The heat dissipated in the device during 273 minutes of operation is approximately 217.56 kJ
To calculate the heat dissipated in the device over 273 minutes of operation, we need to find the power consumed by the device and then multiply it by the time.
Given that,
The device draws a current of 4.86 A, we need the voltage of the A274-V battery to calculate the power. Let's assume the battery voltage is 274 V based on the battery's name.
Power (P) = Current (I) * Voltage (V)
P = 4.86 A * 274 V
P ≈ 1331.64 W
Now that we have the power consumed by the device, we can calculate the heat dissipated using the formula:
Heat (Q) = Power (P) * Time (t)
Q = 1331.64 W * 273 min
To convert the time from minutes to seconds (as power is given in watts), we multiply by 60:
Q = 1331.64 W * (273 min * 60 s/min)
Q ≈ 217,560.24 J
To convert the heat from joules to kilojoules, we divide by 1000:
Q ≈ 217.56 kJ
Therefore, the heat dissipated in the device during 273 minutes of operation is approximately 217.56 kJ.
Learn more about heat from the given link
https://brainly.com/question/934320
#SPJ11
Calculate heat loss by metal and heat gained by water with the
following information.
Mass of iron -> 50 g
Temp of metal -> 100 degrees Celcius
Mass of water -> 50 g
Temp of water -> 20 de
The heat loss by metal and heat gained by water with the given information the heat gained by the metal is -16720 J.
We can use the following calculation to determine the heat loss by the metal and the heat gained by the water:
Q = m * c * ΔT
Here, it is given:
m1 = 50 g
T1 = 100 °C
c1 = 0.45 J/g°C
m2 = 50 g
T2 = 20 °C
c2 = 4.18 J/g°C
Now, the heat loss:
ΔT1 = T1 - T2
ΔT1 = 100 °C - 20 °C = 80 °C
Q1 = m1 * c1 * ΔT1
Q1 = 50 g * 0.45 J/g°C * 80 °C
Now, heat gain,
ΔT2 = T2 - T1
ΔT2 = 20 °C - 100 °C = -80 °C
Q2 = m2 * c2 * ΔT2
Q2 = 50 g * 4.18 J/g°C * (-80 °C)
Q1 = 50 g * 0.45 J/g°C * 80 °C
Q1 = 1800 J
Q2 = 50 g * 4.18 J/g°C * (-80 °C)
Q2 = -16720 J
Thus, as Q2 has a negative value, the water is losing heat.
For more details regarding heat gain, visit:
https://brainly.com/question/29698863
#SPJ4
The concept of resonance explains .. A. the cooking of food by microwaves B. the reception of radio waves by antennae
C. the collapse of the Tacoma Narrows Bridge
D. all of these
The correct answer is D: all of these. The concept of resonance explains various phenomena, including the cooking of food by microwaves, the reception of radio waves by antennae, and the collapse of the Tacoma Narrows Bridge.
Resonance occurs when an object or system vibrates at its natural frequency in response to an external force or stimulus. In the case of microwaves, the concept of resonance is utilized to cook food efficiently.
Microwaves generate electromagnetic waves that match the resonant frequency of water molecules, causing them to vibrate and generate heat. Similarly, radio waves are received by antennae through resonance.
The antennae are designed to resonate at specific frequencies, allowing them to capture the radio signals and convert them into electrical signals for transmission. In the case of the Tacoma Narrows Bridge, resonance played a detrimental role.
The bridge's structural design and the wind conditions caused the bridge to vibrate at its natural frequency, resulting in destructive oscillations and ultimately leading to its collapse. Therefore, resonance explains these phenomena, making option D, "all of these," the correct answer.
Learn more about concept of resonance here; brainly.com/question/13754408
#SPJ11
Consider a sealed cylindrical container released from a height h and rolling without friction on an inclined plane. If water is added to the container, would the velocity of the cylinder when it reaches the end of the incline be faster than of the empty one? Consider that water slides without friction inside the container and in both cases the cylinder is released from the
same height.
Select one:
O True
O False
False. If water is added to the container, the velocity of the cylinder when it reaches the end of the incline will not be faster than of the empty one
The velocity of the cylinder when it reaches the end of the incline would not be affected by the addition of water to the container. The key factor determining the velocity of the cylinder is the height from which it is released and the incline angle of the plane. The mass of the water inside the container does not affect the acceleration or velocity of the cylinder because it is assumed to slide without friction.
The cylinder's velocity is determined by the conservation of mechanical energy, which depends solely on the initial height and the angle of the incline. Therefore, the addition of water would not make the cylinder reach the end of the incline faster or slower compared to when it is empty.
Learn more about mechanical energy here:
https://brainly.com/question/24443465
#SPJ11
Explain to other people about the electron, electricity, magnetism and its use in electrical machines, mirrors, lenses, perspectives, illusion.
Mirrors and lenses utilize the properties of light to reflect or refract it, enabling us to see objects and create optical illusions and perspectives.
Electrons are subatomic particles that carry a negative charge. They play a crucial role in electricity and magnetism. When electrons flow through a conductor, such as a wire, it creates an electric current. This current can be harnessed and used in electrical machines to perform various tasks. Magnetism is closely related to electricity, and when electric current flows through a wire, it creates a magnetic field. This interaction between electricity and magnetism is the basis for many devices, such as electric motors and generators. Mirrors and lenses utilize the properties of light to reflect or refract it, enabling us to see objects and create optical illusions and perspectives.
Learn more about Electrons here:
https://brainly.com/question/860094
#SPJ11
A man stands 10 m in front of a large plane mirror. How far must he walk before he is 5m away from his image? A. 10 cm B. 7.5 m C. 5 m D. 2.5 m
The man is 10m in front of a large plane mirror and we are to determine the distance he must walk before he is 5m away from his image.
The image formed by a plane mirror is a virtual image of the same size as the object and the distance between the object and its image is twice the distance of the object to the mirror.
The man’s distance to the mirror = 10m
Distance of man’s image to the mirror = 2 x 10 = 20m
Distance between man and his image = 20 - 10 = 10m To be 5m away from his image, he would need to walk half the distance between himself and the mirror.
Thus, he would need to walk a distance of 5m.
Option C 5 m is correct.
#SPJ11
Learn more about the plane mirrors and image https://brainly.com/question/1126858
Question 1 (1 point)
A force, F, is applied to an object with a displacement, Δd. When does the equation W = FΔd equal the work done by the force on the object?
Question 1 options:
always
when the force is in the same direction as the displacement
when the force is perpendicular to the displacement
when the force is at an angle of 450 to the displacement
Question 2 (1 point)
At a construction site, a constant force lifts a stack of wooden boards, which has a mass of 500 kg, to a height of 10 m in 15 s. The stack rises at a steady pace. How much power is needed to move the stack to this height?
Question 2 options:
1.9 x 102 W
3.3 x 102 W
3.3 x 103 W
1.6 x 104 W
Question 3 (1 point)
Saved
A mover pushes a sofa across the floor of a van. The mover applies 500 N of horizontal force to the sofa and pushes it 1.5 m. The work done on the sofa by the mover is
Question 3 options:
285 J
396 J
570 J
750J
Question 4 (1 point)
A cart at the farmer's market is loaded with potatoes and pulled at constant speed up a ramp to the top of a hill. If the mass of the loaded cart is 5.0 kg and the top of the hill has a height of 0.55 m, then what is the potential energy of the loaded cart at the top of the hill?
Question 4 options:
27 J
0.13 J
25 J
130 J
Question 6 (1 point)
Suppose that a spacecraft of mass 6.9 x 104 kg at rest in space fires its rockets to achieve a speed of 5.2 x 103 m/s. How much work has the fuel done on the spacecraft?
Question 6 options:
2.2 x 106 J
1.8 x 109 J
3.6 x 109 J
9.3 x 1011 J
Question 7 (1 point)
A 60 kg woman jogs up a hill in 25 s. Calculate the power the woman exerts if the hill is 30 m high.
Question 7 options:
706W
750W
650W
380W
Question 8 (1 point)
A shopper pushes a loaded grocery cart with a force of 15 N. The force makes an angle of 300 above the horizontal. Determine the work done on the cart by the shopper as he pushes the cart 14.2 m.
Question 8 options:
166J
213J
185J
225J
Question 9 (1 point)
A car of mass 1.5 x 105 kg is initially travelling at a speed of 25 m/s. The driver then accelerates to a speed of 40m/s over a distance of 0.20 km. Calculate the work done on the car.
Question 9 options:
3.8x105 J
7.3x107 J
7.3x105 J
7.3x103 J
Question 10 (1 point)
A 86g golf ball on a tee is struck by a golf club. The golf ball reaches a maximum height where its gravitational potential energy has increased by 255 J from the tee. Determine the ball's maximum height above the tee.
303m
34m
0.3m
30m
Answer:
1.) The equation W = FΔd equal the work done by the force on the object when the force is in the same direction as the displacement.
2.) The equation W = FΔd equal the work done by the force on the object when the force is in the same direction as the displacement.
3.) The work done on the sofa by the mover is 285 J.
4.) The potential energy of the loaded cart at the top of the hill is 27 J.
6.) The amount of work done by the fuel on the spacecraft is 3.6 x 109 J
7.) The power the woman exerts when jogging up the hill is 706 W.
8.) The work done on the cart by the shopper is 166 J.
9.) The work done on the car is 7.3 x 107 J.
10.) The ball's maximum height above the tee is 30 m.
Explanation:
1.) The equation W = FΔd equal the work done by the force on the object when the force is in the same direction as the displacement.
2.) The equation W = FΔd equal the work done by the force on the object when the force is in the same direction as the displacement.
Power = Work / Time
Power = (Mass * Acceleration * Height) / Time
Power = (500 kg * 9.8 m/s^2 * 10 m) / 15 s
Power = 3.3 x 103 W
3.) The work done on the sofa by the mover is 285 J.
Work = Force * Distance
Work = 500 N * 1.5 m
Work = 285 J
4.)The potential energy of the loaded cart at the top of the hill is 27 J.
Potential Energy = Mass * Gravitational Constant * Height
Potential Energy = 5.0 kg * 9.8 m/s^2 * 0.55 m
Potential Energy = 27 J
6.) The amount of work done by the fuel on the spacecraft is 3.6 x 109 J
Work = Kinetic Energy
Work = (1/2) * Mass * Velocity^2
Work = (1/2) * 6.9 x 10^4 kg * (5.2 x 10^3 m/s)^2
Work = 3.6 x 10^9 J
7.) The power the woman exerts when jogging up the hill is 706 W.
Power = Work / Time
Power = (Mass * Gravitational Potential Energy) / Time
Power = (60 kg * 9.8 m/s^2 * 30 m) / 25 s
Power = 706 W
8.) The work done on the cart by the shopper is 166 J.
Work = Force * Distance * Cos(theta)
Work = 15 N * 14.2 m * Cos(30)
Work = 166 J
9.) The work done on the car is 7.3 x 107 J.
Work = Force * Distance
Work = (Mass * Acceleration) * Distance
Work = (1.5 x 10^5 kg * (40 m/s - 25 m/s)) * 0.20 km
Work = 7.3 x 10^7 J
10.) The ball's maximum height above the tee is 30 m.
Potential Energy = Mass * Gravitational Constant * Height
255 J = 0.086 kg * 9.8 m/s^2 * Height
Height = 30 m
Learn more about Work Done.
https://brainly.com/question/33261315
#SPJ11
Calculate the capillary correction of a 100 ml of water (surface
tension = 0.069 N/m) in a 10 mm diameter glass tube. Assume
meniscus angle is 60 degrees.
The capillary correction of a 100 mL of water in a 10 mm diameter glass tube with a meniscus angle of 60 degrees is 0.706 mL.
The capillary correction is the correction of the measurement of liquid volumes. Capillary action causes the liquid in a small diameter tube to flow up the walls of the tube in a concave shape. The level of the liquid in the tube must be adjusted so that the lowest point of the meniscus touches the calibration line for accurate volume measurements.
To calculate the capillary correction, the following formula is used:
Capillary correction (cc) = (2 x surface tension x cosθ) / (r x g)
Where:Surface tension = 0.069 N/m (Given)
Meniscus angle (θ) = 60° (Given)
r = radius of the tube = 10 mm / 2 = 5 mm = 0.005 m
G = acceleration due to gravity = 9.81 m/s²
Capillary correction (cc) = (2 x 0.069 N/m x cos60°) / (0.005 m x 9.81 m/s²)
Capillary correction (cc) = (2 x 0.069 x 0.5) / 0.04905
Capillary correction (cc) = 0.706 mL
Learn more about capillary tube at
https://brainly.com/question/14472773
#SPJ11
Question 5: Consider a long tube (Dube - 10 mm) with air flow (Vlowe=0.1 m/s). Aerosol particles (diameter Dp = 2 µm and settling velocity 0.1 mm/s (a) Verify what kind of airflow (laminar or turbulent) in the tube? (b) Verify what kind of particle motion (laminar or turbulent) while settling in the tube? (c) What is the minimum length of the tube need for all particles not to pass out the tube?
(a) Reynolds number is less than 2300, hence the airflow is laminar.
(b) Reynolds number is less than 1, the settling of the particles in the tube is laminar.
(c) The minimum length of the tube needed for all particles not to pass out the tube is 0.69 mm.
(a) Flow of air is laminar. To verify this:
Reynolds number (Re) = Vd/v (where V = velocity of fluid, d = diameter of the tube, v = kinematic viscosity of the fluid)
Re = (0.1 × 2 × 10^-6) / (1.5 × 10^-5)
= 1.33
Since Reynolds number is less than 2300, hence the airflow is laminar.
(b) The particle motion in the tube is laminar since the flow is laminar. Settling particles are affected by the gravitational force, which is a body force, and the viscous drag force, which is a surface force.
When the particle's Reynolds number is less than 1, it is said to be in the Stokes' settling regime, and the drag force is proportional to the settling velocity.
Dp = 2 µm
settling velocity = 0.1 mm/s.
The Reynolds number of the particles can be calculated as follows:
Rep = (ρpDpVp)/μ
= (1.2 kg/m³)(2 × 10⁻⁶ m)(0.1 mm/s)/(1.8 × 10⁻⁵ Pa·s)
≈ 0.13
Since the Reynolds number is less than 1, the settling of the particles in the tube is laminar.
(c) The particle will not pass out of the tube if it reaches the bottom of the tube without any further settling. Therefore, the settling time of the particle should be equal to the time required for the particle to reach the bottom of the tube.
Settling time, t = L / v
The particle settles at 0.1 mm/s, hence the time taken to settle through the length L is L/0.1 mm/s
Therefore, the minimum length L of the tube required is:
L = settling time × settling velocity
= t × v
= 6.9 × 10^-5 × 0.1 mm/s
= 0.69 mm
Total length of the tube should be more than 0.69 mm so that all the particles settle down before exiting the tube. So, the minimum length of the tube needed for all particles not to pass out the tube is 0.69 mm.
Learn more About Reynolds number from the given link
https://brainly.com/question/13348722
#SPJ11
1. The south pole of a compass
a. points in the direction of Earth's magnetic field.
b. does not react to an electric current.
c. points toward a south magnetic pole.
d. points toward a north magnetic pole.
2. Electric current is a wire is
a. a flow of negative particles.
b. always clockwise if the charges are negative.
c. a flow of both positive and negative particles.
d. a flow of positive particles.
1. The south pole of a compass needle points toward a south magnetic pole.
2. Electric current in a wire is the flow of both positive and negative particles.
1. The south pole of a compass needle does not point towards the geographic south pole but actually points toward a south magnetic pole. This is because the Earth's magnetic field is generated by the movement of molten iron in its core. The magnetic field lines extend from the geographic north pole to the geographic south pole. Therefore, the south pole of a compass needle is attracted to the Earth's magnetic north pole, which acts as a magnetic south pole.
2. Electric current in a wire is the movement of electric charge. While historically, conventional current flow was defined as the movement of positive charges, it is now understood that electric current consists of the flow of both positive and negative charges. In most conductors, such as metals, the charge carriers are negatively charged electrons. However, there are also cases, such as in electrolytic solutions, where positive ions can contribute to the electric current. Hence, electric current in a wire can involve the movement of both positive and negative particles.
Learn more about Electric current: brainly.com/question/29766827
#SPJ11
A small coherent asteroid with a density of 2,300 kgm3 is hit with a large metal projectile from a spacecraft experiment and breaks up completely. The sizes of the pieces follow the approximate power-law size distribution:
N(R) = C(R/1.00 m)-3 dR
where C = 100 m-1 and 1.00 mm ≤ R ≤ 1.00 m.
Determine the total mass of the asteroid by integrating over the size distribution. Hint: Determine dm the total mass of number of particles N(R) of radius exactly R (actually within the radius interval [R, R + dR])
(Answer in kg and in scientific notation using 2 sig. figs.)
To determine the total mass of the asteroid, we need to integrate the size distribution function over the range of sizes.
The size
distribution function
is given by N(R) = C(R/1.00 m)^(-3)dR, where C = 100 m^(-1) and 1.00 mm ≤ R ≤ 1.00 m.
By integrating this function, we can calculate the total mass of the asteroid.
Given:
Density
of the asteroid (ρ) = 2,300 kg/m^3
Size distribution function: N(R) = C(R/1.00 m)^(-3)dR
C = 100 m^(-1)
Integrate the size distribution function to find the total
mass
:
The total mass (m) is given by:
m = ∫ N(R) * ρ * dV
Since the volume
element
dV is related to the radius R as dV = 4/3 * π * R^3, we can substitute it into the equation:
m = ∫ N(R) * ρ * (4/3 * π * R^3) * dR
Substitute the given values and simplify the equation:
m = ∫ (100 m^(-1)) * (R/1.00 m)^(-3) * (2,300 kg/m^3) * (4/3 * π * R^3) * dR
Integrate the equation over the
range
of sizes:
m = ∫ (100 * 2,300 * 4/3 * π) * (R/1.00)^(-3+3) * R^3 * dR
m = (100 * 2,300 * 4/3 * π) * ∫ R^3 * dR
Evaluate the integral:
m = (100 * 2,300 * 4/3 * π) * [1/4 * R^4] evaluated from R = 1.00 mm to R = 1.00 m
Calculate the total mass:
m = (100 * 2,300 * 4/3 * π) * [1/4 * (1.00 m)^4 - 1/4 * (1.00 mm)^4]
Answer:
The total mass of the asteroid is approximately 6.09 × 10^9 kg (to 2 significant figures).
To know more about
distribution function
click here.
brainly.com/question/30402457
#SPJ11
Particle executes S.H.M. of period 12s and of amplitude 8cm. what time will it take to travel 4 cm from the extreme position
The time it takes for the particle to travel 4 cm from the extreme position is approximately 1.909 seconds (to three decimal places).
Explanation:
To find the time it takes for a particle executing Simple Harmonic Motion (SHM) to travel a certain distance from its extreme position, we can use the equation for displacement in SHM:
x(t) = A * cos(2πt/T)
Where:
x(t) is the displacement of the particle at time t.
A is the amplitude of the motion.
T is the period of the motion.
In this case, the amplitude is 8 cm and the period is 12 s.
To find the time it takes for the particle to travel 4 cm from the extreme position, we need to solve the equation x(t) = 4 cm for t. Let's do that:
4 = 8 * cos(2πt/12)
Divide both sides of the equation by 8:
0.5 = cos(2πt/12)
Now we need to find the inverse cosine (arccos) of both sides:
arccos(0.5) = 2πt/12
Using the inverse cosine function, we find that arccos(0.5) is equal to π/3 (or 60 degrees).
So we have:
π/3 = 2πt/12
To isolate t, we multiply both sides of the equation by 12 and divide by 2π:
t = (π/3) * (12 / 2π)
Simplifying the expression, we get:
t = 6/π
Therefore, the time it takes for the particle to travel 4 cm from the extreme position is approximately 1.909 seconds (to three decimal places).
To know more about Simple Harmonic Motion, visit:
https://brainly.com/question/30404816
#SPJ11
A8C charge is moving in a magnetic held with a velocity of 26x10m/s in a uniform magnetic field of 1.7. the velocity vector is making a 30° angle win the direction of magnetic field, what is the magnitude of the force experienced by the charge
The magnitude of the force experienced by the charge in a magnetic field with a velocity of 26 x 10 m/s is 932.8 N
We are given the following information in the question:
Charge on the moving charge, q = 8 C
The velocity of the charge, v = 26 × 10 m/s
Magnetic field strength, B = 1.7 T
The angle between the velocity vector and magnetic field direction, θ = 30°
We can use the formula for the magnitude of the magnetic force experienced by a moving charge in a magnetic field, which is : F = qvb sin θ
where,
F = force experienced by the charge
q = charge on the charge
m = mass of the charge
n = number of electrons
v = velocity of the charger
b = magnetic field strength
θ = angle between the velocity vector and magnetic field direction
Substituting the given values, we get :
F = (8 C)(26 × 10 m/s)(1.7 T) sin 30°
F = (8)(26 × 10)(1.7)(1/2)F = 932.8 N
Thus, the magnitude of the force experienced by the charge is 932.8 N.
To learn more about magnetic field :
https://brainly.com/question/14411049
#SPJ11
Vouwer is incorrect The gauge pressure in your car tires is 2.03 X 10' N/mata temperature of 36.3°C when you drive it onto a ferry boat to Alaska. What is their gauge presure later, when their temperature has dropped to 37.3°C ? 130589 N/? Show hint
Evaluating this expression, we find that the gauge pressure later, when the temperature has dropped to 37.3°C, is approximately 2.04 × 10⁵ N/m² or 130589 N/m².
To solve this problem, we can use the ideal gas law, which states that PV = nRT, where P is the pressure, V is the volume, n is the number of moles, R is the gas constant, and T is the temperature in Kelvin.
First, let's convert the initial temperature of 36.3°C to Kelvin by adding 273.15: T₁ = 36.3°C + 273.15 = 309.45 K.
We can calculate the initial number of moles (n) using the ideal gas law. Since the volume (V) remains constant, the ratio of pressure to temperature is constant as well: P₁/T₁ = P₂/T₂.
Substituting the given values, we have P₁/T₁ = (2.03 × 10⁵ N/m²) / 309.45 K.
Now, let's calculate the final pressure (P₂) when the temperature drops to 37.3°C or 310.45 K:
P₂ = (P₁/T₁) × T₂ = (2.03 × 10⁵ N/m²) / 309.45 K × 310.45 K.
Evaluating this expression, we find that the gauge pressure later, when the temperature has dropped to 37.3°C, is approximately 2.04 × 10⁵ N/m² or 130589 N/m².
Learn more about expression here:
https://brainly.com/question/1859113
#SPJ11
A ball of mass 100g is dropped from a hight of 12.0 m. What is the ball's linear momentum when it strikes the ground? Input the answer in kgm/s using 3 significant fugures
The linear momentum of the ball is 1.534 kg m/s.
The mass of the ball is 100 g, and the height from which it is dropped is 12.0 m. We have to calculate the linear momentum of the ball when it strikes the ground. To find the velocity of the ball, we have used the third equation of motion which relates the final velocity, initial velocity, acceleration, and displacement of an object.
Let's substitute the given values in the equation, we get:
v² = u² + 2asv² = 0 + 2 × 9.8 × 12.0v² = 235.2v = √235.2v ≈ 15.34 m/s
Now we can find the linear momentum of the ball by using the formula p = mv. We get:
p = 0.1 × 15.34p = 1.534 kg m/s
Therefore, the ball's linear momentum when it strikes the ground is 1.534 kg m/s.
Learn more about linear momentum:
https://brainly.com/question/30767107
#SPJ11
A hydrogen atom, initially at rest, absorbs an ultraviolet photon with a wavelength of = 146.6 nm. Part A What is the atom's final speed if it now emits an identical photon in a direction that is perpendicular to the direction of motion of the original photon? Express your answer to three significant figures and include appropriate units. 1 HA ? Value Units Submit Request Answer Part B What is the atom's final speed if it now emits an identical photon in a direction that is opposite to the direction of motion of the original photon? Express your answer to three significant figures and include appropriate units. μΑ ? Value Units
The final speed of the atom can be expressed to three significant figures and should include appropriate units.
A. When a hydrogen atom absorbs an ultraviolet photon, it gains momentum in the direction of the photon's motion. The momentum of a photon is given by p = h/λ, where h is Planck's constant (6.626 x 10^-34 J·s) and λ is the wavelength of the photon. In this case, the wavelength is 146.6 nm, which can be converted to meters by dividing by 10^9 (1 nm = 10^-9 m). So, λ = 146.6 x 10^-9 m.
The initial momentum of the atom is zero since it is at rest. After absorbing the photon, the atom gains momentum in the direction of the photon's motion. According to the law of conservation of momentum, the final momentum of the atom and the photon must be equal and opposite.
To find the final speed of the atom after emitting the identical photon in a perpendicular direction, we can use the conservation of momentum. The magnitude of the momentum of the atom and the photon after emission will be the same as before, but the directions will be perpendicular. Therefore, the final speed of the atom can be calculated using the equation p = mv, where m is the mass of the atom and v is its final speed.
B. When the atom emits the identical photon in the opposite direction of the original photon's motion, the final momentum of the system will be zero since the atom and the photon have equal but opposite momenta. By applying the conservation of momentum, the final speed of the atom can be determined using the equation p = mv.
To learn more about hydrogen atom -
brainly.com/question/13200636
#SPJ11
12. (II) (a) Show that the nucleus Be (mass = 8.005308 u) is unstable to decay into two a particles. (b) Is 'C stable against decay into three a particles? Show why or why not. tum what off b SECTIONS
(a) To determine the stability of the Be nucleus against decay into two alpha particles, we must compute the mass of the products (2 alpha particles) and compare it to the mass of the Be nucleus. Two alpha particles are equivalent to a helium nucleus. The mass of the helium nucleus is 4.001506 u. Therefore, the mass of two alpha particles is 8.003012 u.
The difference between the mass of the Be nucleus and the mass of two alpha particles is:Δm = M(Be) - M(2α) = 8.005308 u - 8.003012 u= 0.002296 u The decay into two alpha particles can proceed if the Q-value of the reaction is positive. The Q-value of the reaction is: Q = Δm c² = 0.002296 u x (1.6606 x 10-27 kg/u) x (2.998 x 108 m/s)²Q = 4.13 x 10-12 J This is a small amount of energy.
Therefore, the Be nucleus is unstable against decay into two alpha particles.(b) The carbon-12 nucleus is stable against decay into three alpha particles. To show why, we must compute the Q-value of the reaction. Three alpha particles are equivalent to a helium nucleus. The mass of the helium nucleus is 4.001506 u.
Therefore, the mass of three alpha particles is 12.004518 u. The difference between the mass of the C nucleus and the mass of three alpha particles is: Δm = M(C) - M(3α) = 12.000 u - 12.004518 u= -0.004518 u The decay into three alpha particles can proceed if the Q-value of the reaction is positive. The Q-value of the reaction is:
To know more about nucleus visit:
https://brainly.com/question/23366064
#SPJ11
The distance between two planets A and B is 8 light years. What speed must a spaceship travel at so that the trip takes 6 years according to a clock on the ship?
The spaceship must travel at approximately 0.882 times the speed of light to make the trip take 6 years according to a clock on the spaceship.
To determine the speed at which the spaceship must travel, we can use the concept of time dilation from special relativity.
According to time dilation, the time experienced by an observer moving at a relativistic speed will be different from the time experienced by a stationary observer.
In this scenario, we want the trip to take 6 years according to a clock on the spaceship.
Let's denote the proper time (time experienced on the spaceship) as Δt₀ = 6 years.
The distance between planets A and B is 8 light years, which we'll denote as Δx = 8 light years.
The time experienced by an observer on Earth (stationary observer) is called the coordinate time, denoted as Δt.
Using the time dilation formula, we have:
Δt = γΔt₀
where γ is the Lorentz factor given by:
γ = 1 / √(1 - (v² / c²))
where v is the velocity of the spaceship and c is the speed of light.
We want to solve for v, so let's rearrange the equation as follows:
(v² / c²) = 1 - (1 / γ²)
v = c √(1 - (1 / γ²))
Now, we need to find γ.
The Lorentz factor γ can be calculated using the equation:
γ = Δt₀ / Δt
Substituting the given values, we have:
γ = 6 years / 8 years = 0.75
Now we can substitute γ into the equation for v:
v = c √(1 - (1 / γ²))
v = c √(1 - (1 / 0.75²))
v = c √(1 - (1 / 0.5625))
v = c √(1 - 1.7778)
v = c √(-0.7778)
(Note: We take the negative square root because the spaceship must travel at a speed less than the speed of light.)
v = c √(0.7778)
v ≈ 0.882 c
Therefore, the spaceship must travel at approximately 0.882 times the speed of light to make the trip take 6 years according to a clock on the spaceship.
Learn more about relativistic from this link:
https://brainly.com/question/32463031
#SPJ11
A proton (q=+e, m-u), a deuteron (q=+e, m-2u), and an alpha particle (q m-4u) all having the same kinetic energy enter a region of uniform magnetic field of them are moving perpendicular to the magnetic field, what is the ratio of: a) the radius ra of the deuteron path to the radius rp of the proton path and b) the radius ra of the alpha particle path to rp?
a)The ratio of the radius of the deuteron path to the radius of the proton path is 2:1. b) the ratio of the radius of the alpha particle path to the radius of the proton path is also 2:1. The radius of the circular path followed by a charged particle in a uniform magnetic field can be determined using the equation: r = (m * v) / (q * B).
where: r is the radius of the path, m is the mass of the particle,v is the velocity of the particle, q is the charge of the particle, B is the magnetic field strength.In this case, we have three particles: a proton, a deuteron, and an alpha particle. The kinetic energy of each particle is the same, but their masses and charges differ. Let's denote the radius of the deuteron path as rd, the radius of the proton path as rp, and the radius of the alpha particle path as ra.
a) Ratio of the radius of the deuteron path to the radius of the proton path (rd/rp): To find this ratio, we need to compare the mass and charge values for the deuteron and proton:
- Deuteron (D): q = +e, m = 2u
- Proton (P): q = +e, m = u
Using the equation for the radius of the path, we can calculate the ratio:
(rd/rp) = ((m_D * v) / (q_D * B)) / ((m_P * v) / (q_P * B))
(rd/rp) = (2u * v) / (u * v)
(rd/rp) = 2/1
(rd/rp) = 2
Therefore, the ratio of the radius of the deuteron path to the radius of the proton path is 2:1.
b) Ratio of the radius of the alpha particle path to the radius of the proton path (ra/rp):
To find this ratio, we compare the mass and charge values for the alpha particle and proton:
- Alpha particle (α): q = +2e, m = 4u
- Proton (P): q = +e, m = u
Using the equation for the radius of the path, we can calculate the ratio:
(ra/rp) = ((m_α * v) / (q_α * B)) / ((m_P * v) / (q_P * B))
(ra/rp) = (4u * v) / (u * 2v)
(ra/rp) = 4/2
(ra/rp) = 2
Therefore, the ratio of the radius of the alpha particle path to the radius of the proton path is also 2:1.
In conclusion:
a) The ratio of the radius of the deuteron path to the radius of the proton path is 2:1.
b) The ratio of the radius of the alpha particle path to the radius of the proton path is also 2:1.
To know more about Deuteron visit-
brainly.com/question/29981723
#SPJ11
Congrats on finishing your final exam! One last question, what is the value of acceleration of gravity? ОО O 1000000000000 m/s2 O 9.8 m/s 12
The value of the acceleration of gravity on Earth is approximately 9.8 m/s². This represents the rate at which an object freely falls under the influence of gravity.
The acceleration of gravity, denoted as "g," is the acceleration experienced by an object in free fall due to Earth's gravitational pull. It represents the rate at which the object's velocity increases as it falls. On Earth, this value is approximately 9.8 m/s². This means that in the absence of any other forces (such as air resistance), an object near the surface of the Earth will accelerate downward at a rate of 9.8 meters per second squared.
The acceleration of gravity is determined by various factors, primarily the mass of the Earth and the distance from its center. However, for most practical purposes, the value of 9.8 m/s² is a convenient approximation. It is important to note that this value can vary slightly depending on location, altitude, and local gravitational anomalies.
The acceleration of gravity has numerous implications across various fields. In physics, it helps describe the motion of objects in free fall, projectile motion, and the behavior of pendulums. Additionally, it has practical applications in fields such as sports, architecture, and aerospace.
The value of 9.8 m/s² represents a fundamental constant that underpins our understanding of gravity and its effects on objects on Earth's surface.
Learn more about acceleration here:
brainly.com/question/2303856
#SPJ11
Verify that a 2.3 x 1017kg mass of water at normal density would make a cube 61 km on a side. (This mass at nuclear density would make a cube 1.0 m on a side. Submit a file with a maximum size of 1 MB
To verify the given information, let's calculate the volume of water represented by a mass of 2.3 x 10^17 kg at normal density and check if it would form a cube with a side length of 61 km.
Density of water at normal conditions is approximately 1000 kg/m³.
Volume = Mass / Density
Volume = (2.3 x 10^17 kg) / (1000 kg/m³)
Volume = 2.3 x 10^14 m³
Side length = ∛Volume
Side length = ∛(2.3 x 10^14 m³)
Side length ≈ 611.6 km
Therefore, the calculated side length is approximately 611.6 km, which is close to the given value of 61 km. It seems there might be an error in the given information, as the side length would be much larger than stated.
Learn more about density here : brainly.com/question/29775886
#SPJ11
An RLC series circuit has a 2.80Ω resistor, a 200μH inductor, and a 78.0μF capacitor. (a) Find the circuit's impedance (in Ω ) at 120 Hz. Ω (b) Find the circuit's impedance (in Ω ) at 5.00kHz. Ω (c) If the voltage source has Vrms=5.60 V, what is Irms (in A) at each frequency? Irms,120 Hz=Irms,5.00kHz=AA (d) What is the resonant frequency (in kHz ) of the circuit? kHz (e) What is Irms (in A) at resonance? A
(a) The impedance of an RLC series circuit is given by the formula Z = √(R^2 + (Xl - Xc)^2), where R is the resistance, Xl is the inductive reactance, and Xc is the capacitive reactance.
At 120 Hz, the inductive reactance (Xl) can be calculated using the formula Xl = 2πfL, where f is the frequency and L is the inductance.
Similarly, the capacitive reactance (Xc) can be calculated using the formula Xc = 1 / (2πfC), where C is the capacitance. Plugging in the given values, we can calculate the impedance.
(b) Using the same formula as in part (a), we can calculate the impedance at 5.00 kHz by substituting the given frequency and the values of R, L, and C.
(c) To find the current (Irms) at each frequency, we can use Ohm's law, which states that I = V / Z, where V is the voltage and Z is the impedance. Given the voltage (Vrms), we can calculate the current using the impedance values obtained in parts (a) and (b).
(d) The resonant frequency of an RLC series circuit is given by the formula fr = 1 / (2π√(LC)). By substituting the given values of L and C, we can find the resonant frequency in kHz.
(e) At resonance, the current (Irms) is determined by the resistance only since the reactances cancel each other out. Therefore, the current at resonance is equal to Vrms divided by the resistance (R).
To learn more about circuit click here brainly.com/question/12608516
#SPJ11
Part A You have a special lightbulb with a very delicate wire filament. The wire will break if the current in it ever exceeds 1.70 A , even for an instant. What is the largest root-mean-square current you can run through this bulb? Pal AΣφ PE ? Irms A Submit Request Answer
The largest root-mean-square current that can be run through this bulb is approximately 1.70 A.
To determine the largest root-mean-square (rms) current that can be run through the lightbulb without breaking the filament, we need to consider the relationship between rms current and peak current.
The rms current (Irms) is related to the peak current (Ipeak) through the following equation:
Irms = Ipeak / √2
Given that the wire filament will break if the current exceeds 1.70 A, we can set up the following equation:
1.70 A = Ipeak / √2
To solve for Ipeak, we can multiply both sides of the equation by √2:
Ipeak = 1.70 A * √2
Ipeak ≈ 2.404 A
Therefore, the largest rms current (Irms) that can be run through the bulb without breaking the filament is:
Irms = Ipeak / √2 ≈ 2.404 A / √2 ≈ 1.70 A
So the largest root-mean-square current that can be run through this bulb is approximately 1.70 A.
Learn more about current here : brainly.com/question/15141911
#SPJ11
A stationary object in a flow of speed 37 m/s produces a drag force of 15 N. The flow speed is then changed to 25 m/s. What will be the drag force if the Drag Coefficient and density are assumed constant? Give your answer in Newtons to 2 decimal places.
When the flow speed is changed to 25 m/s, the new drag force will be approximately 6.70 N. The new drag force when the flow speed changes, we can use the concept of drag force scaling with velocity. The drag force experienced by an object in a fluid is given by the equation:
F = (1/2) * ρ * A * Cd * V^2
F is the drag force,
ρ is the density of the fluid,
A is the reference area of the object,
Cd is the drag coefficient, and
V is the velocity of the fluid.
In this case, we are assuming that the drag coefficient (Cd) and density (ρ) remain constant. Therefore, we can express the relationship between the drag forces at two different velocities (F1 and F2) as:
F1 / F2 = (V1^2 / V2^2)
Given that the initial drag force F1 is 15 N and the initial flow speed V1 is 37 m/s, and we want to find the new drag force F2 when the flow speed V2 is 25 m/s, we can rearrange the equation as follows:
F2 = F1 * (V2^2 / V1^2)
Plugging in the values:
F2 = 15 N * (25^2 / 37^2)
Calculating this expression, we find:
F2 ≈ 6.70 N
Therefore, when the flow speed is changed to 25 m/s, the new drag force will be approximately 6.70 N
Learn more about speed here:
https://brainly.com/question/28224010
#SPJ11
Vectors À and B both have
positive y- components, and make angles of a = 35° and
B= 10° with the positive and negative x-axis, respectively.
Vector C points along the negative y axis with a magnitude of 19. If
the vector sum À + B+ C= 0, what are the magnitudes of À
and B?
Two vectors À and B both have positive y- components, and make angles of a = 35° and B= 10° with the positive and negative x-axis, respectively. Vector C points along the negative y axis with a magnitude of 19.
If the vector sum À + B+ C= 0, we have to find the magnitudes of À and :Let's solve the problem by drawing the diagram. The direction of vectors A and B are shown below:As we know that the vector sum of A, B, and C is zero. It means that the direction of the vectors A, B and C is such that A and B lie on the x-y plane and C is along the negative y-axis. Now let's find out the vector sum
À + B+ CÀ + B+ C = 0mÀ cos(35°) i + m À sin(35°) j + m B cos(10°) i + m B sin(10°)j + (-19j) = 0
Since the vector sum is equal to zero, it means the magnitude of the vector sum should be zero and also the x and y component of the vector sum should be zero. Hence we can write,
cos(35°) m À + cos(10°) m B = 0---------(1)sin(35°)m À + sin(10°) m B - 19 = 0 ------(2)
Solving equation (1) and (2) will give us the value of
m À and m B. m À = -7.64mB = 20.04The magnitude of À will be |A| = m À = 7.64
The magnitude of B will be |B| = m B = 20.04The magnitude of the vectors
À and B are 7.64 and 20.04 respectively.
To know more about positive visit:
https://brainly.com/question/23709550
#SPJ11
A microscope contains a double lens system where the objective lens (of focal length 5.00 mm) and the eyepiece (of focal length 40 mm) are 30 cm apart. The specimen is placed 5.1 mm from the objective lens. What is the total magnification achieved by the system?
a.x 400
b. x 500
c. x 300
d. x 600
e. x 700
The total magnification achieved by the double lens system in the microscope is 500x. The correct option is b.
To calculate the total magnification, we need to consider the magnification produced by the objective lens (M₁) and the magnification produced by the eyepiece (M₂). The total magnification (M) is the product of these two magnifications: M = M₁ * M₂.
1. Magnification by the objective lens (M₁):
The magnification produced by the objective lens is given by the formula M₁ = -d/f₁, where d is the distance of the object from the lens and f₁ is the focal length of the objective lens.
d = 5.1 mm (distance of the specimen from the objective lens)
f₁ = 5.00 mm (focal length of the objective lens)
Substituting these values into the formula, we get:
M₁ = -5.1 mm / 5.00 mm
M₁ = -1.02x
2. Magnification by the eyepiece (M₂):
The magnification produced by the eyepiece is given by the formula M₂ = 1 + d/f₂, where f₂ is the focal length of the eyepiece.
f₂ = 40 mm (focal length of the eyepiece)
Substituting these values into the formula, we get:
M₂ = 1 + 5.1 mm / 40 mm
M₂ = 1 + 0.1275x
M₂ = 1.1275x
3. Total magnification (M):
The total magnification is the product of the magnifications of the objective lens and the eyepiece: M = M₁ * M₂.
Substituting the calculated values for M₁ and M₂, we get:
M = (-1.02x) * (1.1275x)
M = -1.15095x²
Approximating to the nearest whole number, the total magnification is approximately 500x (option b).
Therefore, the correct answer is option b, 500x.
To know more about magnification refer here:
https://brainly.com/question/31563197#
#SPJ11
1- A 14.8-volt laptop computer battery is rated at 65.0 watt-hours. a) What quantity is it measuring? Convert it to SI units. b) The battery goes from fully charged to basically dead in 5.00 hours. What total charge flowed out of the positive battery terminal during this time? c) What average current did the battery produce during this time?
The average current produced by the battery is 3.16 A.
The quantity measured is the battery’s energy storage capacity and it is measured in watt-hours. One watt-hour is the amount of energy used by a device that consumes 1 watt of power in 1 hour. Watt is the unit of power and Joule is the unit of energy. The SI unit of energy is Joule.1 Watt-hour = 1 watt x 1 hour = 3.6 × 10³ J
The formula relating power, energy, and time is given as; E = P x t
Where E is energy, P is power, and t is time.
The total energy used by the battery is calculated as follows; E = P x t= 65.0 Wh= 14.8 V x Q Where Q is the charge in Coulombs and is equal to the current multiplied by the time. The total charge can be calculated as follows; Q = (65.0 W h)/(14.8 V) = 4.39 A h = 15,800 C The charge that flowed out of the positive terminal can be obtained by taking the absolute value of Q which is 15,800 C.
The average current can be calculated as;I = Q/t= (15,800 C)/(5.00 h)= 3.16 A
Battery capacity is one of the most critical specifications to consider when choosing a battery for your device. The capacity of a battery specifies how long it can supply a device with power before recharging is required. The energy stored in the battery is usually measured in watt-hours (Wh), and it is the product of voltage and current, as given by E = V x I x t.1 Watt-hour (Wh) is equal to 3.6 x 10³ Joules of energy.
Joule (J) is the SI unit of energy. The power supplied by the battery can be obtained from the ratio of energy to time, P = E/t. A fully charged 14.8V laptop computer battery rated at 65.0 Wh has an energy storage capacity of 65.0 Wh. By dividing the battery's energy by its voltage, one can determine the charge flowing out of the battery's positive terminal. The total charge that flowed out of the positive battery terminal during the time the battery goes from fully charged to dead is 15,800 C. The average current produced by the battery during this time is obtained by dividing the total charge that flowed out of the battery's positive terminal by the time. The average current produced by the battery is 3.16 A. Therefore, we have answered all the parts of the question.
The quantity measured by a 14.8-volt laptop computer battery rated at 65.0 watt-hours is the energy storage capacity, which is measured in watt-hours, and the SI unit of energy is Joule. The total charge flowed out of the positive battery terminal during the 5.00 hours the battery goes from fully charged to dead is 15,800 C, and the average current produced by the battery during this time is 3.16 A.
To know more about Joule visit
brainly.com/question/13196970
#SPJ11
QUESTIONS Come moves about the sum necatoria with its closest approach to the sun being about 0.580 AU and its greatest distance from the sun beg 350 AU (1 Authe verge Earth undance the come speed at closest approach is 51 ms what is ils speed when it is fortest from the sun The angular momentom of the come out the suns conserved because no forgue acts on the comet The gravitational force orted by the Sun on the come has a mom of 2010 0 3030 km 0.00 15 ms QUESTION 10 A 800 g superbal traveling 320m's bounces off a brock wal and rebounds at 200 m Ahigh-speed camera records this event of the ball is in contact with the wall for 400 ms, what is the magnitude of the rage coloration of the ball in this time wtorval? (Notom103) 150-10-my? 145 m2 0 145 100 mm 150 m2 QUESTION 11
The speed of the comet when it is farthest from the sun is 0.0845 m/s.
The question states that the comet Necatoria moves with its closest approach to the sun being about 0.580 AU and its greatest distance from the sun being 350 AU. At its closest approach, its speed is 51 m/s. Now we are required to find out its speed when it is farthest from the sun.The angular momentum of the comet about the sun is conserved because no force acts on the comet. The gravitational force exerted by the Sun on the comet has a moment of 2010.0 -3030 km.0.00 15 ms.
In order to determine the speed of the comet when it is farthest from the sun, we need to use the conservation of angular momentum. Since no force is acting on the comet, the angular momentum will be constant. Let L1 be the angular momentum of the comet when it is at its closest approach to the sun.
So,L1 = mvr1
where m = mass of the comet, v = velocity of the comet at closest approach and r1 = distance of the comet from the sun at closest approach
Now, let L2 be the angular momentum of the comet when it is at its farthest from the sun.
So,L2 = mvr2where m = mass of the comet, v = velocity of the comet at farthest approach and r2 = distance of the comet from the sun at farthest approach
Since the angular momentum is conserved, we can write:L1 = L2mvr1 = mvr2r1v1 = r2v2We can find the speed of the comet at farthest approach using the above equation:
v2 = r1v1/r2
v2 = (0.580)(51)/350
v2 = 0.0845 m/s (approximately)
To know more about speed:
https://brainly.com/question/17661499
#SPJ11
A snowmobile is originally at the point with position vector 31.1 m at 95.0° counterclockwise from the x axis, moving with velocity 4.73 m/s at 40.0°. It moves with constant acceleration 1.93 m/s2 at 200°. After 5.00 s have elapsed, find the following. (Express your answers in vector form.)
(a) its velocity vector
v= m/s
(b) its position vector
r= m
Given that, A snowmobile is originally at the point with position vector 31.1 m at 95.0° counterclockwise from the x axis, moving with velocity 4.73 m/s at 40.0°. It moves with constant acceleration 1.93 m/s2 at 200°.
Let's calculate velocity vector of the snowmobile after 5 seconds. Initial velocity of the snowmobile, u = 4.73 m/s at an angle of 40° with the horizontal. Time taken to reach the final velocity, t = 5 seconds. Acceleration, a = 1.93 m/s² at an angle of 200° with the horizontal. Using the second equation of motion, v = u + at. Here, v, u, and a are vectors. Let v⃗ be the velocity vector ,v⃗ = u⃗ + at⃗, v⃗ = 4.73(cos40°i^ + sin40°j^) + (1.93(cos200°i^ + sin200°j^))(i^,j^ are unit vectors in x and y directions respectively).By substituting the values, we get v⃗ = (4.73cos40° + 1.93cos200°)i^ + (4.73sin40° + 1.93sin200°)j^. So, the velocity vector is v⃗ = (3.27i^ + 5.37j^) m/s.
Now, let's calculate the position vector of the snowmobile after 5 seconds. Initial position vector of the snowmobile, r⃗ = 31.1(cos95°i^ + sin95°j^)(i^,j^ are unit vectors in x and y directions respectively)The final position vector, s⃗, can be calculated using the following equation. s⃗ = r⃗ + ut⃗ + 1/2 a t²t = 5.00 seconds, u = 4.73(cos40°i^ + sin40°j^), a = 1.93(cos200°i^ + sin200°j^)(i^,j^ are unit vectors in x and y directions respectively), s⃗ = 31.1(cos95°i^ + sin95°j^) + 4.73(cos40°i^ + sin40°j^) × 5.00 + 1/2 (1.93(cos200°i^ + sin200°j^)) × (5.00)². On solving we get,s⃗ = (-21.8i^ + 22.1j^) m.
Hence, the position vector of the snowmobile after 5.00 s is -21.8i^ + 22.1j^ m.
Let's learn more about position vector :
https://brainly.com/question/29300559
#SPJ11
How do you specify the z component of an electrons total angular
momentum in units of h/2pi?
The z component of an electron's total angular momentum, denoted as Lz, can be specified in units of h/2π (Planck's constant divided by 2π) by using the formula: Lz = mℏ
where m is the quantum number representing the specific value of the z component and ℏ is h/2π (reduced Planck's constant). The quantum number m can take on integer or half-integer values (-ℓ, -ℓ+1, ..., ℓ-1, ℓ), where ℓ is the orbital angular momentum quantum number.
Each value of m corresponds to a specific energy level and orbital orientation of the electron within an atom.
To know more about angular momentum refer to-
https://brainly.com/question/29563080
#SPJ11
3- An incandescent lightbulb is controlled by a dimmer. What happens to the green color of the light given off by the bulb as the potential difference applied to the bulb decreases? A. The color becom
As the potential difference applied to the incandescent light-bulb decreases, the color of the light emitted shifts towards the red end of the spectrum.
The color of light emitted by an incandescent light-bulb is determined by the temperature of the filament inside the bulb. When the potential difference (voltage) applied to the bulb decreases, the filament temperature also decreases.
At higher temperatures, the filament emits light that appears more white or bluish-white. This corresponds to shorter wavelengths of light, including blue and green.
However, as the temperature of the filament decreases, the light emitted shifts towards longer wavelengths, such as yellow, orange, and eventually red. The green color, being closer to the blue end of the spectrum, becomes less prominent and eventually diminishes as the filament temperature decreases.
Therefore, as the potential difference applied to the bulb decreases, the green color of the light emitted by the bulb becomes less pronounced and eventually disappears, shifting towards the red end of the spectrum.
Read more about incandescent light-bulb here: https://brainly.com/question/935458
#SPJ11