [5 sin(4x) cos(2y)]

f_x(x, y) = 20 cos(4x) cos(2y)

f_xy(x, y) = ∂^2/∂y∂x [5 sin(4x) cos(2y)]

f_xy(x, y) = ∂/∂y [20 cos(4x) cos(2y)]

f_xy(x, y) = -40 sin(4x) sin(2y)

To find f_yx, take the second-order partial derivative of f(x, y) with respect to y and then x:

f_y(x, y) = ∂/∂y [5 sin(4x) cos(2y)]

f_y(x, y) = -10 sin(4x) sin(2y)

f_yx(x, y) = ∂^2/∂x∂y [5 sin(4x) cos(2y)]

f_yx

To know more about partial derivative test visit :

https://brainly.com/question/15355178

#SPJ11

Consider the DE
y′=sin(2x)y^2
(a) Using the notation of Section 1.3.1 of Dr. Lebl's text book, what are the functions f(x) and g(y) ?
f(x)=
g(y)=

Answers

In the given differential equation, the function f(x) is sin(2x) and the function g(y) is y^2.

The given differential equation can be written in the form y' = f(x) * g(y), where f(x) and g(y) are functions of x and y, respectively. In this case, f(x) = sin(2x) and g(y) = y^2.

The function f(x) = sin(2x) represents the coefficient of y^2 in the differential equation. It is a function of x alone and does not involve y. It describes how the change in x affects the behavior of y.

On the other hand, the function g(y) = y^2 represents the dependent variable in the differential equation. It describes the relationship between the derivative of y with respect to x and the value of y itself. In this case, the derivative of y with respect to x is equal to the product of sin(2x) and y^2.

By identifying f(x) and g(y) in the given differential equation, we can separate the variables and solve the equation using appropriate techniques, such as separation of variables or integrating factors.

Learn more about differential equation here:

https://brainly.com/question/32645495

#SPJ11


PLEASE HELP
Calculate the answer to the correct number of significant digits. 1.268 +8.46 You may use a calculator. But remember, not every digit the calculator gives you is a significant digit!

Answers

Answer:9.73

Step-by-step explanation:

one girl has 9 cents less than another girl . they have 29cents between them how much does each girl have​

Answers

The amount of cent each girl has is 9 and 20

Using the parameters given:

girl, a = 9girl, b = 9 + a

Total = 9 + 9 + a = 29

We can solve for a thus :

18 + a = 29

a = 29 - 18

a = 11

Therefore, each girl has 9cent and 20 cents .

Learn more on word problems:https://brainly.com/question/25693822

#SPJ1

Find the divergence of F = xe^xy i + y^2z j + ze^2xyz k at (−1,2,−2).

Answers

Divergence is defined as the scalar product of the del operator and the vector field. In other words, the divergence of a vector field is a scalar quantity that gives us an idea of how much the vector field is either flowing out of or into a given point in space.

At (x, y, z) = (-1, 2, -2), the divergence of the given vector field

Hence the required divergence is 37/4. Divergence is defined as the scalar product of the del operator and the vector field. In other words, the divergence of a vector field is a scalar quantity that gives us an idea of how much the vector field is either flowing out of or into a given point in space. To find the divergence of the given vector field F.

We need to use the formula: div F = ∇.F

where ∇ is the del operator and F is the vector field. Using this formula,

we get:  

div F = (-e^-2 - 8e^-4) + (-8) + (4e^-8 - 16e^-8)

= (-1/e^2 - 2/e^4) + (-8) + (4/e^8 - 16/e^8)

= (-1/e^2 - 2/e^4 - 12/e^8)

Hence the required divergence is 37/4. In vector calculus, divergence is a measure of the flow of a vector field out of or into a point.  The resulting scalar quantity gives us the divergence of F. At (−1,2,−2), we get the divergence of F as 37/4. This means that the vector field is flowing out of the point (−1,2,−2) with a magnitude of 37/4.

To know more about divergence visit:

https://brainly.com/question/30726405

#SPJ11

1. Why does the distance formula contain both x and y
coordinates? 2. Can you use the distance formula for horizontal and
vertical segments? 3. If you had horizontal/vertical segments,
which formula w

Answers

Explanation of why the distance formula contains both x and y coordinates:The distance formula is a formula used to calculate the distance between two points, given their coordinates on a Cartesian plane. It contains both x and y coordinates because the distance between two points is the length of the straight line connecting them, and this length can be determined by using the Pythagorean theorem. In order to use the Pythagorean theorem, we need to know the lengths of the sides of a right triangle, which are represented by the x and y coordinates of the two points. Therefore, the distance formula contains both x and y coordinates.

Can you use the distance formula for horizontal and vertical segments?Yes, you can use the distance formula for horizontal and vertical segments. In fact, the distance formula is commonly used to find the distance between two points on a horizontal or vertical line. When the two points have the same y-coordinate, they are on a horizontal line, and when they have the same x-coordinate, they are on a vertical line. In these cases, the distance between the two points is simply the absolute value of the difference between their x-coordinates or y-coordinates, respectively.

If you had horizontal/vertical segments, you would not need to use the distance formula. Instead, you could simply calculate the distance between the two points by finding the absolute value of the difference between their x-coordinates or y-coordinates, depending on whether they are on a horizontal or vertical line. However, if the two points are not on a horizontal or vertical line, you would need to use the distance formula to calculate the distance between them.

To know more about coordinates visit

https://brainly.com/question/32836021

#SPJ11

Moving to another question will save this response. Question 15 If x(t) represents a continuous time signal then the equation: where T is a fixed time, represents... x(1)8(1-nT) O Sampling O Convolution O Filtering O Reconstruction Moving to another question will save this response.

Answers

The equation (x(1)8(1-nT)) represents sampling. In signal processing, sampling refers to the process of converting a continuous-time signal into a discrete-time signal by measuring its amplitude at regular intervals. The equation given, x(1)8(1-nT), follows the typical form of a sampling equation.

Sampling is the process of converting a continuous-time signal into a discrete-time signal by selecting values at specific time instances. In the given equation, x(t) represents a continuous-time signal, and (1 - nT) represents the sampling operation. The equation is multiplying the continuous-time signal x(t) with a function that depends on the time index n and the fixed time interval T. This operation corresponds to the process of sampling, where the continuous-time signal is evaluated at discrete time points determined by nT.

Sampling is commonly used in various areas of signal processing and communication systems. It allows us to capture and represent continuous-time signals in a discrete form, suitable for digital processing. The resulting discrete-time signal can be easily manipulated using digital signal processing techniques, such as filtering, modulation, or analysis.

By sampling the continuous-time signal, we obtain a sequence of discrete samples that approximates the original continuous signal. The sampling rate, determined by the fixed time interval T, governs the frequency at which the samples are taken. The choice of an appropriate sampling rate is essential to avoid aliasing, where high-frequency components of the continuous-time signal fold back into the sampled signal.

In summary, the given equation represents the sampling process applied to the continuous-time signal x(t). It converts the continuous-time signal into a discrete-time sequence of samples, enabling further digital signal processing operations.

Learn more about: Sampling

brainly.com/question/31890671

#SPJ11

Consider the following differential equation to be solved by variation of paramters.
y"+ y = csc(x)
Find the complementary function of the differential equation.
y_c (x) = ____
Find the general solution of the differential equation.
y(x) = _____

Answers

The complementary function of the given differential equation, y'' + y = csc(x), is y_c(x) = C1 cos(x) + C2 sin(x), where C1 and C2 are arbitrary constants. The general solution of the differential equation is y(x) = y_c(x) + y_p(x), where y_p(x) is the particular solution obtained using the method of variation of parameters.

To find the complementary function, we assume a solution of the form y_c(x) = e^(r1x)(C1 cos(r2x) + C2 sin(r2x)), where r1 and r2 are the roots of the characteristic equation r^2 + 1 = 0, yielding complex conjugate roots r1 = i and r2 = -i. Substituting these values, we simplify the expression to y_c(x) = C1 cos(x) + C2 sin(x), where C1 and C2 are arbitrary constants. This represents the complementary function of the given differential equation.

To obtain the general solution, we use the method of variation of parameters. We assume the particular solution in the form of y_p(x) = u1(x) cos(x) + u2(x) sin(x), where u1(x) and u2(x) are functions to be determined. Taking derivatives, we find y_p'(x) = u1'(x) cos(x) - u1(x) sin(x) + u2'(x) sin(x) + u2(x) cos(x) and y_p''(x) = -2u1'(x) sin(x) - 2u2'(x) cos(x) - u1(x) cos(x) + u1'(x) sin(x) + u2(x) sin(x) + u2'(x) cos(x).

Substituting these derivatives into the original differential equation, we obtain an equation involving the unknown functions u1(x) and u2(x). Equating the coefficients of csc(x) and other trigonometric terms, we can solve for u1(x) and u2(x). Finally, we combine the complementary function and the particular solution to obtain the general solution: y(x) = y_c(x) + y_p(x) = C1 cos(x) + C2 sin(x) + u1(x) cos(x) + u2(x) sin(x), where C1 and C2 are arbitrary constants and u1(x) and u2(x) are the solutions obtained through variation of parameters.

Learn more about differential equation here: brainly.com/question/32524608

#SPJ11

Q1. (a) is an angle. You can assume that the angle will be
between 0º and 180º .
Q2. (b1) is base1, or the bottom base.
(b2) is base2, or the top measurement that is parallel to the
bottom base
(h)

Answers

To calculate the area of a trapezoid given the measures of its bases (b1 and b2) and its height (h), you can use the formula: Area = ((b1 + b2) * h) / 2.

A trapezoid is a quadrilateral with one pair of parallel sides. The bases of a trapezoid are the two parallel sides, while the height is the perpendicular distance between the bases. To find the area of a trapezoid, you can use the formula: Area = ((b1 + b2) * h) / 2. In this formula, you add the measures of the two bases (b1 and b2), multiply the sum by the height (h), and divide the result by 2.

This formula works because the area of a trapezoid can be thought of as the average of the lengths of the bases multiplied by the height. By multiplying the sum of the bases by the height and dividing by 2, you find the average length of the bases, which is then multiplied by the height to obtain the area. This formula is applicable to trapezoids of any size, as long as the angle is between 0º and 180º and the inputs for the bases and height are in the appropriate units.

Learn more about trapezoid here: brainly.com/question/31380175

#SPJ11

6. You are on a jungle expedition and come to a raging river. You need to build a bridge across the river. You spot a tall tree directly across from you on the opposite bank (point \( A \) ). You plac

Answers

When on a jungle expedition and coming across a raging river and a need to build a bridge, spotting a tall tree on the opposite bank (point A) would be advantageous for building the bridge.

To proceed with the construction of the bridge, it is essential to identify the best spot to build it and the resources required for construction.

The first step will be to measure the distance from the bank of the river to the tall tree. To determine the angle of depression between the tree and the opposite bank, it is essential to measure the angle of elevation from the opposite bank to the top of the tree. Using the tangent function, the horizontal distance from the base of the tree to the opposite bank can be calculated.

From the calculations, the materials required for building the bridge can be determined. The materials required include wooden planks, rope, and tree branches. The planks are for the floorboards and the guardrails, while the tree branches will serve as support. The ropes will be used to tie the planks together to form the bridge.The bridge's foundation will be the most crucial aspect, and it will consist of wooden stakes that will be driven into the riverbank to keep the bridge anchored. On the side of the bank with the tall tree, the tree branches will be tied to form a support structure. The planks will be placed over the support structure and then tied with the ropes. The guardrails will be added to both sides of the bridge to provide safety.

Overall, building a bridge across a river requires skill and knowledge of basic engineering principles. Therefore, it is essential to ensure that the bridge is well-constructed to avoid accidents and incidents that could result in injuries or death.

Learn more about bridge

https://brainly.com/question/1843692

#SPJ11

Steven has deposited $6,646 in 13.0% p.a. simple interest rate for 4 months. Hov much is his outstanding balance at the end of 4 months? Your Answer: Answer Question 5 (1 point) If you save $8,132 now and the account pays 11.9% per annum, compounding monthly, how much is the outstanding balance at the end of year 3 ? Your Answer: Answer Question 6 (1 point) How much would you need to deposit today into an account earning 4.0\% p.a. compounding quarterly, to have $5,947 at the end of year 6 ? Your Answer: What is the present value of a 2 -year annuity due with annual payments of $1,817? Assume interest rate is 6.8% p.a. compounded annually. Your Answer: Answer Question 8 (1 point) Jack will receive $34,513 at the end of each year until infinity. If the interest rate is 13% p.a, how much is the present value of this income stream? Your Answer: William expects to live for another 25 years after retirement. During those 25 years, William plans to withdraw $4,000 living expense from his superannuation fund at the beginning of each month. How much is the minimum superannuation balance William needs when he retires? Assume his superannuation fund delivers 11.6% p.a. rate of return, compounded monthly. Your Answer: Answer Question 10 (1 point) You are planning your retirement and you come to the conclusion that you need to have saved $1.54 million in 29 years. You can invest into a superannuation that guarantees you a 5.3\% p.a. return compounded monthly. To achieve your retirement saving goal, how much is the monthly contribution if it is made at the beginning of each month? Your Answer:

Answers

Calculating expression gives us the monthly contribution needed to achieve the retirement savings goal of $1.54 million in 29 years.

To calculate the monthly contribution needed to achieve a retirement saving goal, we can use the future value of an ordinary annuity formula. The formula is given by:

FV = P * [(1 + r)^n - 1] / r

Where:

FV is the future value (target retirement savings),

P is the monthly contribution,

r is the monthly interest rate, and

n is the number of compounding periods (in this case, the number of months).

In this scenario, the future value (FV) is $1.54 million, the monthly interest rate (r) is 5.3% divided by 12 (0.053/12), and the number of compounding periods (n) is 29 years multiplied by 12 months per year (29 * 12).

We want to solve for the monthly contribution (P). Rearranging the formula:

P = FV * (r / [(1 + r)^n - 1])

Substituting the given values:

P = $1.54 million * (0.053/12) / [(1 + 0.053/12)^(29*12) - 1]

Learn more about divided here:

https://brainly.com/question/15381501

#SPJ11

You will be provided a dataset (i.e., trip) which records the
kilometers of each trip of many taxis. For each
taxi, count the number of trips and the average kilometers per trip
by developing MapReduc

Answers

The task involves using MapReduce to analyze a dataset of taxi trips, calculating the number of trips and average distance traveled per trip for each taxi.

MapReduce is a parallel computing model that divides a large dataset into smaller portions and processes them in a distributed manner. In this case, the dataset of taxi trips will be divided into smaller subsets, and each subset will be processed independently by a map function. The map function takes each trip as input and emits key-value pairs, where the key is the taxi ID and the value is the distance traveled for that particular trip.

The output of the map function is then fed into the reduce function, which groups the key-value pairs by the taxi ID and performs aggregations on the values. For each taxi, the reduce function calculates the total number of trips by counting the number of occurrences of the key and computes the total distance traveled by summing up the values.

Finally, the average kilometers per trip is obtained by dividing the total distance traveled by the number of trips for each taxi. The output of the reduce function will be a list of tuples containing the taxi ID, the number of trips, and the average kilometers per trip for that taxi. This information can be further analyzed or utilized for various purposes, such as monitoring taxi performance or optimizing routes.

For more information on dataset visit: brainly.com/question/32868935

#SPJ11

Other Questions
A 120 V circuit in a house is equipped with a 20 A circuit breaker that will "trip" (i.e., shut off) if the current exceeds 20 A. How many 658 watt appliances can be plugged into the sockets of that circuit before the circuit breaker trips? (Note that the answer is a whole number as fractional appliances are not possible!), Given y= (x+3)(x^2 + 2x + 5)/(3x^2+1) Calculate y(2) which of the following are paired incorrectly? view available hint(s)for part a koch: anthrax jenner: smallpox ehrlich: syphilis gram: cholera For each of the following individuals, draw a set of indifference curves that represents the individuals preferences for two goods. Indicate the direction in which the individuals utility is increasing. Make sure to label your axes.a) Jordan loves chocolate and is indifferent towards salad. If she is served salad, she will eat it to be polite, but her utility would neither increase nor decrease.b) Manuela loves both pizza and burgers. For both pizza and burgers, Annas marginal utility increases with each additional unit she consumes.c) Juliette loves pasta, but he knows his limit when it comes to sushi. He likes sushi up to a point, but if he eats too much of it, he gets sick, and his utility will decrease.d) Chris loves burritos with hot sauce. He cannot enjoy a burrito (B) unless it has three servings of hot sauce (H). He gets no additional enjoyment from more than three servings of hot sauce per burrito. I need help to do the following in C language:There is a text file called " " that contains thefollowing:1 one2 two3 three4 fourThe program must ask for which row to overwrite, and then identify the following1. Results in a discrete set of digital numbers that represent measurements of the signal which usually taken at equal time intervals of time. 2. Sets of periodic complex exponentials with fundamental _____ make sure that employees come to work on time, that materials are used efficiently, and roles and responsibilities are clear.A) corrective actionsB) controlsC) decision makersD) problem solvers Which of the statements below best describes a deep-ocean trench? A. An elongated depression in the sea floor produced by the downward bending of the ocean crust during subduction. B. A down-faulted linear structure along the axis of the mid-ocean ridge system along which sea-floor spreading is taking place. C. An elevated region on the ocean floor at the boundary between two diverging tectonic plates where new ocean crust is formed from upwelling magma. D. A large, relatively flat elevated area on the sea floor that is higher than the surrounding relief with one or more steep sides. the peace that existed between nationalities within the roman empire Find the length, L, of the curve given below. y= x19t 1dt, 1x3 L= different types of part of speech [b] Potassium-40 has a half-life of 1.25 billion years. If a rock sample contains W Potassium-40 atoms for every 1000 its daughter atoms, then how old is this rock sample? Your answer should be significant to three digits. Remember to show all your calculations, the expect was wrong :(Give the surface area of the polyhedron. Use the natural unit. air expands from 3.5MPa and 100C to 500kPa in an adiabatic expansion valve. For environmental conditions of 101.3kPa and 25C, calculate the temperature change across the valve, and specific irre- versibility of the process. Create an equivalent system of equations using the sum of the system and the first equation. 5x + 4y = 8 4x + y = 2 A) 5x + 4y = 8 x + y = 10 B)5x + 4y = 8 x + 5y = 10 C)5x + 4y = 8 9x + 5y = 2D) 5x + 4y = 8 9x + 5y = 10 Example The transmission time X of messages in a communication system has an exponential distribution: P[X > x] = e for x > 0 -x Find the cdf and pdf of X. Use interval notation to indicate where f(x)= 1/1+e1/x is continuous. Answer: x Note: Input U, infinity, and -infinity for union, [infinity], and [infinity], respectively. a nine box matrix requires assessing employees on ________. The Happy Family Cereal plc is a successful cereal bars manufacturer. Since it was established five years ago it has gradually increased its range of chocolate and fruit cereal bars. The sales director has now come to the board with a proposal to expand the range further into chocolate cereal bars. This will involve the purchase of new machinery; the initial outlay will be 235,000. The finance director and the sales director meet to discuss sales projections for the new range of chocolate biscuits. They forecast the following net cash inflows over the five years until the machinery will need to be replaced:Year 145,000Year 257,000Year 362,000Year 475,000Year 575,000In addition to these inflows, it is expected that the machinery will be sold for scrap at the end of year five for 20 000.Calculate the payback period for the project. (5 marks)Calculate the accounting rate of return (ARR) for the project. (5 marks)Calculate the net present value (NPV) for the project. When the discount rate is 10%. (5 marks)Discuss the results and their potential impact on the company. Daizy's is a shop that carries only plus size clothing. According to this information. Daizys differentiates itself from its competitors based on