a. Write the objective of the experiment: b. Simulate the circuit and provide the file name: c. Write the values of the below parameters and Attach the screen shots of the same a. Measurement of \( \m

Answers

Answer 1

[tex]I'm sorry, but there is no provided experiment,[/tex]file name, or parameters mentioned in your question. Please provide more information or context so I can better understand your question and provide an accurate answer. Thank you!

To know more about provided visit:

https://brainly.com/question/9944405

#SPJ11


Related Questions

A car is travelling down a mountain of a slope of 20%. The speed of the car in 80 km/h and it should be stopped in a distance of 75 meters. Given is the diameter of the tires = 500 mm. Calculate: 1. The average braking torque to be applied to stop the car. (Please neglect all the frictional energy except for the brake). 2. Now, if the energy is stored in a 25 Kg cast iron brake drum, by how much will the temperature of the drum rise? (Use the specific heat for cast iron may be taken as 520 J/kg°C). 3. Determine, also, the minimum coefficient of friction between the tires and the road in order that the wheels do not skid, assuming that the weight is equally distributed among all the four wheels.

Answers

A car is moving down the slope of a mountain with a slope of 20%. The car's speed is 80 km/h, and it should be brought to a halt in a distance of 75 meters. The diameter of the tires is given to be 500 mm. Hence, the minimum coefficient of friction required to prevent the wheels from skidding is 0.318.

To calculate the Torque applied, we need to calculate the force applied on the brakes at the wheel's rim.Torque = Force x Radius of the wheelForce at the wheel's rim = 99.146 x 0.25 = 24.7865 NmHence, the average braking torque required to stop the car is 24.7865 Nm.2. The energy that has been stored in the cast iron brake drum is the same as the work done against it to bring the car to a halt.

To calculate the minimum coefficient of friction required to prevent the wheels from skidding, we use the following formula:μ = (g x slope) / (1 + (I/r2)m)Where:g = Acceleration due to gravity = 9.81 ms-2slope = 20%m = Mass of the car = 2000 kgI = Moment of inertia of the wheel = (1/2) m r2 = 0.5 x 2000 x (0.5)2 = 500 kg m2r = Radius of the wheel = 500 / 1000 = 0.5 metersSubstituting the values in the formula, we get:μ = (9.81 x 20) / (1 + (500 / (0.5 x 0.5 x 2000)))μ = 0.318

To know more about distance visit:

https://brainly.com/question/31713805

#SPJ11

Section 21.5. The Force on a Current in a Magnetic Field 2. A horizontal wire of length \( 0.53 \mathrm{~m} \), carrying a current of \( 7.5 \mathrm{~A} \), is placed in a uniform external magnetic fi

Answers

The magnitude of the external magnetic field is found to be approximately 1.01 T, if a wire of length 0.53 m, carrying a current of 7.5 A, is placed in a uniform external magnetic field.

To determine the magnitude of the external magnetic field, we can use the formula for the magnetic force experienced by a current-carrying wire in a magnetic field:

F = BIL sinθ,

where F is the magnetic force, B is the magnitude of the magnetic field, I is the current, L is the length of the wire, and θ is the angle between the wire and the magnetic field.

In this instance, the following details are provided:

L = 0.53 m is the wire's length.

Current, I = 7.5 A

Angle, θ = 19°

Magnetic force, F = 4.4 x 10⁽⁻³⁾ N

We can rearrange the formula to solve for the magnetic field, B:

B = F / (IL sinθ).

Plugging in the given values:

B = (4.4 x 10⁽⁻³⁾N) / (7.5 A * 0.53 m * sin(19°)).

Evaluating this expression gives:

B = 1.01 T (tesla).

Therefore, the magnitude of the external magnetic field is approximately 1.01 T.

To know more about magnetic field refer here

brainly.com/question/30331791

#SPJ11

Complete Question :  Complete Question :  A horizontal wire of length 0.53 m, carrying a current of 7.5 A, is placed in a uniform external magnetic field.There is no magnetic force acting on the wire while it is horizontal. The wire receives a magnetic force of 4.4 x 10-3 N when it is inclined upward at an angle of 19°. Determine the magnitude of the external magnetic field.

Answer the option please do all its just mcqs.
please!
Select the correct statement(s) regarding optical signals. a. Optical signals are immune from radio frequency interference (RFI) b. Optical signal operate in the THz frequency range, which can support

Answers

Optical signals refer to the signals that travel through optical fibers, made of glass or plastic, using light waves as carriers. They are used to transmit information from one place to another. The given options are:a. Optical signals are immune from radio frequency interference (RFI).

b. Optical signals operate in the THz frequency range, which can supportc. Optical signals are not affected by the attenuation of electrical signals due to resistance of conductorsLet us discuss each option one by one:a. Optical signals are immune from radio frequency interference (RFI)The statement is true because the optical signals are carried through the glass fibers or plastic wires and are not affected by the interference of other radio frequencies.b. Optical signals operate in the THz frequency range, which can support

However, they don't operate in the entire THz frequency range.c. Optical signals are not affected by the attenuation of electrical signals due to resistance of conductorsThe statement is true because the electrical signals are carried through the metal wires, and the signal strength decreases due to the resistance of the wire. But, the optical signals are carried through the glass fibers or plastic wires and are not affected by resistance or attenuation. Hence, the correct statements are options A, B, and C.

To know more about radio frequency interference visit :

https://brainly.com/question/17646651

#SPJ11

A 440-0, 60.H2, 3-6, 7- connected synchronous motor has a synchronous reactance of 1.5 or per phase. The torque angle = 250 when the power supplied to the motor is 80 kW.
a.) What is the magnitude of the internal generated voltage?
b.) What is the armature current Ia = Ia LO?

Answers

Using the given values of the power supplied to the motor (80 kW), torque angle (250 degrees converted to radians), and voltage at the terminals, we can calculate the armature current at the load condition (Ia = IaLO).

To calculate the magnitude of the internal generated voltage (Ea) and the armature current (Ia = IaLO), we can use the following formulas:

a) Magnitude of the internal generated voltage (Ea):

The magnitude of the internal generated voltage can be calculated using the formula:

Ea = (P / (3 * √3 * IaLO * cos(θ))) + V

where:

P = Power supplied to the motor (in watts)

IaLO = Armature current at the load condition (in amperes)

θ = Torque angle (in radians)

V = Voltage at the terminals of the motor (in volts)

Given that the power supplied to the motor is 80 kW (80,000 watts), and the torque angle is 250 degrees (converted to radians), you can substitute these values into the formula along with the other known values (such as the voltage at the terminals) to calculate the magnitude of the internal generated voltage (Ea).

b) Armature current at the load condition (Ia = IaLO):

The armature current at the load condition can be calculated using the formula:

IaLO = P / (3 * √3 * V * cos(θ))

where:

P = Power supplied to the motor (in watts)

V = Voltage at the terminals of the motor (in volts)

θ = Torque angle (in radians)

Using the given values of the power supplied to the motor (80 kW), torque angle (250 degrees converted to radians), and voltage at the terminals, you can calculate the armature current at the load condition (Ia = IaLO).

Learn more about armature current from the given link!

https://brainly.in/question/50692921

#SPJ11

The full-load slip of a 2-pole induction motor at 50 Hz is 0.04.
Estimate the speed at which the motor will develop rated torque if
the frequency is reduced to (a) 25 Hz, (b) 3 Hz. Assume that in
both cases the voltage is adjusted to maintain full air-gap Xux.
Calculate the corresponding slip in both cases, and explain why the
very low-speed condition is ineYcient. Explain using the equivalent
circuit why the full-load currents would be the same in all the three
cases.

Answers

when the frequency is reduced to 25 Hz or 3 Hz, the motor will develop rated torque at a speed of 2880 RPM with a slip of 4% in both cases. Very low speeds are inefficient due to increased slip and higher power losses. The equivalent circuit parameters, including impedances, remain unchanged as the rated current is constant.

The synchronous speed of an induction motor is given by the formula:

Ns = (120 * f) / P

where Ns is the synchronous speed in RPM, f is the frequency in Hz, and P is the number of poles.

Given that the motor is a 2-pole motor and the frequency is 50 Hz, we can calculate the synchronous speed at full-load slip:

Ns = (120 * 50) / 2 = 3000 RPM

The speed at which the motor will develop rated torque can be calculated by subtracting the slip speed from the synchronous speed:

N = Ns - (Slip * Ns)

where N is the speed at which the motor will develop rated torque.

a) When the frequency is reduced to 25 Hz:

N = 3000 RPM - (0.04 * 3000 RPM) = 2880 RPM

b) When the frequency is reduced to 3 Hz:

N = 3000 RPM - (0.04 * 3000 RPM) = 2880 RPM

In both cases, the speed at which the motor will develop rated torque is 2880 RPM.

The slip can be calculated using the formula:

Slip = (Ns - N) / Ns

a) For 25 Hz:

Slip = (3000 RPM - 2880 RPM) / 3000 RPM = 0.04 or 4%

b) For 3 Hz:

Slip = (3000 RPM - 2880 RPM) / 3000 RPM = 0.04 or 4%

The very low-speed condition is inefficient because the slip becomes a larger proportion of the synchronous speed. As the frequency decreases, the slip increases, resulting in a higher percentage of energy being dissipated as heat in the rotor and increased power losses. At very low speeds, the motor's efficiency decreases significantly due to increased copper and iron losses.

In the equivalent circuit of an induction motor, the stator impedance and rotor impedance are dependent on the rated current. Since the rated current remains the same in all three cases, the impedances and hence the circuit parameters remain unchanged. Therefore, the full-load currents would be the same in all the three cases.

To learn more about torque, click here: https://brainly.com/question/30338175

#SPJ11

Excited H atoms give off radiation in the infrared region known by the balman series. It results when electrons fall from higher energy levels to n=5. Calculate the energy and the frequency of the lowest energy line in the series.

Answers

ν = ΔE / h

Now, substitute the appropriate values and calculate the result.

To calculate the energy and frequency of the lowest energy line in the Balmer series for hydrogen atoms transitioning from higher energy levels to n=5, we can use the Rydberg formula:

1/λ = [tex]R_H[/tex] * (1/n₁² - 1/n₂²)

where λ is the wavelength of the emitted light, R_H is the Rydberg constant for hydrogen (approximately 1.097 × [tex]10^7 m^{-1}[/tex]), n₁ is the initial energy level, and n₂ is the final energy level.

In this case, we have n₁ = higher energy level and n₂ = 5.

First, we need to determine the energy difference between the initial energy level and n=5. The energy difference (ΔE) can be calculated using the formula:

ΔE =[tex]E_{initial} - E_{final}[/tex]

   = -13.6 eV / n₁² - (-13.6 eV / 5²)

Next, we convert the energy difference to joules:

ΔE (in joules) = ΔE (in eV) * 1.6 × [tex]10^{-19 }[/tex]J/eV

Finally, we can calculate the frequency (ν) using the equation:

ν = ΔE / h

where h is the Planck's constant (approximately 6.63 ×[tex]10^{-34 }[/tex]J·s).

Let's calculate the values:

ΔE = (-13.6 eV / n₁²) - (-13.6 eV / 5²)

   = (-13.6 eV / n₁²) - (-13.6 eV / 25)

ΔE (in joules) = ΔE (in eV) * 1.6 × [tex]10^{-19}[/tex] J/eV

ν = ΔE / h

To know more about Rydberg visit:

brainly.com/question/32679031

#SPJ11

what are two aspects of the photoelectric effect which seemed difficult to explain using the classical wave picture of light?

Answers

The two aspects of the photoelectric effect challenging classical wave theory are:

The immediate onset of the effect regardless of light intensity.

The existence of a threshold frequency below which no effect occurs.

The photoelectric effect refers to the phenomenon where electrons are ejected from a metal surface when light shines on it. According to classical wave theory, light is described as an electromagnetic wave, and the energy carried by the wave should be spread out over the entire wavefront. In this view, the energy transferred to the electrons should depend on the intensity of the light, not its frequency.

However, observations showed that the photoelectric effect is immediate, with electrons being emitted almost instantly when the light reaches a certain frequency, regardless of the intensity. This contradicted the classical wave theory's prediction and required a new explanation.

Another challenge for the classical wave theory was the existence of a threshold frequency. Experimental results demonstrated that there is a minimum frequency of light below which no electrons are emitted, regardless of the intensity of the light. According to classical wave theory, increasing the intensity of light should eventually provide enough energy to liberate electrons, irrespective of the frequency. However, the threshold frequency remained a consistent feature in the photoelectric effect, which could not be explained by classical wave theory.

Learn more about photoelectric effect

brainly.com/question/33463799

#SPJ11

If someone could do this for me so I can get a better
grasp I'd be much appreciative
The wave passes through a thin sheet of a reversible weakly dielectric material that is also non-magnetic and insulating. It is several wavelengths long and wide and orientated such that the electric

Answers

The wave passes through a thin sheet of a reversible weakly dielectric material that is also non-magnetic and insulating. It is several wavelengths long and wide and orientated such that the electric field is parallel to the plane of the sheet.

A plane wave is an electromagnetic wave that propagates in a certain direction and oscillates perpendicular to that direction. This plane wave passes through a thin sheet of a reversible weakly dielectric material that is non-magnetic and insulating. This sheet is several wavelengths long and wide and is orientated in such a way that the electric field is parallel to the plane of the sheet.

Therefore, the wave passes through a thin sheet of a reversible weakly dielectric material that is also non-magnetic and insulating, and is several wavelengths long and wide and is orientated in such a way that the electric field is parallel to the plane of the sheet.

To know about  electromagnetic wave visit:

https://brainly.com/question/29774932

#SPJ11

The intensity of a single slit diffraction pattern can be described by I(θ)=Im​(αsinα​)2 where α=λπa​sinθ. with a being the width of the slit and Im​ being the intensity at the center of the central maximum. Consider a diffraction pattern formed by a slit with width a=2.50μm, upon which coherent light with a wavelength λ=634 nm is incident, the screen upon which the diffraction pattern is observed is a distance D=1.33 m away. Part 1) Consider a point on the screen at x=h=1.46 cm, where x=0 is taken as the center of the bright central maximum. What is α at this point? αn​=rad Part 2) What is the ratio of the intensity at this point to the intensity at the bright central maximum? Im​I​= Part 3) Where will the next minimum in the pattern be located on the screen? x= cm

Answers

The next minimum in the pattern will be located at x = 0.25 cm.

Part 1)To find α at the point x = h = 1.46 cm, substitute the values of λ, a, h, and D into the formula for α.α=λπa​sinθα = (634 x 10^-9 m) x (3.1416) x (2.50 x 10^-6 m)/1.33 m x 0.0146 mα = 0.003724 radian or 0.2133 degrees

Part 2)The ratio of the intensity at this point to the intensity at the bright central maximum can be determined using the formula given:

I(θ)=Im​(αsinα​)2At the central maximum

θ = 0, sinθ = 0, and α = 0.

the maximum intensity is:

I(θ) = Im = Im​(αsinα​)2At x = h = 1.46 cm,

the intensity is:

I(θ) = Im​(αsinα​)2 = Im​[(αsinα​)2/(αsinα​)2]I(θ) = Im​Therefore, the intensity at the point x = h is equal to the maximum intensity. Therefore, I_m/I = 1.

Part 3)The location of the first minimum can be determined by using the formula:

d sinθ = λwhere d is the distance between the slit and the screen and θ is the angle at which the first minimum occurs. For the first minimum, θ = π, therefore:

dsinθ = λd = λ/ sinθ= λ / sin (π) = λ/1= 634 nm Therefore, the distance between the first minimum and the central maximum is approximately the width of the slit, which is 2.5 μm. Therefore, the first minimum is located at a distance of 0.0025 m from the central maximum. Since the central maximum is located at x = 0, the location of the first minimum on the screen is x = 0.0025 m = 0.25 cm.

To know more about values please refer to:

https://brainly.com/question/30145972

#SPJ11

In open die forging a cylinder of diameter 60mm and Length 125mm is compressed with barrelling effect. The coefficient of friction is 0.25. Flow stress in the material is assumed to be 50 N/mm². The final Length and diameter of disc is 250mm and 30mm respectively. Evaluate the true strain and the force required.

Answers

Open-die forging is a procedure for transforming metal into a specific shape using compression with the application of successive hammer blows.

Force required:

The true stress can be calculated using the formula,

True stress = Flow stress * (1 + true strain)

But, since we don't have the true stress, we'll have to calculate it as follows:

True stress = Load / Area

Where, Load = Force, and Area = (π/4) * d²

where d is the diameter of the cylinder. In this case, the initial diameter of the cylinder is 60mm. Therefore, the area can be calculated as,

Area = (π/4) * 60² = 2827.43339 mm²

So, the true stress is,

True stress = Force / Area

We know that the coefficient of friction is 0.25. Therefore, the force required for open-die forging can be calculated using the equation below:

Force = (Flow stress * π * d * L * ln(D/d))/(4 * f * ln(L/l))

where,

L = Length of the cylinder before forging = 125mm

D = Diameter of the cylinder before forging = 60mm

f = Coefficient of friction = 0.25

l = Length of the cylinder after forging = 250mm

d = Diameter of the cylinder after forging = 30mm

Substituting the values in the equation,

Force = (50 * π * 60 * 125 * ln(250/60))/(4 * 0.25 * ln(125/30))

Force = 2,707,529.819 N

True strain:

The true strain can be calculated using the equation,

ln (L/l) = true strain

But, we don't have the true strain in this case. We need to calculate it using the equation,

True strain = ln (d/D)

True strain = ln(60/30)

True strain = ln(2)

True strain = 0.693147181

That's it! The true strain is 0.693, and the force required is 2,707,529.819 N.

To know more about Open-die forging visit:

https://brainly.com/question/31867257

#SPJ11

A pulley 180 mm diameter rotating at 1440 rpm drives a fan by means of a vee belt. The angle of contact of the belt on the pulley is 160°. The tight-side belt tension is 1200 N and the coefficient of friction of the contact surfaces is 0.4. The half groove angle is 24º. Calculate: a) the power transmitted. b) the rotational speed of the driven pulley if the driven pulley has a diameter of 900 mm. 10 marks]

Answers

The rotational speed of the driven pulley is 2744 rpm

a) The power transmitted

The power transmitted is the product of the tension force, the velocity of the belt, and the coefficient of power. It is expressed in watts. Given that the diameter of the pulley is 180mm, its radius will be given as:

Radius = Diameter / 2 = 180 / 2 = 90mm

The angular velocity of the pulley is given as:ω = (2πN) / 60 = (2 × 22/7 × 1440) / 60 = 301.6 rad/s

The linear velocity of the pulley can be found as:V = ωr = 301.6 × 0.09 = 27.144 m/s

The power transmitted can be calculated as: P = T1 × V × Coefficient of power

Where T1 = 1200N (tight side tension), and coefficient of power = 0.4

Thus,P = 1200 × 27.144 × 0.4 = 13058.88 W = 13.0588 kW

b) The rotational speed of the driven pulley

The speed of the driven pulley can be calculated by equating the linear velocity of the belt on the two pulleys.

Given that the diameter of the driven pulley is 900 mm, its radius will be given as:

Radius = Diameter / 2 = 900 / 2 = 450 mm

The linear velocity of the belt is given as :V = ωR Where R is the radius of the driven pulley

Thus,1440 × (2π/60) × 0.09 = N × (2π/60) × 0.45

N = 1440 × 0.09 / 0.45 = 288 rad/s or 2744 rpm

Therefore, the rotational speed of the driven pulley is 2744 rpm

Learn more about rotational speed from the given link

https://brainly.com/question/31261267

#SPJ11

A woman wishing to know the height of a mountain mea- sures the angle of elevation of the mountaintop as 12.0°. After walking 1.00 km closer to the mountain on level ground, she finds the angle to be 14.0°. (a) Draw a picture of the problem, neglecting the height of the woman's eyes above the ground. Hint: Use two triangles. (b) Using the symbol y to represent the mountain height and the symbol x to represent the woman's original distance from the moun- tain, label the picture. (c) Using the labeled picture, write two trigonometric equations relating the two selected vari- ables. (d) Find the height y.

Answers

The height(H) of the mountain is approximately 0.230 km (or 230 m).

(a) Picture of the problem neglecting the height of the woman's eyes above the ground.

(b) Using the symbol y to represent the mountain height and the symbol x to represent the woman's original distance(d) from the mountain, label the picture. The value of y is the h of the mountain and the value of x is the original d of the woman from the mountain.

(c) Using the labeled picture, write two trigonometric(Tgy) equations relating the two selected variables. In the first triangle, tan(12) = y / xIn the second triangle, tan(14) = y / (x - 1)(d) To find the h y We will solve the two equations simultaneously to get the value of y. tan(12) = y / x => y = x tan(12)tan(14) = y / (x - 1)=> y = (x - 1)tan(14). From the above equations, we have; xtan (12) = (x - 1)tan(14) xtan (12) = xtan(14) - tan(14)x = tan(14) / (tan(12) - tan(14))On substituting the value of x in the first equation, we get; y = x tan(12)y = (tan(14) / (tan(12) - tan(14))) * tan(12).

To know more about Trigonometric visit:

https://brainly.com/question/25618616

#SPJ11




0/5 pt Question 8 What volume of copper (density 8.96 g/cm) would be needed to balance a 1.38 cm3 sample of lead (density 11.4 g/cm3) on a two-pan laboratory balance?

Answers

The volume of copper (density 8.96 g/cm³) required to balance a 1.38 cm³ sample of lead (density 11.4 g/cm³) on a two-pan laboratory balance is 1.75 cm³.

We are supposed to find the volume of copper that would be needed to balance a 1.38 cm³ sample of lead on a two-pan laboratory balance. To balance the masses of copper and lead, the masses of both elements need to be equal. Thus, the density equation can be used here. It is as follows:    

Density = Mass / Volume

Or

Mass = Density × Volume

Therefore, the mass of the lead sample would be = 11.4 g/cm³ × 1.38 cm³ = 15.732 g

Now, we need to calculate the volume of copper that would have the same mass as the lead. Thus,

Mass of copper = 15.732 g

Density of copper = 8.96 g/cm³

Volume of copper = Mass / Density

= 15.732 g / 8.96 g/cm³≈ 1.75 cm³

Therefore, the volume of copper is approximately 1.75 cm³.

You can learn more about volume at: brainly.com/question/28058531

#SPJ11

A 1200 kg and 2200 kg object is separated by 0.01 meter. What is the gravitational force between them? (Hint, we did a similar problem on 9/30)

Answers

The gravitational force between the 1200 kg and 2200 kg objects, separated by 0.01 meter, is approximately 8.7856 Newtons.

To calculate the gravitational force between two objects, we can use Newton's law of universal gravitation. The formula for the gravitational force (F) is given by:

F = G * (m₁ * m₂) / r²,

where G is the gravitational constant (approximately 6.67430 × 10⁻¹¹ N m²/kg²), m₁ and m₂ are the masses of the objects, and r is the distance between their centers of mass.

In this case, the masses are 1200 kg and 2200 kg, and the distance is 0.01 meter. Plugging these values into the formula, we get:

F = (6.67430 × 10⁻¹¹ N m²/kg²) * (1200 kg * 2200 kg) / (0.01 m)²

Simplifying the expression, we find:

F ≈ 8.7856 N.

Therefore, the gravitational force between the 1200 kg and 2200 kg objects, separated by 0.01 meter, is approximately 8.7856 Newtons.

To know more about gravitational force, refer to the link below:

https://brainly.com/question/29761952#

#SPJ11

The intrinsic carrier concentration of silicon (Si) is expressed as n i= 5.2 x 10^15 T^1,5 exp -Eg/2kT cm^-3 where Eg = 1.12 eV. Determine the density of electrons at 30°C.

n₁ = ____ cm^-3

Answers

The density of electrons at 30°C is 9.639 x 10^9 cm^-3.

The intrinsic carrier concentration of silicon (Si) is expressed as n

i= 5.2 x 10^15 T^1,5 exp -Eg/2kT  cm^-3

where Eg = 1.12 eV. We need to determine the density of electrons at 30°C. For that, we will have to use the formula:

n₁ = n_i * e^(E_f / kT)

Here, n₁ is the electron density, n_i is the intrinsic carrier concentration, E_f is the Fermi level, k is Boltzmann's constant, and T is the temperature in Kelvin (K).

Let's calculate the value of n_i at 30°C:

As per the given formula,

n_i = 5.2 x 10^15 * (30 + 273.15)^1.5 * exp(-1.12 / (2 * 8.617 * 10^-5 * (30 + 273.15)))

     = 9.639 x 10^9 cm^-3

Substituting the value of n_i and T in the formula for n₁:

n₁ = n_i * e^(E_f / kT)

n₁ = 9.639 x 10^9 * e^(0 / (8.617 * 10^-5 * (30 + 273.15)))

n₁ = 9.639 x 10^9 * e^0

n₁ = 9.639 x 10^9 cm^-3

Therefore, the density of electrons at 30°C is 9.639 x 10^9 cm^-3.

Learn more about density from the given link

https://brainly.com/question/1354972

#SPJ11

A ball is thrown straight upwards with an initial velocity of 30 m/s from a height of 1 meter above the ground. The height (measured in meters) of the ball as a function of time t (measured in seconds) after it is thrown is given by h(t)= 1+30t-4.9t^2. What is the instantaneous velocity of the ball at time t0> 4 s when it is at height 30m above the ground?

Answers

To find the instantaneous velocity of the ball at time t₀ > 4 seconds when it is at a height of 30 meters above the ground, we need to find the derivative of the height function with respect to time and then evaluate it at t₀. The instantaneous velocity of the ball at t₀ > 4 seconds when it is at a height of 30 meters above the ground is approximately -53.42992 m/s.

Given:

Height function: h(t) = 1 + 30t - 4.9t^2

Height above the ground: h(t₀) = 30 meters

Time: t₀ > 4 seconds

First, let's find the derivative of the height function with respect to time:

h'(t) = d(h(t))/dt = d(1 + 30t - 4.9t^2)/dt

Differentiating each term separately:

h'(t) = d(1)/dt + d(30t)/dt - d(4.9t^2)/dt

h'(t) = 0 + 30 - 9.8t

Now we have the velocity function, which gives the instantaneous velocity of the ball at any time t.

To find the value of t when the ball is at a height of 30 meters, we can set h(t) equal to 30 and solve for t:

30 = 1 + 30t - 4.9t^2

Rearranging the equation to quadratic form:

4.9t^2 - 30t + 29 = 0

Solving this quadratic equation, we find two possible values of t. Let's denote them as t₁ and t₂.

Using the quadratic formula:

t₁, t₂ = (-(-30) ± √((-30)^2 - 4 * 4.9 * 29)) / (2 * 4.9)

t₁ ≈ 0.6708 seconds

t₂ ≈ 8.5104 seconds

Since we're interested in the ball's velocity at t₀ > 4 seconds, we focus on t₂ ≈ 8.5104 seconds.

Now we can find the instantaneous velocity at t = t₂ by substituting it into the velocity function:

v(t) = h'(t) = 30 - 9.8t

v(t₂) = 30 - 9.8 * t₂

v(t₂) ≈ 30 - 9.8 * 8.5104

Calculating the value:

v(t₂) ≈ 30 - 83.42992

v(t₂) ≈ -53.42992 m/s

Therefore, the instantaneous velocity of the ball at t₀ > 4 seconds when it is at a height of 30 meters above the ground is approximately -53.42992 m/s.

To learn more about, velocity, click here, https://brainly.com/question/31495959

#SPJ11

Two automobiles are equipped with the same single frequency horn. When one is at rest and the other is moving toward the first at 15 m/s the driver at rest hears a beat frequency of 4.5 Hz. What is the frequency the horns emit? Assume T=20 ∘
C.

Answers

When an automobile at rest and another automobile moving towards it at 15 m/s with the same single frequency horn, the driver in the stationary automobile hears a beat frequency of 4.5 Hz. The frequency of the horn at rest is approximately 107.4 Hz.

The frequency of a horn is the number of complete vibrations or cycles it makes in one second. In this problem, we are given that two automobiles equipped with the same single frequency horn are involved.

When one of the automobiles is at rest and the other is moving towards it at a speed of 15 m/s, the driver in the stationary automobile hears a beat frequency of 4.5 Hz.

A beat frequency is the difference between the frequencies of two sound waves. When two waves with slightly different frequencies interfere, they produce a beat frequency that is equal to the difference between their frequencies.

Let's denote the frequency of the horn at rest as f, and the frequency of the horn in motion as f'.

The beat frequency is 4.5 Hz, we can set up the equation:
|f - f'| = 4.5 Hz

Since the automobile in motion is approaching the stationary automobile, the frequency of the horn in motion is higher than the frequency at rest. Therefore, we have:
f' - f = 4.5 Hz

Now, we can use the formula for the Doppler effect to relate the frequencies of the horn in motion and at rest. The formula for the Doppler effect when a source is moving towards an observer is:
f' = (v + vo) / (v - vs) * f

where f' is the observed frequency, f is the source frequency, v is the speed of sound, vo is the velocity of the observer, and vs is the velocity of the source.

In this case, the source frequency is f and the observed frequency is f', while the speed of sound is given by v and is constant at 343 m/s. The velocity of the observer, vo, is 0 m/s since the driver of the stationary automobile is at rest. The velocity of the source, vs, is -15 m/s since the automobile with the horn is moving towards the stationary automobile.

Now, we can substitute the given values into the Doppler effect equation:
f' = (343 + 0) / (343 - (-15)) * f

Simplifying the equation gives:
f' = (343/358) * f

Now, we can substitute this expression for f' into the earlier equation:
(343/358) * f - f = 4.5 Hz

To solve for f, we can rearrange the equation:
(343/358 - 1) * f = 4.5 Hz
(343 - 358)/358 * f = 4.5 Hz
-15/358 * f = 4.5 Hz
f = -4.5 Hz * (358/15)
f ≈ -107.4 Hz

Since frequency cannot be negative, we disregard the negative sign and take the absolute value, giving us:
f ≈ 107.4 Hz

Therefore, the frequency the horns emit is approximately 107.4 Hz.

To know more about beat frequency, refer to the link below:

https://brainly.com/question/31178854#

#SPJ11

A solenoid of radius 2.24 cm has 369 turns and a length of 20.3 cm. Calculate its inductance.
Calculate the rate at which current must change through it to produce an EMF of 56.0 mV.
A 2590-turn solenoid has a radius of 5.49 cm and a length of 21.3 cm. Find the energy stored in it when the current is 0.650 A.

Answers

The inductance of the given solenoid is 1.073 × 10^-2 H. The rate at which current must change through it to produce an EMF of 56.0 mV is 5.219 A/s. The energy stored in a solenoid when the current is 0.650 A is 2.019 × 10^-3 J.

Given data:

Solenoid radius (r) = 2.24 cm

Number of turns (n) = 369

Length of solenoid (l) = 20.3 cm

EMF (ɛ) = 56.0 mV = 0.056 V

Current (I) = 0.65 A

Radius (r) = 5.49 cm

Number of turns (n) = 2590

Length of solenoid (l) = 21.3 cm

We need to calculate the following things:

Inductance (L)Rate of change of current (dI/dt)

Energy stored (U)Formulae used:

Inductance of solenoid:

L = μ0n²πr²lμ0

= 4π × 10^-7 H/m

Rate of change of current (dI/dt):

ɛ = L(dI/dt)

Energy stored in a solenoid:

U = (L×I²)/2

Calculations:1. Inductance of the solenoid:

L = μ0n²πr²l

L = 4π × 10^-7 × 369² × π × (2.24 × 10^-2)² × 20.3L

= 1.073 × 10^-2 H2.

Rate of change of current:

dI/dt = ɛ/L

dI/dt = 0.056 / 1.073 × 10^-2

dI/dt = 5.219

A/s 3.

Energy stored in a solenoid:

U = (L×I²)/2

U = (1.073 × 10^-2 × (0.65)²)/2

U = 2.019 × 10^-3 J

Therefore, the inductance of the given solenoid is 1.073 × 10^-2 H.

The rate at which current must change through it to produce an EMF of 56.0 mV is 5.219 A/s.

The energy stored in a solenoid when the current is 0.650 A is 2.019 × 10^-3 J.

To know more about inductance visit:

https://brainly.com/question/31127300

#SPJ11

MCQ. all point are in the same question
Q6: Choose the correct answer for only \( (8) \) items 1-simple harmonic motion is:- a) Periodic motion only. \( (1.5 \) marks) b) Periodic provided it is sinusoidal. c) Periodic provided it is random

Answers

The correct answer is b) Periodic provided it is sinusoidal. Simple harmonic motion is periodic provided it is sinusoidal. This means that the motion is repetitive and is governed by a sine or cosine function.

A particle is said to be in simple harmonic motion when it moves to and fro under the influence of a restoring force that is proportional to its displacement from a fixed point.

The restoring force is directed towards the fixed point and is given by the negative product of the spring constant and the displacement. Simple harmonic motion is an important concept in physics and is widely used in various fields such as engineering, mechanics, and acoustics.

It is also used to describe the motion of objects that oscillate back and forth, such as a pendulum or a mass-spring system.

Simple harmonic motion has many applications, including in musical instruments, where it is used to produce the tones and notes we hear. In conclusion, Simple harmonic motion is periodic provided it is sinusoidal.

To know more about sinusoidal visit:

https://brainly.com/question/7440937

#SPJ11

A vehicle travels along a roadway that is banked at 11.6° to the horizontal and has a bend of radius 80m. The wheels of the vehicle are 2.4 m apart and the vehicle's center of gravity is 0.7 m above the road surface. If the coefficient of friction between the wheels and the road surface is 0.41, determine: i) The largest velocity that the vehicle can safely travel around the bend ii) What alterations can be done to the vehicle to enable it to travel faster around the bend?

Answers

The largest velocity that the vehicle can safely travel around the bend is 15 m/s. Increasing the downward force acting on the wheels of the vehicle will increase the frictional force and hence the speed at which the vehicle can travel around the bend.

i) The largest velocity that the vehicle can safely travel around the bend is 15 m/s.

ii) Increasing the downward force acting on the wheels of the vehicle will increase the frictional force and hence the speed at which the vehicle can travel around the bend. A vehicle traveling along a roadway that is banked at 11.6° to the horizontal and has a bend of radius 80m is considered in this question. The wheels of the vehicle are 2.4 m apart and the vehicle's center of gravity is 0.7 m above the road surface.

To know more about velocity visit:

https://brainly.com/question/30559316

#SPJ11

Suppose that the square wave pulses supplied to an MCM motor has a duty cycle of 50%, meaning that pulses are present half of the time, and they are not present for the other half of the time. If the amplitude of each pulse is 34 volts, what is the average voltage supplied to the motor?

Answers

The average voltage supplied to the motor is +34/T volts.

The given problem statement can be solved as follows:

Given, Duty cycle = 50%

Time for which the pulse is present = 50% of the total time

Time for which the pulse is not present = 50% of the total time

Amplitude of the pulse = 34 volts

Let us assume that the voltage supplied when the pulse is present is +34 volts and when the pulse is not present it is 0 volts.The average voltage supplied to the motor is the ratio of the sum of all voltages supplied to the total time.

The total time period of the pulse is T and the time period for which the pulse is present is T/2.

Thus, the voltage supplied for the time period of T/2 is +34 volts and the voltage supplied for the time period of T/2 is 0 volts.The average voltage is calculated as shown below:

Average voltage = [Total voltage supplied in T sec]/T

We know that the voltage supplied in T/2 sec is +34 volts and the voltage supplied in T/2 sec is 0 volts.

So, Total voltage supplied in

T sec = Voltage supplied in T/2 sec + Voltage supplied in T/2 sec

= +34 volts + 0 volts

= +34 volts

Thus,

Average voltage = [Total voltage supplied in T sec]/T

= +34/T

The average voltage supplied to the motor is +34/T volts.

To know more about average voltage visit:

https://brainly.com/question/32672906

#SPJ11

A parallel-plate capacitor has plates with area 2.30×10−2 m2 separated by 1.10 mm of Teflon. Calculate the charge on the plates when they are charged to a potential difference of 15.0 V. Express your answer in coulombs. Use Gauss's law to calculate the electric field inside the Teflon. Express your answer in newtons per coulomb. Use Gauss's law to calculate the electric field if the voltage source is disconnected and the Teflon is removed. Express your answer in newtons per coulomb

Answers

- The charge on the plates is approximately 2.754 x 10^-9 coulombs.
- The electric field inside the Teflon is approximately 5.572 x 10^10 newtons per coulomb.
- The electric field is zero when the voltage source is disconnected and the Teflon is removed.

To calculate the charge on the plates,

we can use the formula Q = C * V,

where Q is the charge,

           C is the capacitance, and

           V is the potential difference.

Given that the plates have an area of 2.30×10−2 m2 and are separated by 1.10 mm of Teflon, we can find the capacitance using the formula C = ε0 * (A / d),

where ε0 is the vacuum permittivity, A is the area of the plates, and d is the separation between the plates.

First, let's calculate the capacitance:

C = ε0 * (A / d)
C = (8.85 x 10^-12 F/m) * (2.30 x 10^-2 m2 / 1.10 x 10^-3 m)
C ≈ 1.836 x 10^-10 F

Now, let's calculate the charge on the plates using the given potential difference of 15.0 V:

Q = C * V
Q = (1.836 x 10^-10 F) * (15.0 V)
Q ≈ 2.754 x 10^-9 C

Therefore, the charge on the plates is approximately 2.754 x 10^-9 coulombs.

Next, let's calculate the electric field inside the Teflon using Gauss's law. Gauss's law states that the electric field inside a capacitor is E = Q / (ε0 * A), where E is the electric field, Q is the charge on the plates, ε0 is the vacuum permittivity, and A is the area of the plates.

Using the previously calculated charge on the plates, we can find the electric field:

E = Q / (ε0 * A)
E = (2.754 x 10^-9 C) / ((8.85 x 10^-12 F/m) * (2.30 x 10^-2 m2))
E ≈ 5.572 x 10^10 N/C

Therefore, the electric field inside the Teflon is approximately 5.572 x 10^10 newtons per coulomb.

Finally, let's calculate the electric field if the voltage source is disconnected and the Teflon is removed. In this case, the charge on the plates becomes zero, so the electric field will also be zero.

Therefore, the electric field will be zero when the voltage source is disconnected and the Teflon is removed.

To summarize:
- The charge on the plates is approximately 2.754 x 10^-9 coulombs.
- The electric field inside the Teflon is approximately 5.572 x 10^10 newtons per coulomb.
- The electric field is zero when the voltage source is disconnected and the Teflon is removed.

To learn more about  Gauss's law calculation :

https://brainly.com/question/14773637

#SPJ11

The getaway spaceship of a group of Andorian bank robbers passes the origin of an inertial reference frame S with constant speed v=0.96 in the +x direction at t=0. At the same moment in the same frame, the Romulan ship that is pursuing them passes the x=−500 s at constant speed v=0.99 in the same direction. Assume both ships maintain their constant velocities. Frame S′ moves with the same velocity as the Romulan ship, buts its origin coincides with that of frame S at t=t′=0. (Use SR units for this problem, and give answers to 3 significant digits) (a) In frame S, when and where do the Romulans catch up to the Andorians? (b) In frame S′, when and where do the Romulans catch up to the Andorians? (c) In frame S′, what is the velocity of the Andorian ship? (d) How much time passes on a clock on the Andorian ship between the moment it passes the origin of S and the moment the Romulans catch up to them? (e) How much time passes on a clock on the Romulan ship between the event t=0,x=−500 s (in S ) and the moment it overtakes the Andorian ship? (f) The Romulans have trapped the Andorians in their tractor beam so that both ships now move with the same constant velocity. A Romulan boarding party takes a shuttle across the 3.00 km between the two ships. The shuttle accelerates at a=50.0 m/s2 relative to the Romulan ship for the first half of the trip and then decelerates at the same rate for the other half of the trip. What is the time of the shuttle flight in the inertial frame of the ships? (g) What is difference between the time recorded on the ships and the time recorded on the shuttles during the shuttle flight?

Answers

(a) In frame S: Romulans catch up at t=505.05 s, x=0.500 km.

(b) In frame S': Romulans catch up at t'=0, x'=0.

(c) In frame S': Andorian ship velocity is v'=0.99.

(d) On Andorian ship: Δt=0.521 s between origin and capture.

(e) On Romulan ship: Δt=0.505 s between event and capture.

(f) Shuttle flight time in ship frame: t=24.5 s.

(g) Time dilation: Ships' time > shuttle's time due to velocity.

(a) In frame S, the Romulans catch up to the Andorians when their positions align. The Andorians pass the origin of frame S at t=0, so the time it takes for the Romulans to catch up is given by:

Δt = Δx/v = (500 s)/(0.99) = 505.05 s.

The Romulans catch up to the Andorians at t = 505.05 s, and their position is:

x = −500 s + vΔt = −500 s + (0.99)(505.05 s)

= 0.500 km.

(b) In frame S', the Romulans and the Andorians have the same constant velocity, so they are at rest relative to each other. Therefore, the Romulans catch up to the Andorians at t' = 0, and their position is x' = 0.

(c) In frame S', the velocity of the Andorian ship is the same as the velocity of the Romulan ship, v' = 0.99.

(d) In frame S, the time experienced by the Andorian ship between passing the origin of S and being caught by the Romulans is:

Δt = Δx/v = (0.500 km)/(0.96) = 0.521 s.

(e) In frame S, the time experienced by the Romulan ship between t=0, x=−500 s and catching up to the Andorian ship is:

Δt = Δx/v = (0.500 km)/(0.99) = 0.505 s.

(f) The time of the shuttle flight in the inertial frame of the ships can be determined by calculating the time it takes for the shuttle to travel the 3.00 km distance at an average acceleration of 50.0 m/s².

Using the equation x = 0.5at², we find that:

t = √(2x/a) = √((2 * 3000 m) / (50.0 m/s²)) = 24.5 s.

(g) The difference between the time recorded on the ships and the time recorded on the shuttles during the shuttle flight is the result of time dilation due to their relative velocities. As the shuttle moves at a high velocity relative to the ships, time passes slower on the shuttle compared to the ships. This time dilation effect can be calculated using the time dilation formula, but further information is needed, such as the relative velocity between the shuttle and the ships.

To learn more about velocity follow the link:

https://brainly.com/question/30559316

#SPJ4

The cadmium isotope 109 Cd has a half-life of 462 days. A sample begins with 1.0 × 1012 109 Cd atoms. For the steps and strategies involved in solving a similar problem, you may view a Video Tutor Solution. How many N= Submit Part B How many N 109 Cd atoms are left in the sample after 45 days? VO ΑΣΦ d C A ? Request Answer 109 Cd atoms are left in the sample after 550 days? 15. ΑΣΦ 1500 ? 11 ▼ Part B How many 109 Cd atoms are left in the sample after 550 days? IVE ΑΣΦ 5 d ? Request Answer Part C How many 109 Cd atoms are left in the sample after 5700 days? IVE ΑΣΦ VO word ? N= Submit N Submit Request Answer

Answers

The number of 109Cd atoms left in the sample after 45 days, 550 days, and 5700 days are 8.32 x 10¹¹, 3.75 x 10¹⁰, and 5.84 x 10⁶ atoms, respectively.

To calculate the number of 109Cd atoms left in the sample after a certain amount of time, we can use the formula:

[tex]N(t) = N_0(1/2)^(^t^/^T^)[/tex], where N₀ is the initial number of atoms, t is the elapsed time, T is the half-life of the isotope, and N(t) is the number of atoms remaining at time t.

Substituting the given values in the formula:

[tex]N(45) = (1.0 x 10^1^2)(1/2)^(^4^5^/^4^6^2^) = 8.32 x 10^1^1 atoms[/tex]

[tex]N(550) = (1.0 x 10^1^2)(1/2)^(^5^5^0^/^4^6^2^) = 3.75 x 10^1^0 atoms[/tex]

[tex]N(5700) = (1.0 x 10^1^2)(1/2)^(^5^7^0^0^/^4^6^2^) = 5.84 x 10^6 atoms[/tex]

Thus, the number of 109Cd atoms left in the sample after 45 days, 550 days, and 5700 days are 8.32 x 10¹¹, 3.75 x 10¹⁰, and 5.84 x 10⁶ atoms, respectively.

Learn more about half-life here:

https://brainly.com/question/24710827

#SPJ11


A
diatomic molecule has dissociation energy of 2.5 ev and bond length
r is 0.15nm. Find constants of repulsive force.

Answers

A diatomic molecule has dissociation energy of 2.5 ev and bond length r is 0.15nm, the constants of repulsive force is A = 1.39 x 10^-134 Jm^12 and B = k x A, where k is the constant of proportionality.

The potential energy of diatomic molecules is governed by Lennard-Jones potential, which is given by U(r) = (A/r^12) - (B/r^6), where A and B are the constants of repulsive force and attractive force, respectively. The dissociation energy of a diatomic molecule is the energy required to break the bond between the two atoms. If the bond length is known, the constants of repulsive force can be calculated using the following formula: A = (2.5 eV x 1.6 x 10^-19 J/eV) x (r/0.15 nm)^12 / 2B.

Here, the dissociation energy is converted from eV to joules, and r is converted from nm to meters. The result is in units of joules per meter to the power of 12. Plugging in the given values, we get: A = 1.39 x 10^-134 Jm^12 / B. Therefore, the constants of repulsive force can be expressed as A = 1.39 x 10^-134 Jm^12 and B = k x A, where k is the constant of proportionality.

Learn more about potential energy at:

https://brainly.com/question/16861067

#SPJ11

Suppose you use a heat pump to heat your home. It works by pumping heat from the outside at 0 ◦ to the inside of your home which is at 20◦C. Suppose you had a heat pump with the maximum possible efficiency allowed by thermodynamics. For each Joule of work done by the electric motor, how may Joules of heat enter your home?

Answers

A heat pump can be used to heat a home. It operates by transferring heat from the outside, which is at 0 °C, to the inside, which is at 20 °C. Suppose you had a heat pump with the maximum possible thermodynamic efficiency.

How many joules of heat enter your home for each joule of work done by the electric motor?

The ideal or maximum thermodynamic efficiency is given by the equation, η = 1 − T2/T1, where T1 is the hot temperature and T2 is the cold temperature. When a heat pump is being used, the cold temperature is located inside the home and is equal to 20 °C (293 K). The temperature outside is 0 °C (273 K).

So,η = 1 − 273 K/293 K = 0.067.

The ratio of heat supplied to work done is given by 1/η. Therefore, the ratio of heat supplied to work done is given by:

1/η = 1/0.067= 14.93 joules of heat enter your home for each joule of work done by the electric motor.

The number of joules of heat that enter the home per joule of work done by the electric motor in a heat pump with the maximum possible efficiency allowed by thermodynamics is 14.93.

learn more about thermodynamics here

https://brainly.com/question/13059309

#SPJ11

Question 3
An object's velocity as a function of time in one dimension is given by the expression; v(t) = 2.68t + 8.6 where are constants have proper SI Units. What is the object's velocity at t= 4.76s?
____________

Question 4
An object's velocity as a function of time in one dimension is given by the expression; v(t) = 3.6t + 8.87 where are constants have proper SI Units. At what time is the object's velocity 69.5 m/s?
__________

Answers

The object's velocity at t= 4.76 s is 21.48 m/s. 

An object's velocity as a function of time in one dimension is given by the expression v(t) = 2.68t + 8.6 where constants have proper SI Units.

Given,v(t) = 2.68t + 8.6Here, v(t) is the velocity of an object at time t.

Therefore, the velocity of an object is given by 2.68t + 8.6. We have to calculate the velocity of an object at t=4.76 s.

Thus, substituting t = 4.76 in the given equation, we get;v(t) = 2.68t + 8.6v(4.76) = 2.68(4.76) + 8.6 = 21.48 m/s

Therefore, the object's velocity at t= 4.76 s is 21.48 m/s. 

Question 4: The object's velocity is 69.5 m/s when t = 18.09 s.

Given,v(t) = 3.6t + 8.87 We have to find at what time the object's velocity is 69.5 m/s.

Therefore, we can write the above equation as;3.6t + 8.87 = 69.5

Subtracting 8.87 from both sides,3.6t = 60.63

Dividing both sides by 3.6,t = 16.842

Thus, the object's velocity is 69.5 m/s when t = 16.842 s (approximately).

Therefore, the time when the object's velocity is 69.5 m/s is 16.842 s.

To know more about velocity please refer:

https://brainly.com/question/80295

#SPJ11

3. Walking at a constant speed, Mitch takes exactly one minute to walk around a circular track. What is the mensure of the central angle that corresponds to the are that Mitch has traveled after exactly 45 seconds? A. 2π​ B. π C. 23π​ D. 47π​

Answers

Given that Mitch takes exactly one minute to walk around a circular track.

Hence, Mitch takes 60 seconds to cover the entire circular track.

Therefore, in 45 seconds, the fraction of the circular track covered by Mitch can be determined as shown below:

Fraction covered by Mitch = 45/60 = 3/4 of the track

The central angle corresponding to this fraction of the circular track is given by:

Central angle = (3/4) * 2π = (3/2)π radians

Hence, the of the central angle that corresponds to the area that Mitch has traveled after exactly 45 seconds is (3/2)π radians.

The option that represents this is option A) 2π. Hence, option A is the correct choice.

To know more about measure visit :

https://brainly.com/question/28913275

#SPJ11




Define and provide an example/scenario for the term "inelastic collision". (C:3) Marking Scheme (C:3) . 2C for definition 1C for an example

Answers

An inelastic collision is a situation in which two or more objects collide and stick together after the impact. In this type of collision, there is a loss of kinetic energy, and the colliding objects move with a common velocity after the collision. In other words, they become one object.

An inelastic collision is a situation in which two or more objects collide and stick together after the impact. In this type of collision, there is a loss of kinetic energy, and the colliding objects move with a common velocity after the collision. In other words, they become one object.
The conservation of momentum is still valid in an inelastic collision. It means that the total momentum of the colliding objects before and after the collision is the same. However, there is no conservation of kinetic energy in this type of collision. The kinetic energy is dissipated in the form of sound, heat, or deformation.
For instance, when two cars collide with each other, they may stick together after the impact, and their velocity will be the same. The collision is inelastic because the kinetic energy of the cars is dissipated in the form of sound, deformation, and heat. This type of collision is not desirable, and it can cause significant damage to the vehicles and passengers involved.
Another example of an inelastic collision is a bullet hitting a wooden block and getting embedded in it. The bullet and the block will move with a common velocity after the collision, and the kinetic energy will be dissipated in the form of sound, heat, and deformation.

To know more about kinetic energy visit:

https://brainly.com/question/999862

#SPJ11

von mises and tresca criteria give different yield stress for

Answers

The von Mises and Tresca criteria are two different methods used to determine the yield stress of a material. The von Mises criterion considers the distortion energy, while the Tresca criterion considers the maximum shear stress. The von Mises criterion is often used for ductile materials, while the Tresca criterion is often used for brittle materials.

The von Mises and Tresca criteria are two different methods used to determine the yield stress of a material. The yield stress is the point at which a material starts to deform plastically, meaning it undergoes permanent deformation even after the applied stress is removed.

The von Mises criterion, also known as the distortion energy theory, takes into account the three principal stresses in a material and calculates an equivalent stress value. If this equivalent stress exceeds the yield strength of the material, it is considered to have yielded.

The Tresca criterion, also known as the maximum shear stress theory, only considers the difference between the maximum and minimum principal stresses in a material. If this difference exceeds the yield strength of the material, it is considered to have yielded.

The von Mises criterion is often used for ductile materials, where plastic deformation is significant. It provides a more accurate prediction of yielding in complex stress states. On the other hand, the Tresca criterion is often used for brittle materials, where plastic deformation is minimal. It provides a conservative estimate of yielding.

Learn more about von Mises and Tresca criteria

https://brainly.com/question/13440986

#SPJ11

Other Questions
Explain what happens. a. It segfaults on line 5. b. It segfaults on line 6.c. It segfaults on line 7int g = 11;main(){int *p = malloc(sizeof(int));p = &g;*p = g; free(p);*p = 17;} which is an accepted form of id for consuming or purchasing alcohol 3. My hot water system maintains a volume of 130 litres of water, which it heats to a maximum temperature of 60 C in a cylindrical tank 1.5 metres tall. It works by drawing in cold (temperature 10 C ) water at the base of the tank, where the heating element is located. Hot water leaves through a pipe at the top of the system. If the tank is full of water at 60 C, the manufacturer guarantees that it will produce 260 litres of water at or above 50 C in the first hour of use. Temperature diffusion (as per the heat equation) in water has a diffusion coefficient of around 1.510 7 m 2 /s. What is the minimum rate at which the elememt must heat the water (in C/ litre/minute), to meet the manufacturer's guarantee? Figure 2: Schematic of the hot water system 100 Points! Geometry question. Photo attached. Find the measure. Please show as much work as possible. Thank you! Evaluate the following limit.lim(x,y)(2,9)159Select the correct choice below and, if necessary, fill A.lim(x,y)(2,9)159=(Simplify your answer.) B. The limit does not exist. [QUESTION 10 POSSIBLE MARKS]: final answer pleaseA) considering a Hard Disk Drive (H.D.D) with the following characteristics:Block size = 96 bytes ,Number of blocks per track = 79 blocks , Number of tracks per surface = 8 tracks , H.D.D consists of 63 double-sided plates/disks. What is the total capacity of a cylinder?------ For each of the caches described below, calculate the total number of bits needed by the cache, the data efficiency (ratio of bits per cache line used to store data and total bits per cache line), and show a representation of which bits of the memory address are used for the tag, index, block offset, and byte offset (if any). A) A 256-block direct mapped cache using 64-bit memory addresses with a block size of 1 64-bit word. Assume that memory is byte addressable (i.e. any byte in memory can be addressed and addresses do not need to be aligned to the word size). B) A 64-block direct mapped cache using 32-bit memory addresses with a block size of 16 32-bit words. Assume that memory is word addressable (i.e. memory addresses are 32-bit word aligned). C) A 512-block 4-way set associative cache using 64-bit memory addresses with a block size of 1 32-bit word. Assume that the memory is word addressable. D) A 64-block 8-way set associative cache using 32-bit memory addresses with a block size of 8 64-bit words. Assume that the memory is halfword addressable (i.e. memory addresses must align to 32-bit halfwords). an agent may compete with her principal in business transactions if the principal is aware of the situation and consents. true or false what is the final step in the fulfillment process? Problem #3: [(Function of one RV, Y = g(X))] [3+2+3+2 Marks] Consider that X is a uniformly distributed Random Variable (RV) in the interval (-, ). We formulate another RV, Y through the transformation, g(X) = Rcos(wX+ o), where R and o are two real constants. Answer the following questions: a. CDF and PDF of the transformed RV, Y b. Mean of the transformed RV, Y c. Variance and standard deviation of the transformed RV, Y d. Moment generating function and characteristic function (if possible) of the transformed RV, Y Evaluate the integral using trigonometric substitution. (Use C for the constant of integration. Remember to use absolute values where appropriate.)8( t^2 4) dt Find the area of the region bounded by the given curves. y=x^2, y=8xx^2 Although the relative factor endowments differ widely, both India and the U.S. export similar agricultural products, including rice. Does this necessarily contradict the Heckscher-Ohlin model? How could you explain this pattern of trade within the context of the Heckscher-Ohlin model? Two 10 -cm-diameter charged rings face each other, 15 cm apart. The left ring is charged Part A to 20nC and the right ring is charged to +20nC. What is the magnitude of the electric field E at the midpoint between the two rings? Express your answer with the appropriate units. X Incorrect; Try Again; 4 attempts remaining Consider yourself working as a Team Lead of the security team. You have been offered a bonus which is at your discretion to grant to members of your team. You have two options on how to distribute this bonus. First, you can grant an equal bonus to all members of the team, or you can grant more bonus to more efficient and hardworking members of the team compared to underperforming ones. How would you assess and evaluate this scenario of bonus allocation in the light of the principle of utility and principle of justice? State the case for and against each of these principles. The primary reason that dragonflies grew so much larger 300 million years ago than they do today is thata. they lacked predators then.b. they were able to exploit an aquatic niche that no longer exists.c. there was more oxygen in the air then.d. there was more nitrogen in the air then.e. Earth was much colder then. Find the required Fourier series for the given function. Sketch the graph of the function to which the series converges over three periods.f(x)={0,0 Informational hand-holding:A.should normally be avoided except in the most personal situations.B.arises from an organization's sensitivity to customers discomfort.C.refers to prioritizing face-to-face communication above other methods.D.is not useful with internal customers. At the beginning of the current period. Swifty Ltd, had balances in Accounts Receivable of 247,000 and in Allowance for Doubtful Accounts of 9,500 (credit). During the period, it had net credit sales of 815,000 and collections of 774,250. It wrote off as uncollectible accounts receivable of 6,300. However, a f3.200 account previously written off as uncoliectibie was recovered before the end of the current period. Uncollectible accounts are estimated to total 24,500 at the end of the period. (Omit cost of goods sold entries.? Determine the ending balances in Accounts Receivable and Allowance for Doubtful Accounts. Ending balance in Accounts Receivable E _____________Ending balance in Allowance for Doubtful Accounts E_________ Perform various analyses designed to support the supplier evaluation and selection decision. These analyses, with supporting worksheets or templates provided, include - Financial Risk Analysis While this case assumes that the cross-functional team visited four suppliers, organizations often perform a preliminary financial risk analysis to identify the suppliers that may not warrant further consideration due to excessive financial risk. - Total Cost Analysis Unit price rarely, if ever, equals the total cost of doing business with a supplier. This analysis requires each group to identify relevant additional costs beyond unit price. This involves considering a combination of actual and estimated costs. Consider potential currency issues in your analysis. - Supplier Evaluation and Selection Analysis As organizations continue to rely on fewer suppliers, the supplier selection process takes on greater importance. The Supplier Evaluation and Selection Analysis is a robust tool used during supplier assessment. - Sourcing Risk Management Plan Sourcing decisions invariably involve risk. This analysis requires each group to (1) identify the potential risks associated with a sourcing decision, (2) assess the possible magnitude of each risk to operations, and (3) identify ways to manage or reduce risk exposure.