ABC Co. expects its FCF to grow at the rate of 12% over the next three years but settle to an industry growth rate of 5% in year 4. ABC Co. has a weighted average cost of capital of 8%, $20 million in cash, $50 million in debt, and 15 million shares outstanding. ABC Co. aims to set the current stock price to $40. What should be the target FCF (in million dollars) at the end of year 1?

Answers

Answer 1

Please provide the target stock price to proceed with the calculation and obtain the target FCF at the end of year 1.

To determine the target Free Cash Flow (FCF) at the end of year 1, we need to calculate the FCF for each year based on the given growth rates and other financial information.

Let's break down the calculations step by step:

Calculate the FCF for year 1 using the expected growth rate of 12%:

FCF₁ = FCF₀ * (1 + growth rate) = FCF₀ * (1 + 0.12)

Calculate the FCF for year 2 using the same growth rate:

FCF₂ = FCF₁ * (1 + growth rate) = FCF₁ * (1 + 0.12)

Calculate the FCF for year 3 using the same growth rate:

FCF₃ = FCF₂ * (1 + growth rate) = FCF₂ * (1 + 0.12)

Calculate the FCF for year 4 using the industry growth rate of 5%:

FCF₄ = FCF₃ * (1 + industry growth rate) = FCF₃ * (1 + 0.05)

Given that ABC Co. aims to set the current stock price to $40, we can use the formula for the stock price as a multiple of FCF to determine the target FCF:

Target FCF = Target Stock Price / Stock Price Multiple

To find the stock price multiple, we divide the market value of the company by the FCF:

Stock Price Multiple = Market Value / FCF

The market value can be calculated as follows:

Market Value = (Number of Shares * Stock Price) + Debt - Cash

Substituting the given values:

Market Value = (15 million shares * $40) + $50 million debt - $20 million cash

Finally, we can calculate the target FCF at the end of year 1 using the target stock price and the stock price multiple:

Target FCF₁ = Target Stock Price / Stock Price Multiple

Know more about Free Cash Flow here:

https://brainly.com/question/32279910

#SPJ11

ABC Co. expects its FCF to grow at the rate of 12% over the next three years but settle to an industry growth rate of 5% in year 4. ABC Co. has a weighted average cost of capital of 8%, $20 million in cash, $50 million in debt, and 15 million shares outstanding. ABC Co. aims to set the current stock price to $40. What should be the target FCF (in million dollars) at the end of year 1?


Related Questions

A library has 5 copies of a certain book in stock. Two copies (1 and 2) are first printings, and the other three (3,4 and 5) are second printings. A student finds these copies on a shelf and begins to examine in random order, stopping when he finds a second printing of the book. For example, one possible outcome is (5), and another is (2,1,3) (a) List the outcomes in the sample space S (b) Let A denote the event that exactly one book must be examined. What outcomes are in A? (c) Let B be the event that book 4 is the one selected. What outcomes are in B? (d) Let C be the event that book 2 is examined. What outcomes are in C?

Answers

A library has 5 copies of a certain book in stock. Two copies (1 and 2) are first printings, and the other three (3,4 and 5) are second printings.

(a) The outcomes in the sample space S are as follows:

S = {(5), (3), (4), (2, 3), (2, 4), (2, 5), (1, 3), (1, 4), (1, 5)}

(b) The event A denotes that exactly one book must be examined. Outcomes in A are:

A = {(3), (4), (5)}

(c) The event B denotes that book 4 is the one selected. Outcomes in B are:

B = {(4)}

(d) The event C denotes that book 2 is examined. Outcomes in C are:

C = {(2, 3), (2, 4), (2, 5)}

In summary, the sample space S consists of all possible outcomes when examining the books in random order. Event A represents the outcomes where exactly one book needs to be examined, which includes the individual books (3), (4), and (5). Event B represents the outcome where book 4 is selected. Event C represents the outcomes where book 2 is examined along with other books.

Learn more about outcome here:

https://brainly.com/question/31520815

#SPJ11

Two department stores, A and B, sell the same item at different prices. Store A is putting the item on sale for 20% off its regular price. In that special, that store A sells the item for $50.00. If this amount is 75% of the regular price for that item at store B, what is the regular price at each store for that item? a. $62.50 in A and $200.00 in B b. $62.50 in A and $66.67 in B c. $66.67 in A and $62.50 in B and d. $250.00 in A and $200.00 in B and. $250.00 in A and $66.67 in B

Answers

The regular price at store A is $62.50, and the regular price at store B is $66.67. To determine the regular prices of an item at stores A and B, we use the given information that store A is selling the item at a discounted price of $50.00, which is 75% of the regular price at store B.

By setting up an equation and solving for the regular prices, we can determine the correct option among the given choices.

Let's assume the regular price of the item at store A is Pₐ and the regular price at store B is P_b. We are given that store A is selling the item for $50.00, which is 75% of the regular price at store B. This can be expressed as:

50 = 0.75 * P_b.

To find the regular price at store B, we divide both sides of the equation by 0.75:

P_b = 50 / 0.75 = $66.67.

Since store A is putting the item on sale for 20% off its regular price, the sale price is 80% of the regular price. Therefore, we can set up the equation:

50 = 0.8 * Pₐ.

Solving for Pₐ, we divide both sides by 0.8:

Pₐ = 50 / 0.8 = $62.50.

Hence, the correct option is b. The regular price at store A is $62.50, and the regular price at store B is $66.67.

To learn more about equation, click here:

brainly.com/question/29657988

#SPJ11

Using all 1991 birth records in the computerized national birth certificate registry compiled by the National Center for Health Statistics (NCHS), statisticians Traci Clemons and Marcello Pagano found that the birth weights of babies in the United States are not symmetric ("Are babies normal?" The American Statistician, Nov 1999, 53:4). However, they also found that when infants born outside of the "typical" 37-43 weeks and infants born to mothers with a history of diabetes are excluded, the birth weights of the remaining infants do follow a Normal model with mean u = 3432 g and standard deviation o = 482 g. The following questions refer to infants born from 37 to 43 weeks whose mothers did not have a history of diabetes. Compute the z-score of an infant who weighs 2910 g. (Round your answer to two decimal places.) Approximately what fraction of infants would you expect to have birth weights between 3250 g and 4200 g? (Express your answer as a decimal, not a percent, and round to 4 decimal places.) Approximately what fraction of infants would you expect to have birth weights below 3250 g? (Express your answer as a decimal, not a percent, and round to 4 decimal places.) A medical researcher wishes to study infants with low birth weights and seeks infants with birth weights among the lowest 11%. Below what weight must an infant's birth weight be in order for the infant be included in the study? (Round your answer to the nearest gram.) 8 Warning: Do not use the Z Normal Tables...they may not be accurate enough since WAMAP may look for more accuracy than comes from the table.

Answers

To compute the z-score of an infant who weighs 2910 g, we can use the formula:

z = (x - u) / o

where:

x = observed value (2910 g)

u = mean (3432 g)

o = standard deviation (482 g)

Plugging in the values:

z = (2910 - 3432) / 482

z ≈ -1.08

The z-score of an infant who weighs 2910 g is approximately -1.08.

To determine the fraction of infants expected to have birth weights between 3250 g and 4200 g, we need to calculate the area under the normal curve between these two values. Since the data follows a normal distribution with mean u = 3432 g and standard deviation o = 482 g, we can use the z-score formula to convert the values into z-scores.

For 3250 g:

z1 = (3250 - 3432) / 482

For 4200 g:

z2 = (4200 - 3432) / 482

Once we have the z-scores, we can use a standard normal distribution table or a calculator to find the corresponding probabilities.

Using a standard normal distribution table, we can find the probabilities associated with z1 and z2. Then, we subtract the probability corresponding to z1 from the probability corresponding to z2 to get the fraction of infants expected to have birth weights between 3250 g and 4200 g.

For the fraction of infants expected to have birth weights below 3250 g, we can find the probability associated with the z-score corresponding to 3250 g and subtract it from 1. This will give us the fraction of infants below 3250 g.

To determine the weight below which an infant must be in order to be included in the lowest 11%, we need to find the z-score that corresponds to the 11th percentile. Using a standard normal distribution table or a calculator, we can find the z-score associated with the 11th percentile. Then, we can use the z-score formula to find the corresponding weight value.

Please note that due to the specific nature of the calculations involved, it is recommended to use a statistical software or calculator to obtain accurate results.

To know more about Probability related question visit:

https://brainly.com/question/31828911

#SPJ11

In a random sample of 56 people, 42 are classified as "successful." a. Determine the sample proportion, p, of "successful" people. b. If the population proportion is 0.70, determine the standard error

Answers

The standard error is approximately equal to 0.0633 when the population proportion is 0.70 and a random sample of 56 people is taken.

a. Determine the sample proportion, p, of "successful" people.

Proportion of successful people in a sample is given by:

p = number of successful people in the sample / sample size

p = 42 / 56p = 0.75

Therefore, the sample proportion of "successful" people is 0.75.

b. If the population proportion is 0.70, determine the standard error

The formula for standard error is:

Standard error = square root of [(p * q) / n]

Where, p = population proportion

q = 1 - pp = 0.70

q = 1 - 0.70

q = 0.30

n = sample size = 56

We have already found p, which is 0.75

Therefore, standard error = square root of [(0.75 * 0.30) / 56]

standard error = square root of [(0.225) / 56]

standard error = square root of 0.00401

standard error = 0.0633 (rounded to 4 decimal places)

Hence, the standard error is approximately equal to 0.0633 when the population proportion is 0.70 and a random sample of 56 people is taken.

To know more about standard error visit:

https://brainly.com/question/13179711

#SPJ11

For a one-tailed test (lower tail) at 95%
confidence, Z =
1.
-1.96
2.
-1.645
3.
-1.86
4.
-1.53

Answers

For a one-tailed test (lower tail) at 95% confidence, Z =

(2) -1.645.

A one-tailed test is a statistical test in which the critical area of a distribution is one-sided so that it is either greater than or less than a certain value, but not both. A one-tailed test is a statistical hypothesis test in which the region of rejection is on one side of the sampling distribution. It is used when the direction of the difference is known in advance, based on previous experience, a theoretical foundation, or common sense. It an either be a lower-tailed or upper-tailed test.

A confidence interval is a range of values, derived from a data sample, that is used to estimate an unknown population parameter. A confidence interval is a statistical tool that is used to estimate the range of values in which a population parameter is expected to lie, based on the statistical significance of the observed data. A confidence interval is typically expressed as a percentage, which represents the level of confidence that the interval contains the true population parameter. The most common confidence levels are 90%, 95%, and 99%.

A Z score is a statistical measure that indicates how many standard deviations an observation or data point is from the mean. The Z score is calculated by subtracting the mean from an observation and then dividing the result by the standard deviation. A Z score can be either positive or negative, depending on whether the observation is above or below the mean. A Z score of 0 indicates that the observation is equal to the mean. A Z score is also known as a standard score.

A lower-tailed test is a statistical hypothesis test in which the null hypothesis is rejected if the test statistic falls in the lower tail of the sampling distribution. A lower-tailed test is used when the alternative hypothesis is that the population parameter is less than the value specified in the null hypothesis.

Thus, for a one-tailed test (lower tail) at 95% confidence, the Z-score is -1.645. Therefore, the correct option is (2.) -1.645.

To learn more about confidence interval visit : https://brainly.com/question/20309162

#SPJ11

A principal of $12,000 is invested in an account paying an annual interest rate of 7%. Find the amount in the account after 4 years if the account is compounded quarterly.

Answers

The amount in the account after 4 years, compounded quarterly, is approximately $14,920.03.

To find the amount in the account after 4 years, compounded quarterly, we can use the formula for compound interest: A = P(1 + r/n)^(nt)

Where:

A = the final amount

P = the principal amount

r = the annual interest rate (in decimal form)

n = the number of times the interest is compounded per year

t = the number of years

In this case, the principal amount P is $12,000, the annual interest rate r is 7% or 0.07, the number of times compounded per year n is 4 (quarterly), and the number of years t is 4. Plugging these values into the formula, we get: A = 12000(1 + 0.07/4)^(4*4)

Simplifying the calculation inside the parentheses first:

A = 12000(1 + 0.0175)^(16)

A = 12000(1.0175)^(16)

Using a calculator, we find: A ≈ $14,920.03

Therefore, the amount in the account after 4 years, compounded quarterly, is approximately $14,920.03.

learn more about compound interest here: brainly.com/question/14295570

#SPJ11

The data shown represent the box office total revenue (in millions of dollars) for a randomly selected sample of the top- grossing films in 2001. Check for normality 294 241 130 144 113 70 97 94 91 20

Answers

The given data represents the box office total revenue (in millions of dollars) for a randomly selected sample of the top- grossing films in 2001. In order to check whether the given data is normal or not, we can plot a histogram of the given data.

The given data represents the box office total revenue (in millions of dollars) for a randomly selected sample of the top- grossing films in 2001. In order to check whether the given data is normal or not, we can plot a histogram of the given data.

The histogram of the given data is as shown below:It can be observed from the histogram that the given data is not normal, as it is not symmetric about the mean, and has a right-skewed distribution.

Therefore, we can conclude that the given data is not normal.

Summary:The given data represents the box office total revenue (in millions of dollars) for a randomly selected sample of the top- grossing films in 2001. We plotted a histogram of the given data to check for normality.

Learn more about histogram click here:

https://brainly.com/question/2962546

#SPJ11

When the region under a single graph is rotated about the z-axis, the cross sections of the solid perpendicular to the x-axis are circular disks. True or False

Answers

As we rotate the graph around the z-axis, this slice will trace out a circle with radius determined by the distance of the graph from the z-axis at that x-value. Since the cross sections at every x-value are circles, the resulting solid will have cross sections perpendicular to the x-axis that are circular disks.

True. When the region under a single graph is rotated about the z-axis, the resulting solid will have cross sections perpendicular to the x-axis that are circular disks. This property is known as the disk method or the method of cylindrical shells. It is a fundamental concept in integral calculus and is used to calculate volumes of solids of revolution.

This property allows us to use the formula for the area of a circle (A = πr^2) to calculate the volume of each individual circular disk, and then integrate these volumes over the range of x-values to find the total volume of the solid.

To learn more about volume : brainly.com/question/13338592

#SPJ11

Two vectors [1 3] and [2 c] form a basis for R² if a) c = 2 b) c = 3 c) c = 4 d) c = 6 e) None of the above IfT : R² → R² is a linear transformation such that T ([1 2]) = [2 3], then T([3 6]) = a) [6 9] b) [3 6] c) [4 5]
d) [4 6] e) None of the above.

Answers

ToTo determine if the vectors [1 3] and [2 c] form a basis for R², we need to check if the vectors are linearly independent. If the vectors are linearly independent, they will span the entire R², making them a basis.

We can find the determinant of the matrix formed by these vectors:

| 1 3 |
| 2 c |

The determinant of this matrix is given by:

1 * c – 2 * 3 = c – 6

For the vectors to be linearly independent, the determinant should not be equal to zero. Let’s evaluate the determinant for different values of c:

a) C = 2:
C – 6 = 2 – 6 = -4 (non-zero)

b) C = 3:
C – 6 = 3 – 6 = -3 (non-zero)

c) C = 4:
C – 6 = 4 – 6 = -2 (non-zero)

d) C = 6:
C – 6 = 6 – 6 = 0 (zero)

From the above calculations, we can see that for c = 6, the determinant is equal to zero, indicating that the vectors [1 3] and [2 6] are linearly dependent. Therefore, they do not form a basis for R².

Now, let’s move on to the second part of the question.

Given that T([1 2]) = [2 3], we can find the transformation T([3 6]) using the linearity property of linear transformations.

We know that the transformation T is linear, so T(k * v) = k * T(v) for any scalar k and vector v.

Since [3 6] = 3 * [1 2], we can apply the linearity property:

T([3 6]) = 3 * T([1 2])

Using the information given, T([1 2]) = [2 3].

Therefore:

T([3 6]) = 3 * [2 3] = [6 9]

So, T([3 6]) = [6 9].


Learn more vectors here : brainly.com/question/24256726


#SPJ11

It can be shown that the algebraic multiplicity of an eigenvalue X is always greater than or equal to the dimension of the eigenspace corresponding to À Find h in the matrix A below such that the eigenspace for λ=8 is two-dimensional 8-39-4. fts 0 5 h 0 A= re 0 08 7 0 00 1 BETER W m na The value of h for which the eigenspace for λ=8 is two-dimensional is h=?

Answers

The value of matrix  h for which the eigenspace for λ = 8 is two-dimensional is h = 4.

The value of h for which the eigenspace corresponding to λ = 8 is two-dimensional, to determine the algebraic multiplicity and the dimension of the eigenspace.

Finding the eigenvalues of matrix A. The eigenvalues are the solutions to the characteristic equation det(A - λI) = 0, where I is the identity matrix.

A - λI =

8 - h 5 h

0 8 - 3 4

0 0 0 1

Setting the determinant equal to zero:

det(A - λI) = (8 - h)(8 - 3λ) - 5h(0) = 0

(8 - h)(8 - 3λ) = 0

From this equation, that there are two possible eigenvalues:

8 - h = 0 --> h = 8

8 - 3λ = 0 --> λ = 8/3

To determine the eigenspace for λ = 8.

For λ = 8:

A - 8I =

0 5 h

0 0 4

0 0 -7

To find the eigenspace, to find the null space (kernel) of the matrix A - 8I. We row reduce the matrix to echelon form:

RREF(A - 8I) =

0 5 h

0 0 4

0 0 0

From this reduced row echelon form,  that the second column corresponds to a free variable (since it does not have a leading 1). Therefore, the dimension of the eigenspace corresponding to λ = 8 is 1.

From the given matrix A, that changing h = 4 will introduce a second free variable, resulting in a two-dimensional eigenspace corresponding to λ = 8.

To know more about  matrix here

https://brainly.com/question/29132693

#SPJ4

the perimeter of a triangle is 187 feet. the longest isde of the triangle is 12 feet shorter than twice the shortest side. the sum of th lengths of th etwo shorter sides is 35 feet more than the length of the longest side. find the lengths of the sides of the triangle

Answers

Answer:

[tex]\mathrm{43ft,\ 76ft\ and\ 68ft}[/tex]

Step-by-step explanation:

[tex]\mathrm{Let\ the\ shortest\ side\ of\ the\ triangle\ be\ x.\ Then,\ the\ longest\ side\ of\ the\ triangle}\\\mathrm{will\ be\ 2x-10.}\\\mathrm{Let\ the\ length\ of\ remaining\ side\ of\ the\ triangle\ be \ y.}\\\mathrm{Given,}\\\mathrm{Sum\ of\ two\ shorter\ sides=35+longest\ side}\\\mathrm{or,\ x+y=35+(2x-10)}\\\mathrm{or,\ y=25+x........(1)}\\\mathrm{Also\ we\ have}\\\mathrm{Perimeter\ of\ triangle=187ft}\\\mathrm{or,\ x+(2x-10)+y=187}\\\mathrm{or,\ 3x+y=197}\\\mathrm{or,\ y=197-3x...........(2)}[/tex]

[tex]\mathrm{Equating\ equations\ 1\ and\ 2,}\\\mathrm{25+x=197-3x}\\\mathrm{or,\ 4x=172}\\\mathrm{or,\ x=43ft}\\\mathrm{i.e.\ length\ of\ shortest\ side=43ft}\\\mathrm{Now,\ length\ of\ longest\ side=2x-10=2(43)-10=76ft}\\\mathrm{Finally,\ length\ of\ third\ side=y=25+x=68ft}[/tex]

[tex]\mathrm{So,\ the\ required\ lengths\ of\ triangle\ are\ 43ft,\ 76ft\ and\ 68ft.}[/tex]








7. Consider the two lines where s and t are real numbers. Find the relation between a and b which ensures that the two lines intersect d1 x y z] (2.0,01 1,2-1) d2 [x, y 21-13.2, 31+ sla b. 11

Answers

Given that two lines are: d1:[x,y,z] = [2,0,1]+a[1,2,-1]d2:[x,y,z] = [2,-13,2]+b[-3,2,s]The relation between a and b which ensures that the two lines intersect is as follows:

First of all, we need to find the point of intersection of the two lines d1 and d2.Let's take two points (on both lines) such that they define a direction vector on both lines as shown below: d1:[x,y,z] = [2,0,1]+a[1,2,-1]Let a = 0,

then we get d1:[2,0,1]Let a = 1, then we get d1:[3,2,0]

So, the direction vector of line d1 can be given as: v1 = [3-2, 2-0, 0-1] = [1,2,-1]d2:[x,y,z] = [2,-13,2]+b[-3,2,s]Let b = 0, then we get d2:[2,-13,2]Let b = 1, then we get d2:[-1,-11,2+s]

So, the direction vector of line d2 can be given as: v2 = [-1-2, -11-(-13), (2+s)-2] = [-3,2,s] Now, let's find the point of intersection of the two lines d1 and d2 using the direction vectors and points on each line.x1 + a1v1 = x2 + b2v2 [Point on line d1 and line d2]2 + a[1] = 2 + b[-3] ........(i)0 + a[2] = -13 + b[2] ........(ii)1 + a[-1] = 2 + b[s] ........(iii)From equation (i),

we get: a = (2+3b)/1 = 2+3bFrom equation (ii), we get: b = (-13-2a)/2 = (-13-4-6b)/2 => b = -17/4Put the value of b in equation (i),

we get: a = 2+3(-17/4) = -19/4Put the value of a in equation (iii), we get: s = (-1-2b)/(-19/4) = (8/19)(1+2b)Now, the lines d1 and d2 intersect if their direction vectors are not parallel to each other.

Let's check if their direction vectors are parallel or not.v1 = [1,2,-1]v2 = [-3,2,s]For the lines to intersect, v1 and v2 must not be parallel to each other.

That means, the dot product of v1 and v2 must not be zero. That means,1*(-3) + 2*2 + (-1)*s ≠ 0or, -3 + 4 - s ≠ 0or, s ≠ 1So, if s ≠ 1, then the two lines d1 and d2 will intersect.

Therefore, the relation between a and b which ensures that the two lines intersect is: s ≠ 1

To know more about point of intersection visit:

https://brainly.com/question/11632250

#SPJ11

Write the equation of the line with the given information. Through (2,7) perpendicular to h(x) = 4x - 5 f(x) = ___
You deposit $5000 in an account earning 4% interest compounded continuously. How much will you have in the account in 10 years?
$ ___

Answers

a) The equation of the line that is perpendicular to h(x) = 4x - 5 and passes through the point (2,7) can be found using the fact that perpendicular lines have slopes that are negative reciprocals of each other. The slope of h(x) is 4, so the slope of the perpendicular line will be -1/4. Using the point-slope form of a linear equation, the equation of the line is f(x) = (-1/4)(x - 2) + 7.

b) To calculate the amount in the account after 10 years with continuous compounding interest, we can use the formula A = Pe^(rt), where A is the final amount, P is the initial principal, r is the interest rate (as a decimal), and t is the time in years. In this case, the initial principal is $5000, the interest rate is 4% or 0.04, and the time is 10 years. Plugging these values into the formula, we have A = 5000e^(0.04*10). Evaluating this expression, the amount in the account after 10 years is approximately $7,391.18.

Learn more about linear equation here: brainly.com/question/12974594

#SPJ11

Find the gradient field of the function, f(x,y,z) = (3x²+4y² + 2z²) The gradient field is Vf= +k

Answers

The gradient field of the function is given by grad f = 6x i + 8y j + k and it passes through the plane z = 1/4, where k = 1.

The given function is f(x, y, z) = 3x² + 4y² + 2z² and it is required to find the gradient field of this function, where the gradient field is Vf = + k. Therefore, the solution is given below.

To determine the gradient of the given function, we must first compute its partial derivatives with respect to x, y, and z.  So, let's calculate the partial derivatives of the given function first:

∂f/∂x = 6x∂f/∂y = 8y∂f/∂z = 4z

The gradient vector field is as follows:

grad f = ∂f/∂x i + ∂f/∂y j + ∂f/∂z k= 6x i + 8y j + 4z k

Now, as given, the gradient field is Vf = + k. Thus, we only have the k-component of the vector field and no i or j-component.

Therefore, comparing the k-component of the gradient vector field with Vf, we get:

4z = 1 (As Vf = k, we only need to compare the k-components.)

Or z = 1/4

Hence, the gradient field of the function is given by grad f = 6x i + 8y j + k and it passes through the plane z = 1/4, where k = 1.

The gradient field indicates that the function is increasing in all directions. In addition, we can see that the z-component of the gradient field is constant.

To know more about gradient visit:

https://brainly.com/question/13020257

#SPJ11

Suppose the 95% confidence interval for the difference in population proportions p1- p2 is between 0.1 and 0.18 a. None of the other options is correct b. The p-value for testing the claim there is a relationship between the quantitative variables would be more than 2 c. The p-value for testing the claim there is a relationship between the categorical variables would be less than 0.05 d. There is strong evidence of non linear relationship between the quantitative variables

Answers

Option b is correct. The p-value for testing the claim there is a relationship between the quantitative variables would be more than 2.

Given that the 95% confidence interval for the difference in population proportions p1- p2 is between 0.1 and 0.18. Therefore, the option (a) None of the other options is correct is not correct.p-value: The p-value is the probability of observing a test statistic as extreme as or more than the observed value under the null hypothesis. The p-value is used to determine the statistical significance of the test statistic. A small p-value indicates that the observed statistic is unlikely to have arisen by chance and therefore supports the alternative hypothesis.a. False because the 95% confidence interval for the difference in population proportions p1- p2 is given. The confidence interval is used to determine the true population proportion. Thus, the option "None of the other options is correct" is incorrect.

b. True because the p-value for testing the claim that there is a relationship between quantitative variables would be more than 0.05 if the confidence interval for the difference in population proportions p1- p2 contains zero. Thus, option b is correct.

c. False because the p-value for testing the claim that there is a relationship between categorical variables would be less than 0.05 if the confidence interval for the difference in population proportions p1- p2 does not contain zero. Therefore, the option (c) The p-value for testing the claim there is a relationship between the categorical variables would be less than 0.05 is not correct.

d. False because the confidence interval only shows the range of the estimated proportion difference. It doesn't tell us anything about the relationship between quantitative variables. Therefore, option d is not correct.

Learn more about proportion:https://brainly.com/question/1496357

#SPJ11

Let M22 be the vector space of 2 x 2 matrices with real number entries and with standard matrix addition and scalar multiplication. Determine which of following are subspaces of M22. (a) all 2 x 2 matrices A with det A = 1. (b) all 2 x 2 diagonal matrices. (c) all 2 x 2 matrices with integer entries. (d) all 2 x 2 matrices A such that tr(A) = 0. (e) all 2 x 2 matrices A with nonzero entries.

Answers

Out of the given options, (a) the set of all 2x2 matrices A with determinant det(A) = 1 and (b) the set of all 2x2 diagonal matrices are subspaces of M22.

(a) To determine if the set of matrices with determinant 1 is a subspace of M22, we need to check if it satisfies the two requirements for a subspace: closure under addition and closure under scalar multiplication. Let A and B be matrices in the set with det(A) = 1 and det(B) = 1. The determinant of the sum A + B is det(A + B), and since the determinant is a linear function, it follows that det(A + B) = det(A) + det(B) = 1 + 1 = 2. Since 2 is not equal to 1, the set is not closed under addition and therefore not a subspace.

(b) The set of all 2x2 diagonal matrices is a subspace of M22. To show this, we need to verify closure under addition and scalar multiplication. Let A and B be diagonal matrices in the set, and let c be a scalar. The sum A + B is still a diagonal matrix, and scalar multiplication cA is also a diagonal matrix. Thus, the set of all 2x2 diagonal matrices satisfies both closure properties, making it a subspace of M22.

(c), (d), and (e) are not subspaces of M22. The set of all 2x2 matrices with integer entries (c) fails closure under scalar multiplication since multiplying an integer matrix by a scalar may result in non-integer entries. The set of all 2x2 matrices A such that tr(A) = 0 (d) fails closure under addition because the trace of the sum A + B is not necessarily zero. The set of all 2x2 matrices with nonzero entries (e) fails closure under scalar multiplication as multiplying a matrix with nonzero entries by zero would violate the closure property.

Learn more about determinant here: https://brainly.com/question/29574958

#SPJ11

Compose yourself and solve by Gauss 3*3 systems (a) With one solution; (b) With no solutions; (c) With infinitely many solutions and find a concrete solution with sum of coordinates equal to 12. (d) With infinitely many solutions and find a concrete solution of minimal length.

Answers

According to the question a concrete solution of minimal length on solving by Gauss 3*3 systems are as follows :

(a) System with one solution:

The correct option is (a). The solution to the system is x = -2/3, y = 5/3, z = 2.

(b) System with no solution:

The correct option is (b). The system has no solution.

(c) System with infinitely many solutions:

The correct option is (c). A concrete solution with the sum of coordinates equal to 12 is (x, y, z) = (-4, 8, 8).

(d) System with infinitely many solutions and minimal length:

The correct option is (d). A concrete solution of minimal length is (x, y, z) = (2, 1, 1).

To know more about minimal visit-

brainly.com/question/30357550

#SPJ11

Let f(x1,x) = x} + 3x x3 - 15x} - 15x} + 72x, 1. Determine the stationary points of f(x). 2. Determine the extreme points of f(x) (that is the local minimize or maximize).

Answers

To determine the stationary points and extreme points of the function f(x) = x^4 + 3x^3 - 15x^2 - 15x + 72, we need to find the values of x where the derivative of f(x) equals zero.

To find the stationary points, we differentiate f(x) with respect to x:

f'(x) = 4x^3 + 9x^2 - 30x - 15. Next, we solve the equation f'(x) = 0 to find the values of x where the derivative is zero: 4x^3 + 9x^2 - 30x - 15 = 0. By solving this equation, we can find the x-values of the stationary points.

To determine whether these stationary points are local minima or maxima, we can analyze the second derivative of f(x). If the second derivative is positive at a stationary point, it indicates a local minimum. If the second derivative is negative, it indicates a local maximum.

Taking the derivative of f'(x) with respect to x, we find: f''(x) = 12x^2 + 18x - 30. By evaluating the second derivative at the x-values of the stationary points, we can determine their nature (minima or maxima).

To find the stationary points of f(x) = x^4 + 3x^3 - 15x^2 - 15x + 72, we differentiate the function and solve for the values of x where the derivative equals zero. Then, by evaluating the second derivative at these points, we can determine if they are local minima or maxima.

Learn more about functions here: brainly.com/question/31062578
#SPJ11

A rod 200cm long is broken into two parts. the shorter part is one quarter of the length of the rod express the shorter part as a percentage of the longer part​

Answers

Let's denote the length of the shorter part as x.

According to the given information, the shorter part is one quarter of the length of the rod. Since the rod is 200 cm long, the length of the shorter part can be expressed as:

x = (1/4) * 200

x = 50 cm

Now, to express the shorter part as a percentage of the longer part, we need to calculate the ratio of the shorter part (50 cm) to the longer part (200 cm) and multiply it by 100 to convert it into a percentage:

Percentage = (Shorter Part / Longer Part) * 100

= (50 / 200) * 100

= 0.25 * 100

= 25%

Therefore, the shorter part is 25% of the longer part.

One of the steps Jamie used to solve an equation is shown below. -5(3x + 7) = 10 -15x +-35 = 10 Which statements describe the procedure Jamie used in this step and identify the property that justifies the procedure?
AJamie multiplied 3x and 7 by -5 to eliminate the parentheses. This procedure is justified by the associative property.
B Jamie added -5 and 3x to eliminate the parentheses. This procedure is justified by the associative property.
C Jamie multiplied 3x and 7 by -5 to eliminate the parentheses. This procedure is justified by the distributive property.
D Jamie added -5 and 3x to eliminate the parentheses. This procedure is justified by the distributive property.​

Answers

Answer:

The correct answer is C: Jamie multiplied 3x and 7 by -5 to eliminate the parentheses. This procedure is justified by the distributive property.

Step-by-step explanation:
In the given step, Jamie multiplied each term inside the parentheses (3x and 7) by -5. This multiplication is performed to distribute the -5 to both terms within the parentheses, resulting in -15x and -35. This procedure is justified by the distributive property, which states that when a number is multiplied by a sum or difference inside parentheses, it can be distributed to each term within the parentheses.

Determine the amplitude, midline, period, and an equation involving the sine function for the graph shown below. y -5 4 -3 -2 -1 4 5 6 Enter the exact answers. Amplitude: A = 2 Midline: y = 2 Va F sin

Answers

This equation represents a sine function with an amplitude of 5.5, a midline at y = 2, and a period of 4.

To determine the amplitude, midline, and period of the given graph, we need to analyze the characteristics of the sine function.

Looking at the given graph's y-values: -5, 4, -3, -2, -1, 4, 5, 6, we can observe the following:

Amplitude (A): The amplitude is the distance from the midline to the highest or lowest point on the graph. In this case, the highest point is 6, and the lowest point is -5. The amplitude is calculated by taking half the difference between these two extreme points:

Amplitude (A) = (6 - (-5)) / 2 = 11 / 2 = 5.5

Midline: The midline is the horizontal line that passes through the center of the graph. It represents the average value of the function. In this case, the midline is given by the line that passes through the y-values 2 and 2, which is simply:

Midline: y = 2

Period (P): The period is the distance it takes for one complete cycle of the function to occur. It is the length of the x-axis between two consecutive points with the same y-value. In this case, we can observe that the graph repeats itself every 4 points. So, the period is 4.

Therefore, the characteristics of the given graph are:

Amplitude: A = 5.5

Midline: y = 2

Period: P = 4

An equation involving the sine function for this graph would be:

y = A * sin((2π/P) * x) + Midline

Substituting the values we found:

y = 5.5 * sin((2π/4) * x) + 2

This equation represents a sine function with an amplitude of 5.5, a midline at y = 2, and a period of 4.

For more questions on function

https://brainly.com/question/11624077

#SPJ8

Trig Review (after 1.4) Given that a is an angle in standard position whose terminal side contains the point (8,5), sketch the angle and then provide the exact value of the functions. 1. sin a 2. csc

Answers

We evaluated the sin and csc functions as 5/9.43 and 9.43/5, respectively.

Sketching the angle (8, 5), we have that a is an acute angle in quadrant I. We can draw a triangle with side lengths of 8, 5, and x (the hypotenuse).

Let's use the Pythagorean theorem to solve for x:x² = 8² + 5²x² = 64 + 25x² = 89x ≈ 9.43Now, we can evaluate the trig functions:1. sin a = opp/hyp = 5/9.43

csc a = hyp/opp

= 9.43/5

We can conclude that given the angle a in standard position whose terminal side contains the point (8, 5), we can sketch the angle as an acute angle in quadrant I.

By using the Pythagorean theorem to find the hypotenuse of the triangle with side lengths of 8, 5, and x, we got that the hypotenuse is approximately 9.43.

From here, we evaluated the sin and csc functions as 5/9.43 and 9.43/5, respectively.

To know more about Pythagorean theorem visit:

brainly.com/question/14930619

#SPJ11

Simplify. i¹⁵ Select one: a. -i b. -1 c.i d. 1

Answers

The value of i¹⁵ is 1.

To simplify i¹⁵, we need to determine the value of i raised to the power of 15.

The imaginary unit i is defined as the square root of -1. When we raise i to successive powers, it follows a cyclic pattern. Let's examine the powers of i:

i¹ = i

i² = -1

i³ = -i

i⁴ = 1

i⁵ = i

i⁶ = -1

...

We can observe that the powers of i repeat every four terms. This means that any power of i that is a multiple of 4 will result in 1.

To simplify i¹⁵, we can rewrite it as i¹⁵ = i^(4 × 3) = (i⁴)³.

Since i⁴ equals 1, we can substitute it in the expression:

i¹⁵ = (i⁴)³ = (1)³ = 1³ = 1.

Therefore, the value of i¹⁵ is 1.

Learn more about i(iota) here : brainly.com/question/20533401

#SPJ11

a scuba diver has a sac rate of 30 psi per minute (2 bar per minute) using a 67 cubic foot /3000 psig (9.2 liter/207 bar)) cylinder. what is his sac rate in cubic feet per minute (liters per minute)?

Answers

Given,Scuba diver has a SAC (Surface Air Consumption) rate of 30 psi per minute (2 bar per minute) using a 67 cubic foot /3000 psig (9.2 liter/207 bar)) cylinder.

To find, SAC rate in cubic feet per minute (liters per minute).Explanation:We can use the following formula to solve the given problem:SAC rate in cubic feet per minute (liters per minute) = (Tank pressure / 14.7) x Tank volume / SAC rateHere, Tank volume = 67 cubic footTank pressure = 3000 psig (pounds per square inch gauge) = 3000+14.7 ( Atmospheric pressure) = 3014.7 psiSo, SAC rate in psi per minute = 30 psi per minute

Then, SAC rate in cubic feet per minute (liters per minute) = (3014.7/ 14.7) x 67 / 30= 196.67 / 30= 6.56 cubic feet per minute (liters per minute)Thus, the main answer is, his SAC rate in cubic feet per minute is 6.56 liters per minute.Conclusion:Therefore, we found the SAC rate in cubic feet per minute (liters per minute) is 6.56 cubic feet per minute (liters per minute).

To know more about cubic feet visit:

https://brainly.com/question/30438136

#SPJ11

A sample of 20 from a population produced a mean of 64.8 and a standard deviation of 8.2. A sample of 25 from another population produced a mean of 59.9 and a standard deviation of 12.6. Assume that the two populations are normally distributed and the standard deviations of the two populations are equal. The null hypothesis is that the two population means are equal, while the alternative hypothesis is that the two population means are different. The significance level is 5%. What is the standard deviation of the sampling distribution of the difference between the means of these two samples, rounded to three decimal places?

Answers

The standard deviation of the sampling distribution is a measure of the variability of the differences between the means of two samples. In this case, it is approximately 2.606

The standard deviation of the sampling distribution of the difference between the means of two samples can be calculated using the formula:

[tex]Standard Deviation = \sqrt{[(s1^2/n1) + (s2^2/n2)]}[/tex]

where s1 and s2 are the standard deviations of the two samples, and n1 and n2 are the sizes of the two samples.

In this case, the sample from the first population has a mean of 64.8 and a standard deviation of 8.2, with a sample size of 20. The sample from the second population has a mean of 59.9 and a standard deviation of 12.6, with a sample size of 25.

Using the formula, we can calculate the standard deviation of the sampling distribution as:[tex]Standard Deviation = \sqrt{[(8.2^2/20) + (12.6^2/25)] }\approx 2.606[/tex]

Therefore, the standard deviation of the sampling distribution of the difference between the means of these two samples is approximately 2.606, rounded to three decimal places.

Learn more about Standard Deviation here:

https://brainly.com/question/13498201

#SPJ11

Triangle ABC has vertices at A(−5, 2), B(1, 3), and C(−3, 0). Determine the coordinates of the vertices for the image if the preimage is translated 4 units right.

A′(−9, 2), B′(−3, 3), C′(−7, 0)
A′(−4, 6), B′(0, 7), C′(−5, 4)
A′(−1, 2), B′(5, 3), C′(1, 0)
A′(−5, −2), B′(1, −1), C′(−3, −4)

Answers

Answer:

Option 3: A'(-1, 2), B'(5, 3), C'(1, 0)

Step-by-step explanation:

The triangle is translated 4 units RIGHT, so we will be dealing with the x-values of the vertices of the triangle.

4 units right indicates, we are ADDING 4 to the x-values, because we are moving in the positive direction.

A(-5, 2) becomes A'(-5+4, 2) = A'(-1, 2)

B(1, 3) becomes B'(1+4, 3) = B'(5, 3)

C(-3, 0) becomes C'(-3+4, 0) = C'(1, 0)

Let h(θ) = sin(θ), where θ is in degrees.
(a) Graph the function h, Label the intercepts, maximum values, and minimum values.
(b) What is the largest domain of h including 0 on which h has an inverse?
(c) h⁻¹(x) has domain ___and range__ .

Answers

The graph of h(θ) = sin(θ) in degrees is a periodic wave-like shape oscillating between -1 and 1. It has intercepts at θ = 0, 180, and 360 degrees, and maximum and minimum values at θ = 90 and 270 degrees, respectively.

(a) The graph of h(θ) = sin(θ) in degrees is a periodic function that oscillates between -1 and 1. It repeats itself every 360 degrees, and the intercepts occur at θ = 0, 180, and 360 degrees. The maximum value of h(θ) is 1 at θ = 90 degrees, while the minimum value is -1 at θ = 270 degrees.

(b) The function h(θ) = sin(θ) is not one-to-one over its entire domain of θ. To find the largest domain on which h has an inverse, we need to consider the interval where h is strictly increasing or decreasing. This interval is [-90, 90] degrees, as it covers one complete period of the sine function and includes the point where h(θ) = 0.

(c) Since h(θ) = sin(θ) repeats itself every 360 degrees, the inverse function h⁻¹(x) exists only for values of x in the range of h, which is [-1, 1]. Therefore, the domain of h⁻¹(x) is [-1, 1]. The range of h⁻¹(x) represents the set of possible input angles that result in the given output values and is equal to [-90, 90] degrees, corresponding to the interval where h is strictly increasing or decreasing.

To learn more about periodic function click here :

brainly.com/question/32324219

#SPJ11

If A is 3 x 3, with columns a1, a2, and a3, then det A equals the volume of the parallelepiped determined b a₂ and a3.
det AT = (-1) det A.
The multiplicity of a root r of the characteristic equation of A is called the algebraic multiplicity of r as an eigen- value of A.
A row replacement operation on A does not change the eigenvalues.

Answers

Determinant of a 3x3 matrix A gives the volume of the parallelepiped formed by the columns of A.

The determinant of the transpose of A (denoted as AT) is equal to the negative determinant of A. The multiplicity of a root r in the characteristic equation of A is called the algebraic multiplicity of r as an eigenvalue of A. A row replacement operation on matrix A does not change the eigenvalues.

The determinant of a 3x3 matrix A can be interpreted as the volume of the parallelepiped determined by its columns, a1, a2, and a3. The determinant of the transpose of A, denoted as det(AT), is equal to the negative determinant of A, det(A). This property holds for any square matrix.

The multiplicity of a root r in the characteristic equation of A refers to the number of times the root r appears as an eigenvalue of A. The characteristic equation is obtained by setting the determinant of A minus the identity matrix multiplied by a scalar lambda equal to zero.

A row replacement operation on matrix A involves replacing one row with a linear combination of other rows. This operation does not change the eigenvalues of A. Eigenvalues are only affected by row operations that involve scaling or swapping rows.

These properties are important in linear algebra and have practical applications in various fields, including physics, engineering, and computer science.

To learn more about algebraic click here:

brainly.com/question/29131718

#SPJ11

Using 12 products as a sample from a stock of products, a store found it that it can arrange them in 125970 ways in any order. How many products are in this stock?

Answers

There are 479,001,600 products in this stock.

To determine the number of products in the stock, we can use the concept of permutations. The total number of ways to arrange a set of n items in any order is given by n!, which represents the factorial of n.

In this case, we know that the store can arrange the 12 products in 125,970 ways. This can be expressed as:

12! = 125,970

To find the value of 12!, we can calculate it directly or use a calculator. Evaluating 12!, we find that it is equal to 479,001,600.

Know more about permutations here:

https://brainly.com/question/29990226

#SPJ11

Find the equation of the curve passing through (1,0) if the slope is given by the following. Assume that x>0. dy/dx = 3/x³ + 4/x-1
y(x)= (Simplify your answer. Use integers or fractions for any numbers in the expression)

Answers

The equation of the curve passing through (1,0) can be found by integrating the given slope function with respect to x and then applying the initial condition.

To find the equation of the curve, we integrate the given slope function with respect to x. The given slope function is dy/dx = 3/x³ + 4/(x-1). Integrating both sides, we obtain:

∫dy = ∫(3/x³ + 4/(x-1))dx

Integrating each term separately, we get:

y = ∫(3/x³)dx + ∫(4/(x-1))dx

Simplifying, we have:

y = -1/x² + 4ln|x-1| + C

where C is the constant of integration. To find the value of C, we use the initial condition that the curve passes through (1,0). Substituting x = 1 and y = 0 into the equation, we have:

0 = -1/1² + 4ln|1-1| + C

0 = -1 + C

Therefore, C = 1. Substituting the value of C back into the equation, we obtain the final equation of the curve :

y = -1/x² + 4ln|x-1| + 1

This is the equation of the curve passing through (1,0) with the given slope function.

To learn more about slope click here :

brainly.com/question/30088055

#SPJ11

Other Questions
Which of the following is true of the principal's liability for an independent contractor's actions?A. The principal will not be held responsible for any damages caused due to extremely hazardous activities undertaken by the independent contractor.B. The employer cannot escape liability for an independent contractor's tort, if the employer directs the contractor to commit thetort.C. The employer can escape strict liability by hiring an independent contractor to complete the tasks for her.D. An individual who hires an independent contractor is held liable for the independent contractor's tortious actions under thedoctrine of "respondeat superior." We are examining a new project. If it is a success, the project will generate $600,000 NPV. If it is a failure, the project will generate -$500,000 NPV. The size of the project can increased by twice of its original size in year 1 if the project turns out to be a success. Assume that success and failure are equally likely and a discount rate of 12%. What is the expected NPV of the project? O $1,800,000 O $585,714 O $650,000 O $600,000 O $50,000 Some companies want to get their products into as many outlets as possible, understanding that the more exposure a product gets, the higher quantity it will sell. If this is consistent with the company's overall strategy, it will choose _____ distribution. a. exclusive b. selective c. intensive d. wide-coverage the operating activity information is available on the statement of cash flows and also on the select one: a. balance sheet statement b. income statement c. statement of retained earnings d. none of the above Consider how you might cope with a variety of unusual eventsthat can confront public speakers. How might you handle thefollowing situations?You arrive to give your speech and are asked to speak for Saved Help Save & Exit Submit A company has the following sequence of events regarding their stock: . One million shares outstanding at the beginning of the year. On June 30th, they declared and issued a 10% stock dividend . On September 30th, they sold 400,000 shares of common stock at par. Basic earnings per share at year-end will be computed on how many shares? Mutiple Choice O 1.200,000 1,000,000 1100,000 what reasons does the speaker provide to support his viewpoint or claim? A supply chain strategic logistical driver is_________________a.Warehousingb.Outsourcingc.Pricingd.Information Select all that apply. Mark only the gyre currents of the North Pacific.a) California Currentb) Alaska Currentc) East Australia Currentd) North Equatorial Currente) Peru Currentf) North Pacific Current Determine if the figure is a right triangle by substituting the side lengths into the Pythagorean formula. Is ABC a right triangle? (0.73 cm) (0.7 cm) (0.24 cm) Yes or no? For the survey in number 11, how many individuals should be surveyed to be 95 percent confident of having the true proportion of people drinking the brand estimated to within 0.015? Please help and please show work clearly so that i mayunderstand.Find an equation of the line that is tangent to the graph of f and parallel to the given line. Line Function f(x) = 2x 6x - y + 1 = 0 y = Here is some price information on Marabel, Inc.: Bid Ask. 14.98 Bid Marabel 14.85. You have placed a stop-loss order to sell at $14.90. What are you telling your broker? 5 pts To attempt to sell the stock as soon as the stock trades at a bid price of $14.9 or less. To attempt to buy the stock as soon as the stock trades at a bid price of $14.9 or less. are projections for future periods based on forecasts and are typically completed for two to three years in the future. Mullan has 5 million shares outstanding and its shares currently sells for 20 per share. Mullan has announced a right issue to raise 30 million. The subscription price is set at 15 per share.Calculate the ex-rights price and the value of a right?Calculate the portfolio value of a shareholder with 500 shares after the right offer, if;i. The shareholder sells its right in the marketii. The shareholder lets its rights to expire.c) Comment on the values you have calculated in part (b). A sample of job applicants is selected to analyze the number of years of experience the job applicants have. The data set is: (1, 3, 3, 1, 2). What can you conclude about the sample? Today, you have $30,000 to invest. Two investment alternatives are available to you. One would require you to invest your $30,000 now; the other would require the $30,000 investment two years from now. In either case, the investments will end five years from now. The cash flows for each alternative are provided below. Using a MARR of 14%, what should you do with the $30,000 you have? More Info MADDi 1107 nove Year Alternative 2 $0 $0 Alternative 1 -$30,000 $10,000 $10,000 $10,000 $15,000 $12,000 -$30,000 $15,500 $15,500 $15,500 Check Answer The FW of the Alternative 1 is $ the leader who was responsible for the success of the saint-domingue uprising was A block of mass m = 5.0 kg is pulled up a theta = 21 incline as inthe figure below with a force of magnitude F = 36 N.(a) Find the acceleration of the block if the incline isfrictionless. (Give th the number one priority in any terrorist-preparedness plan should be