Define mass number of an atom.
A chemist measures the amount of iodine solid produced during an experiment. He finds that of iodine solid is produced. Calculate the number of moles of iodine solid produced. Round your answer to significant digits.
The question is incomplete, the complete question is:
A chemist measures the amount of iodine solid produced during an experiment. He finds that 8.31 g of iodine solid is produced. Calculate the number of moles of iodine solid produced. Round your answer to the correct number of significant digits.
Answer: The number of moles of solid iodine produced is 0.0327 moles
Explanation:
The number of moles is defined as the ratio of the mass of a substance to its molar mass. The equation used is:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)
Given mass of solid iodine = 8.31 g
Molar mass of solid iodine = 253.8089 g/mol
Plugging values in equation 1:
[tex]\text{Moles of solid iodine}=\frac{8.31g}{253.8089g/mol}=0.0327mol[/tex]
Hence, the number of moles of solid iodine produced is 0.0327 moles
How many stereoisomers are possible for CHCl3 provided that the central carbon has a tetrahedral geometry
Answer:
How many stereoisomers are possible for CHCl3 provided that the central carbon has tetrahedral geometry?
Explanation:
The stereoisomers are the molecules with the same molecular formula but the different spatial arrangements of atoms around the central atom.
For the given molecule, [tex]CHCl_3[/tex]
only one spatial arrangement is possible.
Hence, one stereoisomer is possible.
It is shown below:
How many molecules of C 2H 5Br will be present if you had 4.52 g of this compound?
Arrange aluminum, boron, nitrogen, and phosphorous in order of increasing electronegativity.
a. Al < N < P < B
b. Al < B < P < N
c. N < P < B < Al
d. B < Al < N < P
Answer:
Option b.
Al < B < P < N
Explanation:
Electronegativity is the capacity of an atom to attract electrons.
Usually, if we look at the periodic table, the elements in the left are the ones with the least electronegativity, and as we go to the right, the electronegativity increases (this is not really exact)
There are a lot of tables of electronegativity that can be used here, we can find that:
element: electronegativity:
N 3.04
B 2.04
P 2.19
Al 1.61
So, the order from least to greatest is:
Al, B, P, N
Then the correct option is:
b: Al < B < P < N
what is the mass of insoluble calcium phosphate produced from .555 grams of calcium chloride
Answer:
0.518 g
Explanation:
Step 1: Write the balanced equation
3 CaCl₂ + 2 H₃PO₄ ⇒ Ca₃(PO₄)₂ + 6 HCl
Step 2: Calculate the moles corresponding to 0.555 g of CaCl₂
The molar mass of CaCl₂ is 110.98 g/mol.
0.555 g × 1 mol/110.98 g = 5.00 × 10⁻³ mol
Step 3: Calculate the moles of Ca₃(PO₄)₂ produced
5.00 × 10⁻³ mol CaCl₂ × 1 mol Ca₃(PO₄)₂/3 mol CaCl₂ = 1.67 × 10⁻³ mol Ca₃(PO₄)₂
Step 4: Calculate the mass corresponding to 1.67 × 10⁻³ moles of Ca₃(PO₄)₂
The molar mass of Ca₃(PO₄)₂ is 310.18 g/mol.
1.67 × 10⁻³ mol × 310.18 g/mol = 0.518 g
Q2.Which is true about potassium?
Extremely unreactive
Not very reactive
Slightly reactive
Very reactive
Which of the following describes an organisms habitat?
A) where the organism lives
B) how the organism moves
C) what the organism eats
D) what eats the organism
Answer:
A) habitat
Explanation:
a habitat is essentially the organisms "home". also known as a "niche"
A certain liquid has a normal boiling point of and a boiling point elevation constant . A solution is prepared by dissolving some urea () in of . This solution boils at . Calculate the mass of that was dissolved. Round your answer to significant digits.
This question is incomplete, the complete question is;
A certain liquid X has a normal boiling point of 150.4 °C and a molar boiling point elevation constant kb is 0.60 °Ckgmol⁻¹.
A solution is prepared by dissolving some urea (NH22CO) in 750 g of X. This solution boils at 150.9 °C . Calculate the mass of urea that was dissolved. Round your answer to 3 significant digits.
Answer:
the mass of urea that was dissolved is 37.5 g
Explanation:
Given the data in the question;
normal boiling point of X; Tb⁰ = 150.4 °C
boiling point of solution Tb = 150.9 °C
Change in boiling point Δt = Tb - Tb⁰ = 150.9 °C - 150.4 °C = 0.5 °C
Kb = 0.6 °C.kg.mol⁻¹
V = 750 g
Now, we know that
Δt = Kb × molality
so
0.5 = 0.6 × molality
molality = 0.5 / 0.6
molality = 0.833
we know that molar mass of urea is 60 g/mol
so
molality = mass × 1000 / molar mass × volume( g )
we substitute
0.833 = ( mass × 1000 ) / ( 60 × 750 )
0.833 = ( mass × 1000 ) / 45000
0.833 × 45000 = mass × 1000
mass = ( 0.833 × 45000 ) / 1000
mass = 37485 / 1000
mass = 37.485 ≈ 37.5 g { 3 significance figure }
Therefore, the mass of urea that was dissolved is 37.5 g
Which is used to measure conc. HCl for preparation of 0.1M HCl solution?
a. Volumetric flask c. Measuring cylinder
b. Pipette d. Wash bottle
Answer:
option a
hope helps you
have a great day
Indicate if the following are the correct ground state electron configurations
for the atom listed by choosing correct or incorrect from the drop down menu.
1. Cr: [Ar]4s03d6
2. Zr: [Kr]5s23f144d2
3. Fe: [Ar]4s23d6
4. Co3+: [Ar]4s03d6
5. Ti2+: [Ar]4s03d2
6. Cu+: [Ar]4s23d8
Answer:
1) incorrect
2) incorrect
3) correct
4) correct
5) correct
6) incorrect
Explanation:
The correct electronic configuration of chromium is; [Ar] 3d⁵ 4s¹
The correct electronic configuration for Zr is; [Kr] 4d² 5s²
The correct electronic configuration of Cu^+ is; [Ar] 3d¹⁰
The electronic configuration of an atom refers to the arrangement of electrons in the atoms of such element.
The appropriate number of electrons and its properly written electronic configuration is clearly shown in this answer.
What is the density of Ar(g) at -11°C and 675 mmHg?
Answer:
The Density Of Ar (g) At -11°C And 675 MmHg (R =0.08206 L·atm/mol·K, 1 Atm = 760mmHg).
Suppose of potassium acetate is dissolved in of a aqueous solution of ammonium sulfate. Calculate the final molarity of acetate anion in the solution. You can assume the volume of the solution doesn't change when the potassium acetate is dissolved in it. Round your answer to significant digits.
The question is incomplete, the complete question is;
Suppose 0.377g of potassium acetate is dissolved in 250.mL of a 57.0mM aqueous solution of ammonium sulfate.
Calculate the final molarity of acetate anion in the solution. You can assume the volume of the solution doesn't change when the potassium acetate is dissolved in it.
Round your answer to 3 significant digits.
Answer:
0.0152 M
Explanation:
The equation of the reaction is;
2CH3COOK(aq) + (NH4)2SO4(aq)------> K2SO4(aq) + 2CH3COONH4(aq)
Number of moles of potassium acetate = 0.377g/98.15 g/mol = 0.0038 moles
Number of moles of ammonium sulphate = 250/1000L × 57 × 10^-3 = 0.014 moles
2 moles of potassium acetate yields 2 moles of ammonium acetate
Hence;
0.0038 moles of potassium acetate yields 0.0038 moles of ammonium acetate
Also
1 mole of potassium sulphate yields 2 moles of ammonium acetate
0.014 of potassium sulphate yields 0.014 × 2/1 = 0.028 moles of ammonium acetate
So potassium acetate is the limiting reactant.
Since 0.0038 moles of ammonium acetate is produced, the final concentration of potassium acetate is = 0.0038 moles of ammonium acetate/0.25L = 0.0152 M
Hence final concentration of acetate ions =0.0152 M
What is the best explanation for why solid sodium chloride CANNOT conduct electricity and why molten sodium chloride can?
Answer: See explanation
Explanation:
The explanation for why solid sodium chloride can't conduct electricity while molten sodium chloride can is explained below:
Ionic compounds that are in their solid state like sodium chloride have their ions fixed in position. Due to this reason, the able to move, therefore we can say that the solid ionic compounds cannot be able to conduct electricity.
On the other hand, ionic compounds in their molten state, are free to flow unlike when they're in their solid state and therefore we can say that molten sodium chloride can be able to conduct electricity.
Which of the following is a physical change?
Organic foods do not contain chemicals.
True
False
Assuming equal concentrations and complete dissociation, rank these aqueous solutions by their freezing points from highest to lowest. CoCl3, NH4Cl, Li2SO4
Answer:
NH4Cl > Li2SO4 > CoCl3
Explanation:
Let us recall that the freezing point depression depends on the molality of the solution and the number of particles present.
Let us also recall that freezing point depression is a colligative property. It depends on the number of particles present in solution.
Usually, the more the number of particles present, the lower the freezing point. Hence, NH4Cl which has only two particles will have the highest freezing point while CoCl3 which has four particles will have the lowest freezing point.
A calorimeter has been filled with 75 mL of water. The density of water at 25 °C is
0.998 g/mL. How many grams of water do you have at 25°C?
Answer:
isn't it 0.998
Explanation:
cause 0.998 is in the same grams / mole. I don't get
A calorimeter has been filled with 75 mL of water. The number of grams of water is 74.85 grams.
What is a calorimeter?A calorimeter is an instrument that is used to measure calorimetry. It is used to measure the heat of chemical reactions and physical and chemical changes.
Mass is the quantity of matter in a physical body. Volume is the space occupied by a three-dimensional object. Mass is the quantity of matter in a physical body. The product of the compound's molar mass and the substance's moles are defined as mass.
Given, that the volume of the water is 75 mL
The temperature of the water is 25 °C
The density of water is 0.998 g/mL
To calculate the mass, the volume is multiplied by density.
Mass = volume x density
putting the values in the formula
75 x 0.998 = 74.85 grams
Thus, the grams of water that have at 25°C is 74.85 grams.
To learn more about density, refer to the link:
https://brainly.com/question/26304205
#SPJ2
Draw a Lewis structure for thiocyanic acid, HSCN, adding charges and lone electron pairs to the appropriate atoms.
Answer:
See explanation and image attached
Explanation:
Thiocyanic acid is made made up of hydrogen, sulphur, carbon and nitrogen atoms. Carbon is the central atom in the molecule.
The molecule has a total of sixteen valence electrons as shown in the image attached. There are no formal charges in the structure of the molecule as shown.
The molecule is linear in shape.
The Bohr model of the atom explains why emission spectra are discrete. It could also be used to explain the photoelectric effect. Which is a correct explaination of the photoelectric effect according to the model
Answer:
photoelectric effect, phenomenon in which electrically charged particles are released from or within a material when it absorbs electromagnetic radiation. The effect is often defined as the ejection of electrons from a metal plate when light falls on it.
Explain why ionic compounds have higher boiling points than covalent compounds.
Answer:
because the have stronger electrostatic force
"All plants perform photosynthesis. The cactus on my windowsill is a plant, therefore it must be performing photosynthesis." This statement is an example of:
Group of answer choices
Deductive Reasoning
Logical Fallacy
Inductive Reasoning
Bias
Answer:
Deductive reasoning
When sugar is added to a sugar solution, the sugar dissolves. Which term describes the original sugar solution?
Answer:
the answer is D .................
Which is a property of all bases?
Answer: The property of all bases is that they are substances which neutralizes an acid to form a salt and water only.
Explanation:
A base is also s substance that can accept or combine with a proton; a proton acceptor.
Bases include the oxides, hydroxides and carbonates of metals. These include MgO,Na2O, NaOH,Ca(OH)2. Most metals burn in oxygen to form metallic oxides which are basic. Examples are the MgO and Na2O.
Other properties or characteristics of bases includes:
--> They have a bitter taste.
--> They turn red litmus paper blue.
--> They are soapy to touch.
--> Aqueous solutions of bases are also electrolytes. Bases can be either strong or weak, just as acids can.
Bases (sodium hydroxide) can be used in the preparation of soaps, glass, paper and rayon. While some bases (magnesium hydroxide) can also be used to manufacture toothpaste and laxatives.
I have an unknown volume of gas held at a temperature of 115 K in a container with a pressure of 60atm. If by increasing the temperature to 225 K and decreasing the pressure to 30. atm causes the volume of the gas to be 29 liters, how many liters of gas did I start with?
SHOW YOUR WORK
Explanation:
here is the answer to your question.
A cation is a
negative electrode.
negatively charged ion.
positively charged ion.
positive electrode
Answer:
Each electrode attracts ions that are of the opposite charge. Positively charged ions, or cations, move toward the electron-providing cathode, which is negative; negatively charged ions, or anions, move toward the positive anode.
one mole of a perfect gas at 300K as an initial pressure at 15 atm and is allowed to contract isothermally to a pressure of 1atm. calculate the entropy change from this contraction
Answer:
-46.67 J.
Explanation:
We are given;
Initial Pressure = 15atm = 15 × 10^(3) J
Final pressure = 1atm = 1 × 10^(3) J
Temperature = 300k
The pressures were converted to Joules.
Formula for the entropy change is;
∆S_system = ∆S_surrounding = -(dQ)/T
-(dQ)/T = (-(15 × 10^(3)) - (1 × 10^(3))/300)
= -46.67 J.
An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV at this distance
Answer:
(a) The potential near its surface is 45 * 10^6 V.
(b) The distance from which its center is the potential 1.00 MV is 45 m.
(c) Its energy in MeV when the atom is at the distance found in part b is 132 MeV.
Explanation:
Note: This question is not complete. The complete question is therefore provided before answering the question.
A research Van de Graaff generator has a 2.00-m diameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface?
(b) At what distance from its center is the potential 1.00 MV?
(c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV when the atom is at the distance found in part b?
The explanation of the answer is now provided as follows:
(a) What is the potential near its surface?
Q = Charge on the generator = 5 mC = 5 * 10^(-3)C
r = Sphere radius = 2 / 2 = 1 m
k = Constant of the electric force = 9 * 10^(9) N . m^2 / C^2
Therefore, the electric potential of a point charge can be calculated as follows:
V = kQ / r
V = (9 * 10^9 * 5 * 10^(-3)) / 1 = 45 * 10^6 V
Therefore, the potential near its surface is 45 * 10^6 V.
(b) At what distance from its center is the potential 1.00 MV?
This implies the distance where the potential is 1 MV.
Since the electric potential of a point charge is as follows:
V = kQ / r
Therefore, we can solve for r and estimate it as follows:
R = kQ / V = (9 * 10^9 * 5 * 10^(-3)) / 1 * 10^6 = 45 m
Therefore, the distance from which its center is the potential 1.00 MV is 45 m.
(c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV when the atom is at the distance found in part b?
The link between the potential difference and electrical potential energy can be stated as follows:
ΔV = ΔU / q
Therefore, we have:
ΔU = qΔV = q(Va - Vb) = 3 * (45 – 1) = 132 MeV
Therefore, its energy in MeV when the atom is at the distance found in part b is 132 MeV.
A calorimeter measures the ______ involved in reactions or other processes by measuring the ______ of the materials _____ in the process. The calorimeter is _______ to prevent transfer of heat to outside the device.
Answer:
heat; temperature; surrounding; insulated.
Explanation:
A calorimeter can be defined as a scientific instrument or device designed and developed for measuring the heat involved in reactions or other processes, especially by taking the measurement of the temperature of the materials surrounding the process.
Basically, a calorimeter is insulated using materials with very high level of resistivity so as to prevent heat transfer to the outside of the device (calorimeter). Some of the components that make up a simple calorimeter are thermometer, an interior styrofoam cup, an exterior styrofoam cup, cover, etc.
Additionally, a calorie refers to the amount of heat required to raise the temperature of a gram of water by one degree Celsius (°C).
Liquid ethyl mercaptan, C2H6S, has a density of 0.84 g/mL. Assuming that the combustion of this compound produces only CO2 , H2O, and SO2 , what masses of each of these three products would be produced in the combustion of 3.15 mL of ethyl mercaptan
Answer:
Mass CO2 = 3.75 grams
Mass H2O = 2.30 grams
Mass SO2 = 2.73 grams
Explanation:
Step 1: Data given
Density of Liquid ethyl mercaptan, C2H6S = 0.84 g/mL
Volume of ethyl mercaptan = 3.15 mL
Step 2: The reaction
2C2H6S + 9O2 → 4CO2 + 6H2O + 2SO2
Step 3: Calculate mass of ethyl mercaptan
Mass = Volume * density
Mass ethyl mercaptan = 3.15 mL * 0.84 g/mL
Mass ethyl mercaptan = 2.646 grams
Step 4: Calculate moles ethyl mercaptan
Moles = mass / molar mass
Moles ethyl mercaptan = 2.646 grams / 62.13 g/mol
Moles ethyl mercaptan = 0.04259 moles
Step 5: Calculate moles of other products
For 2 moles ethyl mercaptan we need 9 moles O2 to produce 4 moles CO2, 6 moles H2O and 2 moles SO2
For 0.04259 moles we need 0.1917 moles O2 to produce:
2*0.04259 = 0.08518 moles CO2
3*0.04259 = 0.1278 moles H2O
1*0.04259 = 0.04259 moles SO2
Step 6: Calculate mass produced
Mass = moles * molar mass
Mass CO2 = 0.08518 moles * 44.01 g/mol
Mass CO2 = 3.75 grams
Mass H2O = 0.1278 moles * 18.02 g/mol
Mass H2O = 2.30 grams
Mass SO2 = 0.04259 moles * 64.07 g/mol
Mass SO2 = 2.73 grams