Accurately construct triangle ABC using the information below. AB = 7 cm AC= 4 cm Angle BAC = 80° Measure the size of angle ACB to the nearest degree.​

Answers

Answer 1

To accurately construct triangle ABC using the given information, follow these steps:

Draw a line segment AB of length 7 cm.

Place the compass at point A and draw an arc with a radius of 4 cm, intersecting the line segment AB. Label this intersection point as C.

Without changing the compass width, place the compass at point C and draw another arc intersecting the previous arc. Label this intersection point as D.

Connect points A and D to form the line segment AD.

Using a protractor, measure and draw an angle of 80° at point A, with AD as one of the rays. Label the intersection point of the angle and the line segment AD as B.

Draw the line segments BC and AC to complete the triangle ABC.

To measure the size of angle ACB to the nearest degree, use a protractor and align the baseline of the protractor with the line segment BC. Read the degree measure where the other ray of angle ACB intersects the protractor.

For such more question on segment

https://brainly.com/question/280216

#SPJ8


Related Questions

Find the degree of the polynomial y 52-5z +6-3zº

Answers

The degree of the polynomial y 52-5z +6-3zº is 52.

The polynomial is y⁵² - 5z + 6 - 3z°. Let's simplify the polynomial to identify the degree:

The degree of a polynomial is defined as the highest degree of the term in a polynomial. The degree of a term is defined as the sum of exponents of the variables in that term. Let's look at the given polynomial:y⁵² - 5z + 6 - 3z°There are 4 terms in the polynomial: y⁵², -5z, 6, -3z°

The degree of the first term is 52, the degree of the second term is 1, the degree of the third term is 0, and the degree of the fourth term is 0. So, the degree of the polynomial is 52.

You can learn more about polynomials at: brainly.com/question/11536910

#SPJ11

Describe (in proper form and words) the transformations that have happened to y = √x to turn it into the following equation. y = -√x+4+3

Answers

The given equation y = -√x + 4 + 3 is a transformation of the original equation y = √x. Let's analyze the transformations that have occurred to the original equation.

Reflection: The negative sign in front of the square root function reflects the graph of y = √x across the x-axis. This reflects the values of y.

Vertical Translation: The term "+4" shifts the graph vertically upward by 4 units. This means that every y-value in the transformed equation is 4 units higher than the corresponding y-value in the original equation.

Vertical Translation: The term "+3" further shifts the graph vertically upward by 3 units. This means that every y-value in the transformed equation is an additional 3 units higher than the corresponding y-value in the original equation.

The transformations of reflection, vertical translation, and vertical translation have been applied to the original equation y = √x to obtain the equation y = -√x + 4 + 3.

You can learn more about equation at

https://brainly.com/question/29174899

#SPJ11

Use the method of undetermined coefficients to solve the second order ODE y′'−4y′−12y=10e^−2x ,y(0)=3,y′ (0)=−14

Answers

The final solution to the given ODE with the specified initial conditions is:

[tex]y(x) = 1.25e^(6x) + 1.25e^(-2x) + 0.5e^(-2x).[/tex]

Step 1: Homogeneous Solution

First, let's find the solution to the homogeneous equation by setting the right-hand side to zero: y'' - 4y' - 12y = 0. This is called the complementary equation.

The characteristic equation is obtained by replacing y'' with r^2, y' with r, and y with 1:

[tex]r^2 - 4r - 12 = 0.[/tex]

Solving this quadratic equation, we find two distinct roots: r1 = 6 and r2 = -2.

The homogeneous solution is given by:

[tex]y_h(x) = c1e^(6x) + c2e^(-2x),[/tex]

where c1 and c2 are constants to be determined.

Step 2: Particular Solution

Now, we need to find a particular solution to the non-homogeneous equation[tex]y'' - 4y' - 12y = 10e^(-2x).[/tex] Since the right-hand side is of the form ke^(mx), we assume a particular solution in the form of Ae^(-2x), where A is a constant to be determined.

Differentiating twice, we have:

[tex]y_p'' = 4Ae^(-2x),y_p' = -8Ae^(-2x).[/tex]

Substituting these into the non-homogeneous equation, we get:

4Ae^(-2x) - 4(-8Ae^(-2x)) - 12(Ae^(-2x)) = 10e^(-2x).

Simplifying the equation, we have:

20Ae^(-2x) = 10e^(-2x).

Comparing the coefficients on both sides, we find A = 0.5.

Therefore, the particular solution is:

[tex]y_p(x) = 0.5e^(-2x).[/tex]

Step 3: Complete Solution

The complete solution is obtained by adding the homogeneous and particular solutions:

[tex]y(x) = y_h(x) + y_p(x) = c1e^(6x) + c2e^(-2x) + 0.5e^(-2x).[/tex]

Step 4: Applying Initial Conditions

To determine the values of c1 and c2, we use the initial conditions:

y(0) = 3 and y'(0) = -14.

Substituting these values into the complete solution, we have:

3 = c1 + c2 + 0.5,

-14 = 6c1 - 2c2 - 1.

Solving these simultaneous equations, we find c1 = 1.25 and c2 = 1.25.

Therefore, the final solution to the given ODE with the specified initial conditions is:

[tex]y(x) = 1.25e^(6x) + 1.25e^(-2x) + 0.5e^(-2x).[/tex]

Learn more about the differential equation visitL:

https://brainly.com/question/28099315

#SPJ11

A length of wire is, connected from the top of a 9 m telegraph pole to a point 4 m away from the base, as shown below. Use Pythagoras' theorem to find the length of the wire, r. Give your answer in metres (m) to 1 d.p. r 4m 9m Not drawn accurately​

Answers

The length of the wire, rounded to 1 decimal place, is approximately 9.8 meters (m), using Pythagoras' theorem.

To find the length of the wire, r, we can use Pythagoras' theorem. In this case, the wire forms the hypotenuse of a right-angled triangle, the telegraph pole forms the height, and the distance from the base to the point where the wire is connected forms the base.

Using Pythagoras' theorem, we have:

r² = height² + base²

Plugging in the values given:

r² = 9² + 4²

r² = 81 + 16

r² = 97

To find r, we take the square root of both sides:

r = √97

Calculating the square root of 97, we find:

r ≈ 9.8

Therefore, the length of the wire, rounded to 1 decimal place, is approximately 9.8 meters (m).

Note: The complete question is:

A length of wire is connected from the top of a 9 m telegraph pole to a point 4 m away from the base, as shown below. (The image has been attached.)

Use Pythagoras' theorem to find the length of the wire, r.

Give your answer in meters (m) to 1 d.p.

For more questions on Pythagoras' theorem:

https://brainly.com/question/28981380

#SPJ8

In ΔNOP, � � ‾ NP is extended through point P to point Q, m ∠ � � � = ( 6 � − 15 ) ∘ m∠OPQ=(6x−15) ∘ , m ∠ � � � = ( 2 � + 18 ) ∘ m∠PNO=(2x+18) ∘ , and m ∠ � � � = ( 2 � − 13 ) ∘ m∠NOP=(2x−13) ∘ . What is the value of � ? x?

Answers

answer . step by step explaination

Find the solution of heat equation

du/dt = 9 d^2u/dx^3, such that u (0,t) = u(3,1)=0, u(x,0) = 5sin7πx/3

Answers

Answer:

To find the solution of the heat equation with the given boundary and initial conditions, we can use the method of separation of variables. Let's solve it step by step:

Step 1: Assume a separation of variables solution:

u(x, t) = X(x)T(t)

Step 2: Substitute the assumed solution into the heat equation:

X(x)T'(t) = 9X'''(x)T(t)

Step 3: Divide both sides of the equation by X(x)T(t):

T'(t) / T(t) = 9X'''(x) / X(x)

Step 4: Set both sides of the equation equal to a constant:

(1/T(t)) * T'(t) = (9/X(x)) * X'''(x) = -λ^2

Step 5: Solve the time-dependent equation:

T'(t) / T(t) = -λ^2

The solution to this ordinary differential equation for T(t) is:

T(t) = Ae^(-λ^2t)

Step 6: Solve the space-dependent equation:

X'''(x) = -λ^2X(x)

The general solution to this ordinary differential equation for X(x) is:

X(x) = B1e^(λx) + B2e^(-λx) + B3cos(λx) + B4sin(λx)

Step 7: Apply the boundary condition u(0, t) = 0:

X(0)T(t) = 0

B1 + B2 + B3 = 0

Step 8: Apply the boundary condition u(3, t) = 0:

X(3)T(t) = 0

B1e^(3λ) + B2e^(-3λ) + B3cos(3λ) + B4sin(3λ) = 0

Step 9: Apply the initial condition u(x, 0) = 5sin(7πx/3):

X(x)T(0) = 5sin(7πx/3)

(B1 + B2 + B3) * T(0) = 5sin(7πx/3)

Step 10: Since the boundary conditions lead to B1 + B2 + B3 = 0, we have:

B3 * T(0) = 5sin(7πx/3)

Step 11: Solve for B3 using the initial condition:

B3 = (5sin(7πx/3)) / T(0)

Step 12: Substitute B3 into the general solution for X(x):

X(x) = B1e^(λx) + B2e^(-λx) + (5sin(7πx/3)) / T(0) * sin(λx)

Step 13: Apply the boundary condition u(0, t) = 0:

X(0)T(t) = 0

B1 + B2 = 0

B1 = -B2

Step 14: Substitute B1 = -B2 into the general solution for X(x):

X(x) = -B2e^(λx) + B2e^(-λx) + (5sin(7πx/3)) / T(0) * sin(λx)

Step 15: Substitute T(t) = Ae^(-λ^2t) and simplify the solution:

u(x, t) = X(x)T(t)

u(x, t) = (-B2e^(λx) + B2e^(-λx) + (5sin(7πx

3. Write the following sets by listing their elements. You do not need to show any work. (a) A1 = {x € Z: x² < 3}. (b) A2 = {a € B: 7 ≤ 5a +1 ≤ 20}, where B = {x € Z: |x| < 10}. (c) A3 = {a € R: (x² = phi) V (x² = -x²)}

Answers

Sets by listing their elements:

(a) A1 = {-1, 0, 1}

(b) A2 = {3, 4}

(c) A3 = {R}

(a) A1 = {x € Z: x² < 3}

Finding all the integers (Z) whose square is less than 3. The only integers that satisfy this condition are -1, 0, and 1. Therefore, A1 = {-1, 0, 1}.

(b) A2 = {a € B: 7 ≤ 5a + 1 ≤ 20}, where B = {x € Z: |x| < 10}

Determining the values of B, which consists of integers (Z) whose absolute value is less than 10. Therefore, B = {-9, -8, -7, ..., 8, 9}.

Finding the values of a that satisfy the condition 7 ≤ 5a + 1 ≤ 20.

7 ≤ 5a + 1 ≤ 20

Subtracting 1 from all sides:

6 ≤ 5a ≤ 19

Dividing all sides by 5 (since the coefficient of a is 5):

6/5 ≤ a ≤ 19/5

Considering that 'a' should also be an element of B. So, intersecting the values of 'a' with B. The only integers in B that fall within the range of a are 3 and 4.

A2 = {3, 4}.

(c) A3 = {a € R: (x² = φ) V (x² = -x²)}

A3 is the set of real numbers (R) that satisfy the condition

(x² = φ) V (x² = -x²).

(x² = φ) is the condition where x squared equals zero. This implies that x must be zero.

(x² = -x²) is the condition where x squared equals the negative of x squared. This equation is true for all real numbers.

Combining the two conditions using the "or" operator, any real number can satisfy the given condition.

A3 = R.

Learn more about Sets by listing

brainly.com/question/24462379

#SPJ11

Let A=[ a c ​ b d ​ ] - Calculate the inverse of [ a c ​ b d ​ ]. - Find a formula involving a,b,c and d that represents when the inverse does not exist. - Represent the unit square U as a matrix and multiply by AU=[ 1 2 ​ 2 3 ​ ]U. - What does AU represent and compare the area of AU with the area of the unit square.

Answers

The inverse of the matrix A=[ a c ​ b d ​ ] is A^(-1) = 1/((ad-bc) [ d -c ​ -b a ​ ])

The inverse of the matrix A does not exist if the determinant of A is zero.

AU = [ 1 2 ​ 2 3 ​ ]U represents a transformation of the unit square U by matrix A.

The area of AU is equal to the area of the unit square U.

The inverse of the matrix A=[ a c ​ b d ​ ] can be found by using the formula:

A^(-1) = 1/((ad-bc) [ d -c ​ -b a ​ ])

Therefore,

A^(-1) = 1/((ad-bc) [ d -c ​ -b a ​ ])

= 1/((ad-bc) [ d -c ​ -b a ​ ])

The formula to represent when the inverse does not exist is when the determinant of the matrix is zero. Therefore, if the determinant of matrix A is zero, then the inverse of the matrix does not exist. The formula to find the determinant of A is:

det(A) = ad - bc

If det(A) = 0, then the inverse of the matrix A does not exist.

To represent the unit square U as a matrix, we can use the following matrix:

U = [ 1 0 ​ 0 1 ​ ]

To find AU = [ 1 2 ​ 2 3 ​ ]U, we need to multiply the two matrices as follows:

[ 1 2 ​ 2 3 ​ ] [ 1 0 ​ 0 1 ​ ] = [ 1 2 ​ 2 3 ​ ]

Therefore, AU = [ 1 2 ​ 2 3 ​ ]U represents a transformation of the unit square U by matrix A.

The area of AU can be found by taking the determinant of the matrix [ 1 2 ​ 2 3 ​ ], which is equal to 1. Therefore, the area of AU is equal to 1 times the area of the unit square U, which means that the two areas are equal.

Learn more about inverse of the matrix: https://brainly.com/question/12442362

#SPJ11

Let A = find A x B {3, 5, 7} B = {x, y} Define relation p on {1,2,3,4} by p = {(a, b) : a + b > 5}. Find the adjacency matrix for this relation. The following relation r is on {0, 2, 4, 8}. Let r be the relation xry iff y=x/2. List all elements in r. The following relations are on {1,3,5,7}. Let r be the relation xry iff y=x+2 and s the relation xsy iff y 3}. Is p symmetric? Determine if proposition is true or false: - 2/3 € Z or — 2/3 € Q.1 Given the prepositions: p: It is quiet q: We are in the library Find an English sentence corresponding to p^ q

Answers

The corresponding English sentence for p^q is "It is quiet and we are in the library."

1. A x B:

A = {3, 5, 7}

B = {x, y}

A x B = {(3, x), (3, y), (5, x), (5, y), (7, x), (7, y)}

2. Relation p:

p = {(a, b) : a + b > 5}

The elements in relation p are:

{(3, 4), (3, 5), (3, 6), (3, 7), (4, 3), (4, 4), (4, 5), (4, 6), (4, 7), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6), (5, 7), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6), (6, 7), (7, 1), (7, 2), (7, 3), (7, 4), (7, 5), (7, 6), (7, 7)}

3. Adjacency matrix for relation p:

The adjacency matrix for relation p on {1, 2, 3, 4} is:

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

4.Relation r:

r is the relation xry iff y = x/2.

The elements in relation r are:

{(0, 0), (2, 1), (4, 2), (8, 4)}

5. Proposition p: It is quiet

q: We are in the library

The English equivalent for pq is "It is quiet and we are in the library."

Learn more about  Adjacency matrix

https://brainly.com/question/33168421

#SPJ11


Two different businesses model, their profits, over 15 years, where X is the year, f(x) is the profits of a garden shop, and g(x) is the prophets of a construction materials business. Use the data to determine which functions is exponential, and use the table to justify your answer.

Answers

Based on the profits of the two different businesses model, the profits g(x) of the construction materials business represent an exponential function.

What is an exponential function?

In Mathematics and Geometry, an exponential function can be represented by using this mathematical equation:

[tex]f(x) = a(b)^x[/tex]

Where:

a represents the initial value or y-intercept.x represents x-variable.b represents the rate of change, common ratio, decay rate, or growth rate.

In order to determine if f(x) or g(x) is an exponential function, we would have to determine their common ratio as follows;

Common ratio, b, of f(x) = a₂/a₁ = a₃/a₂

Common ratio, b, of f(x) = 19396.20/14170.20 = 24622.20/19396.20

Common ratio, b, of f(x) = 1.37 = 1.27 (it is not an exponential function).

Common ratio, b, of g(x) = a₂/a₁ = a₃/a₂

Common ratio, b, of g(x) = 16174.82/11008.31 = 23766.11/16174.82

Common ratio, b, of g(x) = 1.47 = 1.47 (it is an exponential function).

Read more on exponential functions here: brainly.com/question/28246301

#SPJ1

A plane flies 452 miles north and
then 767 miles west.
What is the direction of the
plane's resultant vector?
Hint: Draw a vector diagram.
Ө 0 = [ ? ]°
Round your answer to the nearest hundredth.

Answers

Answer:

149.49° (nearest hundredth)

Step-by-step explanation:

To calculate the direction of the plane's resultant vector, we can draw a vector diagram (see attachment).

The starting point of the plane is the origin (0, 0).Given the plane flies 452 miles north, draw a vector from the origin north along the y-axis and label it 452 miles.As the plane then flies 767 miles west, draw a vector from the terminal point of the previous vector in the west direction (to the left) and label it 767 miles.

Since the two vectors form a right angle, we can use the tangent trigonometric ratio.

[tex]\boxed{\begin{minipage}{7 cm}\underline{Tangent trigonometric ratio} \\\\$ \tan x=\dfrac{O}{A}$\\\\where:\\ \phantom{ww}$\bullet$ $x$ is the angle. \\ \phantom{ww}$\bullet$ $\sf O$ is the side opposite the angle. \\\phantom{ww}$\bullet$ $\sf A$ is the side adjacent the angle.\\\end{minipage}}[/tex]

The resultant vector is in quadrant II, since the plane is travelling north (positive y-direction) and then west (negative x-direction).

As the direction of a resultant vector is measured in an anticlockwise direction from the positive x-axis, we need to add 90° to the angle found using the tan ratio.

The angle between the y-axis and the resultant vector can be found using tan x = 767 / 452. Therefore, the expression for the direction of the resultant vector θ is:

[tex]\theta=90^{\circ}+\arctan \left(\dfrac{767}{452}\right)[/tex]

[tex]\theta=90^{\circ}+59.4887724...^{\circ}[/tex]

[tex]\theta=149.49^{\circ}\; \sf (nearest\;hundredth)[/tex]

Therefore, the direction of the plane's resultant vector is approximately 149.49° (measured anticlockwise from the positive x-axis).

This can also be expressed as N 59.49° W.

I need help with this question

Answers

Answer:

Radius is [tex]r\approx4.622\,\text{ft}[/tex]

Step-by-step explanation:

[tex]V=\pi r^2h\\34=\pi r^2(5)\\\frac{34}{5\pi}=r^2\\r=\sqrt{\frac{34}{5\pi}}\\r\approx4.622\,\text{ft}[/tex]

E= (1-5) F= (2,4) find each vector in component form

Answers

The vector E in component form is (-4, -1), and the vector F in component form is (2, 4).

To find the vector E in component form, we need to subtract the coordinates of point F from the coordinates of point E.

1. Subtract the x-coordinates: 1 - 5 = -4.

2. Subtract the y-coordinates: 5 - 4 = 1.

Therefore, the vector E in component form is (-4, 1).

To find the vector F in component form, we simply take the coordinates of point F.

The x-coordinate of point F is 2.

The y-coordinate of point F is 4.

Therefore, the vector F in component form is (2, 4).

For more such questions on vector, click on:

https://brainly.com/question/15519257

#SPJ8

in study by Newell and Simon, the parts were presented with a chessboard with some chess figures on. In some cases, the position of the figures was replicating a peston tom an actual game ether cases the figures were placed randomly. The task was to rumenber and recreate the position on an empty board Nosice and expert chess players participated in the stury What of the paltem of rout
The novices remembered more figure positions in the random boards
The novices and the experts remembered an equal number of figure postions all the time
The experts rennbaret mere figure positions from the game than the novices, but the performance on the random boards was the same
The experts remembered more figures on both game and random boards

Answers

Based on the study by Newell and Simon, the experts remembered more figures on both game and random boards compared to novices.

The performance of experts was superior in recalling figure positions from the game, while their performance on random boards was equally as good. This suggests that their expertise in chess allowed them to have a better memory and recall of specific figure positions. On the other hand, novices remembered more figure positions in the random boards, indicating that their memory was more influenced by randomness rather than specific patterns or strategies observed in the game. Therefore, the experts' superior memory for figure positions in both game and random scenarios highlights their higher level of expertise and understanding in chess.

Know  more about Newell and Simon here:

https://brainly.com/question/32345939

#SPJ11

pls help asap if you can!!!!!!

Answers

Answer:

SSS, because a segment is congruent to itself.

Suppose
C= [ 1 5
2 11]
D= [4 0
0 1]
If A= CDC-1, use diagonalization to compute A6.
[___]

Answers

The answer is A6 = [(3/2)(11+√35)^6 + (3/2)(11-√35)^6 ...] [... (3/10)(11+√35)^6 + (3/10)(11-√35)^6], if A= CDC-1 and using diagonalization to compute A6.

To compute A6, we first need to diagonalize the matrix C. The eigenvalues of C can be found by solving the characteristic equation det(C - λI) = 0:

|1-λ 5|

|2 11-λ| = (1-λ)(11-λ) - 10 = λ^2 - 12λ + 1 = 0

Solving for λ, we get λ = 6 ± √35. The corresponding eigenvectors can be found by solving the system (C - λI)x = 0:

For λ = 6 + √35, we have:

|-5-√35 5| |2 -√35-5| x = 0

Solving this system, we get x1 = [1, (5+√35)/2] and for λ = 6 - √35, we have:

|-5+√35 5| |2 -√35+5| x = 0

Solving this system, we get x2 = [1, (5-√35)/2].

D = [4 0 0 1]

And the inverse of C as follows:

C^-1 = (1/10) [-11+√35 -5 -2 1]

We can now compute A as follows:

A = CDC^-1

A = [1 (5+√35)/2] [4(-11+√35)/10 -4/10

0(11-√35)/10 1/10] [(1/10)(-11+√35) -(5/10)

(-2/10) 1/10]

A = [(-11+√35)/5 (5-√35)/5]

[(-2+√35)/5 (5+√35)/5]

To compute A6, we can diagonalize A as follows:

A = PDP^-1

Where P is the matrix of eigenvectors and D is the diagonal matrix of eigenvalues. The eigenvalues of A are the same as the eigenvalues of C, so we have:

D = [6+√35 0 0 6-√35]

And the eigenvectors can be found by solving the system (A - λI)x = 0:

For λ = 6 + √35, we have:

|-(11+√35) (5-√35)|

|-(2+√35) (5-√35)| x = 0

Solving this system, we get x1 = [(5-√35)/(2+√35), 1] and for λ = 6 - √35, we have:

|-(11-√35) (5+√35)|

|-(2-√35) (5+√35)| x = 0

Solving this system, we get x2 = [(5+√35)/(2-√35), 1].

P = [(5-√35)/(2+√35) (5+√35)/(2-√35) 1 1]

And the inverse of P as follows:

P^-1 = [(5-√35)/(10-2√35) -(5+√35)/(10-2√35) -1/5 1/5]

We can now compute A6 as follows:

A6 = PD6P^-1

A6 = [P 0] [D^6 0] [0 P] [0 D^6] [P^-1 0]

A6 = [(5-√35)/(2+√35) (5+√35)/(2-√35)] [((6+√35)^6) 0 1 ((6-√35)^6)] [(5 √35)/(10-2√35) -(5+√35)/(10-2√35) -1/5 1/5]

A6 = [((6+√35)^6)(5-√35)/(2+√35) + ((6-√35)^6)(5+√35)/(2-√35) ...]

[... ((6+√35)^6)/5 + ((6-√35)^6)/5]

Simplifying this expression, we get :

A6 = [(3/2)(11+√35)^6 + (3/2)(11-√35)^6 ...]

[... (3/10)(11+√35)^6 + (3/10)(11-√35)^6]

To know more about eigenvectors  refer here:

https://brainly.com/question/32593196#

#SPJ11

Convert the following base-ten numerals to a numeral in the indicated bases. a. 481 in base five b. 4251 in base twelve c. 27 in base three a. 481 in base five is five

Answers

A. The numeral 481 in base five is written as 2011.

B. To convert the base-ten numeral 481 to base five, we need to divide it by powers of five and determine the corresponding digits in the base-five system.

Step 1: Divide 481 by 5 and note the quotient and remainder.

481 ÷ 5 = 96 with a remainder of 1. Write down the remainder, which is the least significant digit.

Step 2: Divide the quotient (96) obtained in the previous step by 5.

96 ÷ 5 = 19 with a remainder of 1. Write down this remainder.

Step 3: Divide the new quotient (19) by 5.

19 ÷ 5 = 3 with a remainder of 4. Write down this remainder.

Step 4: Divide the new quotient (3) by 5.

3 ÷ 5 = 0 with a remainder of 3. Write down this remainder.

Now, we have obtained the remainder in reverse order: 3141.

Hence, the numeral 481 in base five is represented as 113.

Note: The explanation assumes that the numeral in the indicated bases is meant to be the answer for part (a) only.

Learn more about base-ten numerals:

brainly.com/question/24020782

#SPJ11

Perform the exponentiation by hand. Then use a calculator to check your work. 3^4
3^4 = ___

Answers

The result of performing the exponentiation [tex]3^4[/tex]is 81.

To perform the exponentiation [tex]3^4[/tex] by hand, we need to multiply the base, which is 3, by itself four times. Let's go step by step:

1. Start with the base, which is 3.

2. Multiply 3 by itself: 3 × 3 = 9.

3. Multiply the result by 3 again: 9 × 3 = 27.

4. Finally, multiply 27 by 3 one more time: 27 × 3 = 81.

So, [tex]3^4[/tex] is equal to 81.

Using a calculator to verify our result, we can input [tex]3^4[/tex], and it will give us the answer, which is also 81. This confirms that our manual calculation is correct.

Exponentiation is a mathematical operation that represents repeated multiplication of a number by itself. In this case, raising 3 to the power of 4 means multiplying 3 by itself four times. The result, 81, demonstrates the exponential growth of the base number 3.

By performing the exponentiation by hand and checking with a calculator, we can ensure the accuracy of our calculation and gain a better understanding of the concept of exponentiation.

Learn more about exponentiation and its properties visit:

https://brainly.com/question/13669161

#SPJ11

Hannah earns $10.25
an hour,H at her job at Target. She spends $4
each day on gas getting to and from work. Write an algebraic expression to represent the total amount of money she will bring home each day?

Answers

115 dollars

Step-by-step explanation:

assuming that a day is 12 hours she earns 123 dollars she usually uses 4 from work and back which is 8 dollars do 123 - 8 = 115

Alright! Let's break down the problem into simpler parts.

1. Hannah earns $10.25 for every hour she works.

2. She spends $4 on gas each day to get to and from work.

Now, let's use a letter to represent something we don't know. Let's use the letter 'H' to represent the number of hours Hannah works in a day.

So, the money Hannah earns in a day by working 'H' hours is:

Money earned = Hourly wage × Number of hours

              = $10.25 × H

              = 10.25H  (this means 10.25 times H)

Now, she spends $4 on gas each day, so we need to subtract this from the money she earns.

Total money she brings home in a day = Money earned - Money spent on gas

                                      = 10.25H - $4

                                      = 10.25H - 4

That's our algebraic expression!

In simple words, to find out how much money Hannah brings home in a day, you multiply the number of hours she works by $10.25 and then subtract $4 for the gas.

For example, if Hannah works for 8 hours in one day, you would plug 8 in place of 'H' in the expression:

= 10.25 × 8 - 4

= $82 - $4

= $78

So, Hannah would bring home $78 that day.

Can anyone help please

Answers

Answer:

The closest option from the given choices is option a) $84,000.

Step-by-step explanation:

Sales revenue: $100,000

Expenses: $10,000 (wages) + $3,000 (advertising) + $1,000 (dividends) + $3,000 (insurance) = $17,000

Profit = Sales revenue - Expenses

Profit = $100,000 - $17,000

Profit = $83,000

Therefore, the company made a profit of $83,000.

IV D5W/NS with 20 mEq KCL 1,000 mL/8 hr
Allopurinol 200 mg PO tid
Fortaz 1 g IV q6h
Aztreonam (Azactam) 2 g IV q12h
Flagyl 500 mg IV q8h
Acetaminophen two tablets q4h prn
A.Calculate mL/hr to set the IV pump.
B. Calculate how many tablets of allopurinol will be given PO. Supply: 100 mg/tablet.
C. Calculate how many mL/hr to set the IV pump to infuse Fortaz. Supply: 1-g vial to be diluted 10 mL of sterile water and further diluted in 50 mL NS to infuse over 30 minutes.
D. Calculate how many mL of aztreonam to draw from the vial. Supply: 2-g vial to be diluted with 10 mL of sterile water and further diluted in 100 mL NS to Infuse over 60 minutes.
E. Calculate how many mL/hr to set the IV pump to infuse Flagyl. Supply: 500 mg/100 mL to infuse over 1 hour.

Answers

A. The IV pump should be set at mL/hr.

B. The number of tablets of allopurinol to be given PO is tablets.

C. The IV pump should be set at mL/hr to infuse Fortaz.

D. The amount of aztreonam to draw from the vial is mL.

E. The IV pump should be set at mL/hr to infuse Flagyl.

Step 1: In order to calculate the required values, we need to consider the given information and perform the necessary calculations.

A. To calculate the mL/hr to set the IV pump, we need to know the volume (mL) and the time (hr) over which the IV solution is to be administered.

B. To determine the number of tablets of allopurinol to be given orally (PO), we need to know the dosage strength (100 mg/tablet) and the frequency of administration (tid).

C. To calculate the mL/hr to set the IV pump for Fortaz, we need to consider the volume of the solution, the dilution process, and the infusion time.

D. To determine the mL of aztreonam to draw from the vial, we need to consider the volume of the solution, the dilution process, and the infusion time.

E. To calculate the mL/hr to set the IV pump for Flagyl, we need to know the concentration (500 mg/100 mL) and the infusion time.

Step 2: By using the given information and performing the necessary calculations, we can determine the specific values for each question:

A. The mL/hr to set the IV pump will depend on the infusion rate specified in the order for D5W/NS with 20 mEq KCL. This information is not provided in the question.

B. To calculate the number of tablets of allopurinol, we multiply the dosage strength (100 mg/tablet) by the frequency of administration (tid, meaning three times a day).

C. To calculate the mL/hr to set the IV pump for Fortaz, we consider the dilution process and infusion time provided in the question.

D. To determine the mL of aztreonam to draw from the vial, we consider the dilution process and infusion time specified in the question.

E. To calculate the mL/hr to set the IV pump for Flagyl, we consider the concentration (500 mg/100 mL) and the infusion time specified in the question.

Please note that specific numerical values cannot be determined without the additional information needed for calculations.

Learn more about Number

brainly.com/question/3589540

#SPJ11

A point P lies in a plane and is a distance of r = 37 units from the origin of a Cartesian coordinate system. If the line joining the point and the origin makes an angle of = 350 degrees with respect to the x-axis, what are the (x, y) coordinates of the point P?

Answers

The (x, y) coordinates of point P are approximately (31.19, 20.67).

It is stated that the point P lies at a distance of r = 37 units from the origin and forms an angle of θ = 35° with respect to the x-axis, we can use trigonometry to find the x and y coordinates.

Using the trigonometric definitions, we have,

x = r * cos(θ) = 37 * cos(35°) ≈ 31.19

y = r * sin(θ) = 37 * sin(35°) ≈ 20.67

Therefore, the approximate (x, y) coordinates of point P are (31.19, 20.67). The coordinates (31.19, 20.67) represent the position of point P in the Cartesian coordinate system based on the given distance and angle measurements.

To know more about Cartesian coordinate system, visit,

https://brainly.com/question/4726772

#SPJ4

Complete question - A point P lies in a plane and is a distance of r = 37 units from the origin of a Cartesian coordinate system. If the line joining the point and the origin makes an angle of = 35° degrees with respect to the x-axis, what are the (x, y) coordinates of the point P?

To explore if there is an association between gender and soda preference for Math 247 students, a researcher collected a random sample 200 Math 247 students and asked each student to identify their gender and soda preference: No Soda, Regular Soda, or Diet Soda. The two-way table summarizes the data for the sample: Gender and Soda Preference Diet No Regular Soda Soda Male 30 67 32 Female 20 24 27 At the 5% significance level, test the claim that there is an association between a student's gender and soda preference. A. State the null and alternative hypothesis. B. Paste your StatCrunch output table results. C. Is the Chi-Square condition met? why or why not? D. State the P-value. E. State your conclusion. Soda

Answers

A. Null hypothesis (H0): There is no association between a student's gender and soda preference. Alternative hypothesis (H1):

B. The StatCrunch output table results are not available for me to paste here.

C. The Chi-Square condition is met if the expected frequency for each cell is at least 5.

D. The P-value represents the probability of observing the data or more extreme data, assuming the null hypothesis is true.

E. Based on the available information, we cannot provide a specific conclusion without the actual values or the StatCrunch output.

There is an association between a student's gender and soda preference.

B. The StatCrunch output table results are not available for me to paste here. C. The Chi-Square condition is met if the expected frequency for each cell is at least 5. To determine this, we need to calculate the expected frequencies for each cell based on the null hypothesis and check if they meet the condition. Without the actual values or the StatCrunch output, we cannot determine if the Chi-Square condition is met. D. The P-value represents the probability of observing the data or more extreme data, assuming the null hypothesis is true. Without the actual values or the StatCrunch output, we cannot determine the P-value.

E. Based on the available information, we cannot provide a specific conclusion without the actual values or the StatCrunch output. The conclusion would be based on the P-value obtained from the Chi-Square test. If the P-value is less than the chosen significance level of 0.05, we would reject the null hypothesis and conclude that there is evidence of an association between a student's gender and soda preference. If the P-value is greater than or equal to 0.05, we would fail to reject the null hypothesis and conclude that there is insufficient evidence to suggest an association between gender and soda preference.

Learn more about hypothesis here

https://brainly.com/question/29576929

#SPJ11

Write the equiton of a line perpendiclar to the line y=-6 and passes through to the point(3,7)

Answers

The equation of the line perpendicular to y = -6 and passing through the point (3, 7) is x = 3.

To find the equation of a line perpendicular to y = -6 and passing through the point (3, 7), we can first determine the slope of the given line. Since y = -6 is a horizontal line, its slope is 0.

A line perpendicular to a horizontal line will be a vertical line with an undefined slope. Thus, the equation of the perpendicular line passing through (3, 7) will be x = 3.

Therefore, the equation of the line perpendicular to y = -6 and passing through the point (3, 7) is x = 3.

Learn more about perpendicular here:

https://brainly.com/question/18271653

#SPJ11



Perform the indicated operation.

2/3-3/7

Answers

To perform the indicated operation of subtracting 2/3 from 3/7, we need to find a common denominator for the fractions. The least common multiple (LCM) of 3 and 7 is 21.

Let's convert both fractions to have a denominator of 21:

(2/3) * (7/7) = 14/21

(3/7) * (3/3) = 9/21

Now that both fractions have the same denominator, we can subtract them:

(14/21) - (9/21) = (14 - 9) / 21 = 5/21

Therefore, the result of subtracting 2/3 from 3/7 is 5/21.

Learn more about indicated operation here:

brainly.com/question/12545187

#SPJ11

Two bacteria cultures are being studied in a lab. At the start, bacteria A had a population of 60 bacteria and the number of bacteria was tripling every 8 days. Bacteria B had a population of 30 bacteria and was doubling every 5 days. Determine the number of days it will take for both bacteria cultures to have the same population. Show all work for full marks and round your answer to 2 decimal places if necessary. [7]

Answers

Two bacteria cultures are being studied in a lab. The initial population of bacteria A is 60, and it triples every 8 days. The initial population of bacteria B is 30, and it doubles every 5 days.


Let's start by finding the population of bacteria A at any given day. We can use the formula:

Population of bacteria A = Initial population of bacteria A * (growth factor)^(number of periods)

Here, the growth factor is 3 since the population triples every 8 days.

Now, let's find the population of bacteria B at any given day. We can use the same formula:

Population of bacteria B = Initial population of bacteria B * (growth factor)^(number of periods)

Here, the growth factor is 2 since the population doubles every 5 days.

To find the number of days it will take for both bacteria cultures to have the same population, we need to solve the following equation:

Initial population of bacteria A * (growth factor of bacteria A)^(number of periods) = Initial population of bacteria B * (growth factor of bacteria B)^(number of periods)

Substituting the given values:

60 * 3^(number of periods) = 30 * 2^(number of periods)

Now, let's solve this equation to find the number of periods, which represents the number of days it will take for both bacteria cultures to have the same population.

To make the calculation easier, let's take the logarithm of both sides of the equation. Using the property of logarithms, we can rewrite the equation as:

log(60) + number of periods * log(3) = log(30) + number of periods * log(2)

Now, we can isolate the number of periods by subtracting number of periods * log(2) from both sides of the equation:

log(60) - log(30) = number of periods * log(3) - number of periods * log(2)

Simplifying further:

log(60/30) = number of periods * (log(3) - log(2))

log(2) = number of periods * (log(3) - log(2))

Now, we can solve for number of periods by dividing both sides of the equation by (log(3) - log(2)):

number of periods = log(2) / (log(3) - log(2))

Using a calculator, we can calculate the value of number of periods, which represents the number of days it will take for both bacteria cultures to have the same population.

Finally, rounding the answer to 2 decimal places if necessary, we have determined the number of days it will take for both bacteria cultures to have the same population.

To know more about "Population":

https://brainly.com/question/28103278

#SPJ11

(1) Consider the IVP S 3.x² Y = -1 y (y(1) (a) Find the general solution to the ODE in this problem, leaving it in implicit form like we did in class. (b) Use the initial data in the IVP to find a particular solution. This time, write your particular solution in explicit form like we did in class as y some function of x. (c) What is the largest open interval containing the initial data (o solution exists and is unique? = 1) where your particular

Answers

(a) The general solution to the ODE is S * y = -x + C.

(b) The particular solution is y = -(1/S) * x + (1 + 1/S).

(c) The solution exists and is unique for all x as long as S is a non-zero constant.

(a) To find the general solution to the given initial value problem (IVP), we need to solve the ordinary differential equation (ODE) and express the solution in implicit form.

The ODE is:

S * 3x^2 * dy/dx = -1

To solve the ODE, we can separate the variables and integrate:

S * 3x^2 * dy = -dx

Integrating both sides:

∫ (S * 3x^2 * dy) = ∫ (-dx)

S * ∫ 3x^2 * dy = ∫ -dx

S * y = -x + C

Here, C is the constant of integration.

Therefore, the general solution to the ODE is:

S * y = -x + C

(b) Now, let's use the initial data in the IVP to find a particular solution.

The initial data is y(1) = 1.

Substituting x = 1 and y = 1 into the general solution:

S * 1 = -1 + C

Simplifying:

S = -1 + C

Solving for C, we have:

C = S + 1

Substituting the value of C back into the general solution, we get the particular solution:

S * y = -x + (S + 1)

Simplifying further:

y = -(1/S) * x + (1 + 1/S)

Therefore, the particular solution, written in explicit form, is:

y = -(1/S) * x + (1 + 1/S)

(c) The largest open interval containing the initial data (where a solution exists and is unique) depends on the specific value of S. Without knowing the value of S, we cannot determine the exact interval. However, as long as S is a non-zero constant, the solution is valid for all x.

Learn more about general solution

https://brainly.com/question/32062078

#SPJ11

A fuel refiner wants to know the demand for a grade of gasoline as a function of price. The table shows daily sales y (in gallons) for three different prices.
Price, x $3.50 $3.75 $4.00
Demand, y 4400 3650 3200
(a) Find the least squares regression line for these data.
(b) Estimate the demand when the price is $3.90.
gal

Answers

1.The equation of the least squares regression line is y=745.0195 - 93.10345x, b) The demand when the price is $3.90 is estimated to be 3745.7202 gallons.

a.)The given table shows daily sales y (in gallons) for three different prices:

Price, x $3.50 $3.75 $4.00Demand, y 4400 3650 3200The formula for the least square regression line is given as: y=a+bx Where a is the y-intercept and b is the slope.

For computing the equation of the least square regression line, use the following steps:

1. Calculate the means of X and Y2.

Calculate the deviations of XY3.

Calculate the slope b = ∑xy/∑x²4.

Calculate the y-intercept a = y - bx

Using the above formula, the solution for the given problem is as follows:

1. Calculation of means of X and Y:Mean of x= ∑x/n = (3.50 + 3.75 + 4.00)/3 = 3.75Mean of y= ∑y/n = (4400 + 3650 + 3200)/3 = 3750.002.

Calculation of deviations of XY: The deviation of X from mean= x - x¯

The deviation of Y from mean= y - y¯X = {3.5, 3.75, 4}, Y = {4400, 3650, 3200}So, the deviations of X and Y from their respective means is shown below.

Price, x $3.50 $3.75 $4.00

Demand, y 4400 3650 3200

Deviation of x (x - x¯) -0.25 0 0.25

Deviation of y (y - y¯) 649.998 -99.998 -549.998 X*Y -1624.995 0 -1374.9973.

Calculation of slope b:

The formula to calculate the slope of the least square regression line is given below:

Slope (b) = ∑xy/∑x²= (3.50*(-0.25)*4400 + 3.75*0*3650 + 4*(0.25)*3200)/(3.50² + 3.75² + 4²) = (-2175+0+800)/14.5= -93.10345.

Calculation of the y-intercept a:

The formula to calculate the y-intercept of the least square regression line is given below:

Intercept (a) = y¯ - b*x¯= 3750.002 - (-93.10345)*3.75= 745.0195

b.)Therefore, the equation of the least square regression line is:y = 745.0195 - 93.10345xNow, to estimate the demand when the price is $3.90, substitute the value of x = 3.90

into the above equation and solve for y:y = 745.0195 - 93.10345(3.90)= 3745.7202

Answer: The equation of the least squares regression line is y=745.0195 - 93.10345x and the demand when the price is $3.90 is estimated to be 3745.7202 gallons.

Learn more about least square regression line from the link:

https://brainly.com/question/30634235

#SPJ11



Use the properties of logarithms to simplify and solve each equation. Round to the nearest thousandth.

3 ln x-ln 2=4

Answers

The solution to the equation 3 ln x - ln 2 = 4 is x ≈ 4.937.

To solve the equation 3 ln x - ln 2 = 4, we can use the properties of logarithms.

First, we can combine the two logarithms on the left side using the quotient property of logarithms. According to this property, ln(a) - ln(b) is equal to ln(a/b):

So, we can rewrite the equation as ln(x^3/2) = 4.

Next, we can convert the logarithmic equation into an exponential equation. The exponential form of ln(x) = y is e^y = x, where, e is the base of the natural logarithm.

Applying this to our equation, we get e^4 = x^3/2.

To isolate x, we can multiply both sides of the equation by 2 and then take the square root of both sides.

2 * e^4 = x^3
x = (2 * e^4)^(1/3)

Rounding to the nearest thousandth, x ≈ 4.937.

Learn more about logarithm from the given link!

https://brainly.com/question/31525992

#SPJ11


For a geometric sequence with first term \( =2 \), common ratio \( =-2 \), find the 9 th term. A. \( -512 \) B. 512 C. \( -1024 \) D. 1024

Answers

Answer:

-512

Step-by-step explanation:

9th term equals ar⁸

2 x (-2⁸)

answer -512

The ninth term of the given geometric sequence is -512, which corresponds to option A.

A geometric sequence is characterized by a common ratio between consecutive terms. The general term of a geometric sequence with the first term 'a' and common ratio 'r' is given by the formula:

an = a × rn-1

Given a geometric sequence with a first term of 'a = 2' and a common ratio of 'r = -2', we can find the ninth term using the general term formula.

Substituting 'a = 2' and 'r = -2' into the formula, we have:

an = 2 × (-2)n-1

Simplifying this expression, we obtain:

an = -2n

To find the ninth term, we substitute 'n = 9' into the formula:

a9 = -29

Evaluating this expression, we get:

a9 = -512

Therefore, Option A is represented by the ninth term in the above geometric sequence, which is -512.

Learn more about the geometric sequence

https://brainly.com/question/27852674

#SPJ11

Other Questions
Which set of ordered pairs represents a function?O {(6,-8), (2,-2), (6, -1), (8, -7)}O {(-7,-8), (-3,9), (7,4), (-1,4)}O {(1, -2), (-6, 2), (5,0), (1,6)}{(3,8), (3, 6), (8,-6), (1, -7)}Submit Answer For Christians, Jesus marked: (select all that apply) O proof that we will get justice and peace one day O the beginning of the Kingdom of God O awareness that God did not promise us forgiveness or peace O the beginning of the end Jesus taught that God's Kingdom would belong to: O God's chosen people O The wealthy and powerful O All humans O Monks, nuns, and clergymen O The poor and meek 3d. Which of the following is considered the gold standard for malarial diagnosis?A. Thin films (at pH 7.2) and thick filmsB. Immunochromatography ICT tests C. Molecular Studies Wright stained blood films (pH: 6.8) D. Haemoglobin EPG E. Thin films (at pH 6.8) and thick films Discuss the level of involvement in a purchase situation that affects the central processing versus the peripheral processing. Suggest the different ways in which Dells computer advertising message would differ due to the different routes of information processing. Step 1 Read the case to formulate a priority nursing diagnosisStep 2 Describe why you chose that diagnosis you did and the reason behind it (include cluster data support, method of prioritization, and Maslow hierarchy)Mrs. K is a 68-year-old woman who presented to the emergency department with shortness of breath. She is unable to walk to her mailbox without becoming very winded.Her assessment is as follows:Neuro: A&O x 4, anxiousCardiac: HR 105 bpm, bounding pulse, jugular venous distention (JVD),Respiratory: crackles, dry cough, dyspnea on exertion (DOE)GI: BS normoactive in all 4 quadrants, LBM yesterdayGU: decreased urine outputPeripheral/neurovascular: +3 pitting edema in bilateral lower extremitiesVitals:T: 98.2 OralHR: 105 bpm apicallyRR: 24POX: 87% on RA, 93% on 2LPM nasal cannulaBP: 143/89 left armWeight: 185 lb (last visit to PCP in September she was 176 lb)Labs:Na: 130 mEq/LK: 3.6 mEq/LMg: 2.2 mEq/LCl: 100 mEq/LCa: 8.6 mEq/LShe was diagnosed with heart failure and admitted to the med/Surg unit. Determine the total impedance, phase angle, and rms current in anLRC circuitDetermine the total impedance, phase angle, and rms current in an LRC circuit connected to a 10.0 kHz, 880 V (rms) source if L = 21.8 mH, R = 7.50 kn, and C= 6350 pF. NII Z | Submit Request In 200 Words , Provide five examples of characteristics ofeffective health education curricula. A ball is thrown from the edge of the top of a building with an initial velocity of 82.3 km/hr at an angle of 52.7 degree above the horizontal. The ball hits the ground a horizontal distance of 106 m from the base of the building. Assume that the ground is leveland that the side of the building is vertical. Calculate the height of the building. Use the information to answer the following questions. A companyis analyzing an independent project, S, whose cash flows are shownbelow:Year 0Year 1Year 2Year 3Year 4Cashflow-100604 Your Company decides to clean up its books at the end of the year. You collect $5,000 in receivables and use all of it to pay down $5,000 in payables due to your vendors. What is the effect on the current ratio and on working capital?A) Current Ratio increases, working capital decreases by $5000.B) Current Ratio decreases, working capital increases by $5000.C) Current Ratio remains the same, working capital increases by $5000.D) Current Ratio remains the same, working capital decreases by $5000 Consider the market for foreign holidays pre-COVID 19. Outline the main factors that would shift the demand and supply curves in this market and the factors that would affect the shape of the curv Tour based on 25 paying passengersPer tour fixed costs are $7000.00Per person variable costs are $200.00/ per personOperator Mark Up is $50.00 per personCALCULATE REVENUE & PROFITPer person Establishing preauthorized payments for fixed payments fromcustomers should help reduce the total collection time for yourfirm.TrueFalse Ideal family explanation Many governments have increased their spending on police and armed forces but there is an opportunity cost of this policy A. Explain the term opportunity cost and discuss why an increase in spending on police and armed forces may result in an opportunity cost b. Explain the law of variable proportion C. explain the term integration and write briefly on Horizontal, vertical and lateral integration. Question 1 20 Marks A single-effect continuous evaporator is used to concentrate a fruit juice from 15 to 40 wt%. The juice is fed at 25 C, at a rate of 1.5 kg/s. The evaporator is operated at reduced pressure, corresponding to a boiling temperature of 65 C. Heating is by saturated steam at 128 C, totally condensing inside a heating coil. The condensate exits at 128 C. Heat losses are estimated to amount of 2% of the energy supplied by the steam. Given: h = 4.187(1 -0.7X)T Where: h is the enthalpy in kJ/kg, X=solid weight fraction, Tis temperature in C. Assuming no boiling point rise while both hp and h, are considered within the energy balance, evaluate: (a) required evaporation capacity in kg/s, [5 Marks) (b) enthalpy of feed in kJ/kg, [5 Marks] (c) steam consumption in kg/s, and [5 Marks) (d) steam economy. [5 Marks) A question about game theoryGrade Gambles: Two students, 1 and 2, took a course with a professor whodecided to allocate grades as follows: Two envelopes will each include a gradegi {A, B, C, D, F}, where each of the five options is chosen with equalprobability and the draws for each student i {1, 2} are independent. Thepayoffs of each grade are 4, 3, 2, 1, and 0, respectively. Assume that the gameis played as follows: Each student receives his envelope, opens it, and observeshis grade. Then each student simultaneously decides if he wants to hold on tohis grade (H) or exchange it with the other student (X). Exchange happensif and only if both choose to exchange. If an exchange does not happen theneach student gets his assigned grade. If an exchange does happen then thegrades are bumped up by one. That is, if student 1 had an initial grade of Cand student 2 had an initial grade of D, then after the exchange student 1 willget a C (which was student 2s D) and student 2 will get a B (which wasstudent 1s C). A grade of A is bumped up to an A+, which is worth 5. a. Assume that student 2 plays the following strategy: "I offer to ex-change for every grade I get. " What is the best response of student 1?b. Define a weak exchange Bayesian Nash equilibrium (WEBNE) as aBayesian Nash equilibrium in which each student i choosessi(gi) = XwheneverE[vi(X, si(gi), gi|gi)] E[vi(H, si(gi), gi|gi)]. That is, given his grade gi and his (correct belief about his) opponentsstrategy si, choosing X is as good as or better than H. In particulara WEBNE is a pair of strategies (s1, s2) such that given s2 student 1offers to exchange grades if exchange gives him at least as much asholding, and vice versa. Find all the symmetric (both students use thesame strategy) WEBNE of this game. Are they Pareto ranked?c. Now assume that the professor suggests modifying the game: every-thing works as before, except that the students must decide if theywant to exchange before opening their envelopes. Using equilibriumanalysis, would the students prefer this game or the original one?d. From your conclusion in (c), what can you say about the statement"more information is always better"? The novel may be the best technology we have for transmitting human consciousness. But novels like Leo Tolstoys Anna Karenina dont just give us a window into characters suffering minds. They also turn pain and oppression into beautiful literary prose. How does reading novels affect our understanding of the world we live in and the power dynamics that shape our lives? Question 17The Dietary Reference Intakes (DRI) are sets of nutrient standards used on the United States and CanadaTrueFalseQuestion 18Frequent intake of high fiber diet and exercise are effective ways to prevent constipation.TrueFalse A circular loop of 200 turns and 12 cm in diameter is designed to rotate 90 in 0.2 s. Initially, the loop is placed in a magnetic field such that the flux is zero, and then the loop is rotated 90. If the induced emf in the loop is 0.4 mV, what is the magnitude of the magnetic field?