Answer:
North
Explanation:
Friction is a reaction force against the direction of movement. So since the direction of movement is south the friction would be opposite and move north.
Answer:
South To North
Explanation:
Frictional force acts in the direction opposite to the direction of motion of a body. Because the object is moving from north to south, the direction of frictional force is from south to north
d. On the afternoon of January 15, 1919, an unusually warm day in Boston, a 17.7-m-high, 27.4-m-diameter cylindrical metal tank used for storing molasses ruptured. Molasses flooded into the streets in a 5-m-deep stream, killing pedestrians and horses and knocking down buildings. The molasses had a density of 1600 kg>m3 . If the tank was full before the accident, what was the total outward force the molasses exerted on its sides
Answer:
F = 1.638 x 10⁸ N = 163.8 MN
Explanation:
The total force exerted by the molasses is given as:
F = PA
where,
F = Force exerted by the molasses = ?
P = Pressure = ρgh
ρ = density of molasses = 1600 kg/m³
g = acceleration due to gravity = 9.81 m/s²
h = height of tank = 17.7 m
A = cross-sectional area of tank = πr²
r = radius of tank = 27.4 m/2 = 13.7 m
Therefore,
[tex]F = \rho ghA = \rho gh(\pi r^2)\\\\F = (1600\ kg/m^3)(9.81\ m/s^2)(17.7\ m)(\pi)(13.7\ m)^2[/tex]
F = 1.638 x 10⁸ N = 163.8 MN
A horse gallops a distance of 10 kilometers in a time of 30 minutes its average speed is?
Answer:
20 km/hr
Explanation:
Distance = 10km
Time = 30 minutes = 1/2 hour
Average Speed = Total distance / Total Time Taken
= 10 ÷ 1/2
= 10 x 2
= 20 km/hr
Average speed = (distance covered) / (time to cover the distance)
Average speed = (10 km) / (30 minutes)
Average speed = 1/3 km/min
Most people would probably want to see it in a more convenient, more familiar unit, such as km/hour or m/second.
(10 km / 30 min) x (60 min / hour) = (10 x 60 / 30) (km-min / min-hour)
Average speed = 20 km/hour
AvgSpd = (10 km / 30 min) x (1,000 m / km) x (min / 60 sec)
AvgSpd = (10x1,000 / 30x60) (km-m-min / min-km-sec)
Averge Speed = 5.56 m/s
What is the work done if a Boulder of mass 100 kilogram is rolled 40 meter up slope an angle of 20 degrees assuming the force of friction is negligible
Answer:
The work done is 13680.8 J.
Explanation:
The work done can be calculated as follows:
[tex] W = F*d [/tex]
Where:
F: is the force
d: is the displacement = 40 m
The force acting on the boulder is given by:
[tex] F = mgsin(\theta) [/tex]
Where:
m: is the mass = 100 kg
g: is the acceleration due to gravity = 10 m/s²
θ: is the angle = 20°
Then, the work is:
[tex] W = mgsin(\theta)d = 100 kg*10 m/s^{2}*sin(20)*40 m = 13680.8 J [/tex]
Therefore, the work done is 13680.8 J.
I hope it helps you!
Paauto A: Isulat sa papel ang alpabetong Ingles at bilang I hanggang 10 sa istilong
Roman ng pagleletra.
Answer:
Explanation:
English alphabets numbered fro 1 to 26
and the numbers 1 to10 so they are written in roman numbers as
1 - I
2 - II
3 - III
4 - IV
5 -V
6 - VI
7 -VII
8 - VIII
9 - IX
10 -X
11 - XI
12 - XII
13 - XIII
14 - XIV
15 - XV
16 - XVI
17 - XVII
18 - XVIII
19 - XIX
20- XX
21 - XXI
22 - XXII
23 - XXIII
24 - XXIV
25 - XXV
26 - XXVI
What is significant about the primary colors of pigments?
They can be mixed together to make almost any other color.
Any two primary colors of pigments combine to make white pigment.
Each primary color of pigment absorbs all other colors.
Any two primary colors of pigments combine to make black pigment.
Answer:
They can be mixed together to make almost any other color.
Explanation:
All the three primary colors can mix to form white color.
Blue and red mix to form a black color.
A 0.033-kg bullet is fired vertically at 222 m/s into a 0.15-kg baseball that is initially at rest. How high does the combined bullet and baseball rise after the collision, assuming the bullet embeds itself in the ball
Answer:
The maximum height risen by the bullet-baseball system after the collision is 81.76 m.
Explanation:
Given;
mass of the bullet, m₁ = 0.033 kg
mass of the baseball, m₂ = 0.15 kg
initial velocity of the bullet, u₁ = 222 m/s
initial velocity of the baseball, u₂ = 0
let the common final velocity of the system after collision = v
Apply the principle of conservation of linear momentum to determine the common final velocity.
m₁u₁ + m₂u₂ = v(m₁ + m₂)
0.033 x 222 + 0.15 x 0 = v(0.033 + 0.15)
7.326 = v(0.183)
v = 7.326 / 0.183
v = 40.03 m/s
Let the height risen by the system after collision = h
Initial velocity of the system after collision = Vi = 40.03 m/s
At maximum height, the final velocity, Vf = 0
acceleration due to gravity for upward motion, g = -9.8 m/s²
[tex]v_f^2 = v_i^2 +2gh\\\\0 = 40.03^2 - (2\times 9.8)h\\\\19.6h = 1602.4\\\\h = \frac{1602.4}{19.6} \\\\h = 81.76 \ m[/tex]
Therefore, the maximum height risen by the bullet-baseball system after the collision is 81.76 m.
A 100-m long transmission cable is suspended between two towers. If the mass density is 18.2 g/cm and the tension in the cable is 6543 N, what is the speed (m/s2) of transverse waves on the cable
TIME REMAINING
45:13
A framed picture hangs from two cords attached to the ceiling.
A picture of a picture frame hanging by two cables at the center of the frame at the same length and angle from the vertical.
Which shows the correct free body diagram of the hanging picture?
A free body diagram with two force vectors, the first pointing downward labeled F Subscript g Baseline, the second pointing upward labeled F Subscript N Baseline.
A free body diagram with three force vectors, the first pointing south labeled F Subscript p Baseline, the second pointing northeast labeled F Subscript T Baseline, and the third pointing northwest labeled F Subscript N.
A free body diagram with three force vectors, the first pointing south labeled F Subscript g Baseline, the second pointing northeast labeled F Subscript T Baseline and the third pointing northwest labeled F Subscript T.
A free body diagram with two force vectors, the first pointing downward labeled F Subscript p Baseline, the second pointing upward labeled F Subscript T Baseline.
Answer:The answer is C
Explanation:
del tema de fuerza centripeta
1.- Un chico va en bicicleta a 10m/s por una curva plana de 200m de radio.
a) ¿Cuál es la aceleración?
b) si el chico y la bicicleta tienen una masa total de 70kg, ¿Qué fuerza se necesita para producir esta aceleración?
Answer:
a. C = 0.5 m/s²
b. F = 35 Newton
Explanation:
Given the following data;
Radius, r = 200 m
Velocity, v = 10 m/s
Mass, m = 70 kg
a. To find the centripetal acceleration;
Mathematically, centripetal acceleration is given by the formula;
C = v²/r
Where:
C is the centripetal acceleration
v is the velocity
r is the radius
Substituting into the formula, we have;
C = 10²/200
C = 100/200
C = 0.5 m/s²
b. To find the force;
F = mv²/r
F = (70*10²)/200
F = (70 * 100)/200
F = 7000/200
F = 35 Newton
In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of
significant figures.
3.88 x 1079 - 4.701 x 1059
x 10
g
Answer:
-45,597.07
Explanation:
if not in scientific calculator and yung answer nung sa scientific sa comment na lang dinadownload ko ka eh
An electron has an initial speed of 8.06 x10^6 m/s in a uniform 5.60 x 10^5 N/C strength electic field.The field accelerates the electron in the direction opposite to its initial velocity.
(a) What is the direction of the electric field?
i. opposite
ii. direction to the electron's initial velocity
iii. same direction as the electron's initial velocity
iv. not enough information to decide
(b) How far does the electron travel before coming to rest? m
(c) How long does it take the electron to come to rest? s
(d) What is the electron's speed when it returns to its starting point?
Answer:
Explanation:
a)
The force on electron acts opposite to the velocity , and direction of force on electron is always opposite to direction of electric field .
Hence direction of electric field must be in the same in which electrons travels.
Hence option iii is correct.
b )
deceleration a = force / mass
= qE / m
= 1.6 x 10⁻¹⁶ x 5.6 x 10⁵ / 9.1 x 10⁻³¹
= .98 x 10²⁰ m /s²
v² = u² - 2 a s
0 = (8.06 x 10⁶ )² - 2 x .98 x 10²⁰ s
s = 64.96 x 10¹² / 1.96 x 10²⁰
= 33.14 x 10⁻⁸ m
c ) time required
= 8.06 x 10⁶ / .98 x 10²⁰
= 8.22 x 10⁻¹² s .
d ) Its speed will be same as that in the beginning ie 8.06 x 10⁶ m/s .
Answer:
(a) Option (i)
(b) 6.6 x 10^-4 m
(c) 8.2 x 10^-11 s
Explanation:
initial velocity, u = 8 .06 x 10^6 m/s
Electric field, E = 5.6 x 10^5 N/C
(a) The direction of field is opposite.
Option (i).
(b) Let the distance is s.
Use third equation of motion
[tex]v^2 = u^2 + 2 a s \\\\0 = u^2 - 2 \times \frac{qE}{m}\times s\\\\8.06\times 10^6\times 8.06\times 10^6 = \frac {1.6\times 10^{-19}\times 5.6\times 10^5}{9.1\times 10^{-31}} s\\\\s = 6.6\times 10^{-4} m[/tex]
(c) Let the time is t.
Use first equation of motion.
[tex]v = u + a t \\\\0 = u - \times \frac{qE}{m}\times t\\\\8.06\times 10^6 = \frac {1.6\times 10^{-19}\times 5.6\times 10^5}{9.1\times 10^{-31}} t\\\\t = 8.2\times 10^{-11} s[/tex]
A beam of light has a wavelength of 549nm in a material of refractive index 1.50. In a different material of refractive index 1.07, its wavelength will be:_________.
Explanation:
someone to check if the answer is correct
Water is falling on the blades of a turbine at a rate of 100 kg/s from a certain spring. If the height of spring be 100m, then the power transferred to the turbine will be: a) 100 KW b) 10 KW c) 1 KW d) 100 W
Answer:
Natae Si Jordan Kaya Sya Napaihe
Explanation:
haha
Two sinusoidal waves have the same frequency and wavelength. The wavelength is 20 cm. The two waves travel from their respective sources and reach the same point in space at the same time, resulting in interference. One wave travels a larger distance than the other. For each of the possible values of that extra distance listed below, identify whether the extra distance results in maximum constructive interference, maximum destructive interference, or something in-between.
a. 10 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
b. 15 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
c. 20 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
d. 30 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
e. 35 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
f. 40 cm - (A) in-between (2) maximum destructive (3) maximum constructive.
Answer:
Explanation:
When the path difference is equal to wave length or its integral multiple, constructive interference occurs . If it is odd multiple of half wave length , then destructive interference occurs.
For constructive interference , path diff = n λ
For destructive interference path diff = ( 2n+ 1 ) λ /2
where λ is wave length of wave , n is an integer.
a )
path diff = 10 cm which is half the wavelength , so maximum destructive interference will occur.
b )
path diff = 15 cm which is neither half the wavelength nor full wavelength , so in between is the right option.
c )
path diff = 20 cm which is equal to the wavelength , so maximum constructive interference will occur.
d)
path diff = 30 cm which is 3 times half the wavelength , so maximum destructive interference will occur.
e)
path diff = 35 cm which is neither integral multiple of half the wavelength , nor integral multiple of wavelength so in between is th eright answer.
f )
path diff = 40 cm which is 2 times the wavelength , so maximum constructive interference will occur
11. An object moves in circular path with constant speed
a. Is the object's velocity constant? Explain.
b. Is its acceleration constant? Explain.
Answer:
B. Is its acceleration constant
Explanation:
Uniform circular motion can be described as the motion of an object in a circle at a constant speed. As an object moves in a circle, it is constantly changing its direction. ... An object undergoing uniform circular motion is moving with a constant speed. Nonetheless, it is accelerating due to its change in direction.
two identical eggs are dropped from the same height. The first eggs lands on a dish and breaks, while the second lands on a pillow and does not break. Which quantities are the same in both situations
Answer:
The height is the same
Explanation:
Because they were at the same height but they fell at different velocities
what is Friction
short note on friction
Answer:
Explanation:
Friction can be defined as a force that resists the relative motion of two objects when there surface comes in contact. Thus, it prevents two surface from easily sliding over or slipping across one another. Also, friction usually reduces the efficiency and mechanical advantage of machines but can be reduced through lubrication.
Generally, there are four (4) main types of friction and these includes;
I. Static friction.
II. Rolling friction.
III. Sliding friction.
IV. Fluid friction.
The value found for the universal gravitational constant, G, will vary depending on the materials used for the balls of a Cavendish balance. Question 11 options: True False
Answer:
false
Explanation:
took the test
An object is suspended by a string from the ceiling of an elevator. If the tension in the string is equal to 25 N at an instant when the elevator is accelerating downward at a rate of 2.0 , what is the mass of the suspended object
By Newton's second law, the net force on the object is
∑ F = T - mg = - ma
where
• T = 25 N, the tension in the string
• m is the mass of the object
• g = 9.8 m/s², the acceleration due to gravity
• a = 2.0 m/s², the acceleration of the elevator-object system
Solve for m :
25 N - m (9.8 m/s²) = - m (2.0 m/s²)
==> m = (25 N) / (9.8 m/s² - 2.0 m/s²) ≈ 3.2 kg
A ball has a mass of 4.65kg and approximates a ping pong ball of mass 0.060kg that is at rest by striking it in an elastic collision. The initial velocity of the bowling ball is 5.00m/s, determine the final velocities of both masses after the collision.
Answer:
Look at work
Explanation:
Elastic Collision: Ki=Kf
M1=4.65kg
M2: 0.060kg
v1=5m/s
v2=0m/s
4.65*5+0.060*0=4.65*v1'+0.060*v2'
23.25+0=4.65v1'+0.060v2'
Also since it is an elastic collision we can use
v1+v1'=v2+v2'
4.65+v1'=v2'
4.65+v1'=v2'
Substitute into the earlier equation
23.25=4.65v1'+0.060(4.65+v1')
Expand
23.25=4.65v1'+0.279+0.06v1'
Solve for v1'
22.971=4.71v1'
v1'=4.88m/s
v2'=4.65+4.88=9.53m/s
For waves moving through the atmosphere at a constant velocity, higher frequency waves must have proportionally longer wavelengths.
a) true
b) false
Answer:
false.
Explanation:
We know that for a wave that moves with velocity V, with a wavelength λ, and a frequency f, we have the relation:
V = λ*f
So, if the velocity is constant and we increase the frequency to:
f' > f
we will have a new wavelength λ'
Such that:
V = f'*λ'
And V = f*λ
Then we have:
f'*λ' = f*λ
Solvinf for λ', we get:
λ' =(f/f')*λ
And because:
f' > f
then:
(f/f') < 1
Then:
λ' =(f/f')*λ < λ
So, if we increase the frequency, we need to decrease the wavelength.
So, for higher frequency waves, we must have proportionally shorter wavelengths.
Then we can conclude that the given statement:
"or waves moving through the atmosphere at a constant velocity, higher frequency waves must have proportionally longer wavelengths"
is false.
a girl is moving with a uniform velocity of 1.5 m/s then mathematically find her acceleration
Answer:
0
Explanation:
a = dv/dt
if v is constant than the slope of the v graph will be 0, so dv/dt is 0
a= 0
10 A turning pork creates sound cares
with
Frequency of 170Hz: To the
speed of sound in is in 340mls
calculate the wave
wave length
of
in air is
the sound wales.
Answer:
2m
Explanation:
wavelength=speed/frequency
=340/170
=2m
For a research project, a student needs a solenoid that produces an interior magnetic field of 0.0100 T. She decides to use a current of 1.00 A and a wire 0.500 mm in diameter. She winds the solenoid in layers on an insulating form 1.00 cm in diameter and 20.0 cm long.
Determine the number of layers of wire needed. (Round your answer up to the nearest integer.)
Determine the total length of the wire. (Use the integer number of layers and the average layer diameter.)
Answer:
[tex]n=3.8[/tex]
Explanation:
From the question we are told that:
Magnetic Field [tex]B=0.01T[/tex]
Current [tex]I=1.00[/tex]
Wire Diameter [tex]d_w=0.5*10^3m[/tex]
Layers Diameter [tex]d_l=1*10^2m[/tex]
Length [tex]l=0.2m[/tex]
Generally the equation for number of layers is mathematically given by
[tex]n=\frac{Bd_w}{\mu_o I}[/tex]
Where
[tex]Vacuum\ permeability=\mu_0[/tex]
[tex]n= \frac{0.01*0.5*10^3m}{4 \pi *10^{-7}*1 }[/tex]
[tex]n=3.8[/tex]
1.Lõi thép máy biến áp được ghép từcác lá thép là để:
(a) Giảm tổn hao công suất do dòng điện xoáy
(b) Giảm tổn hao công suất do từ trễ
(c) Giảm tổn hao công suất do dòng điện chạy qua dây quấn
(d) Giảm tất cảcác loại tổn hao công suất.
Answer:
Option (c)
Explanation:
1.The transformer core is assembled from steel sheets to:
(a) Reduced power loss due to eddy current
(b) Reduced power loss due to hysteresis
(c) Reduced power loss due to current flowing through the winding
(d) Reduce all types of power loss.
A transformer is a device which converts the low voltage into high and vice versa.
There are two types of a transformer.
Step up: It is used to convert low voltage into high.
Step down It is used to convert high voltage into high.
It depends on the number of turns in primary and the secondary coil.
The core of the transformer is laminated and it is in the form of sheets.
By using such type of core, the power loss due to the windings is reduced.
option (c) .
A box-shaped metal can has dimensions 8 in. by 4 in. by 10 in. high. All of the air inside the can is removed with a vacuum pump. Assuming normal atmospheric pressure outside the can, find the total force on one of the 8-by-10-in. sides
Answer:
The force on the side is 5252 N.
Explanation:
Area, A = 8 in x 10 in = 80 in^2 = 0.052 m^2
height, h = 10 in
The force on the area is
F = P x A
where, P is the atmospheric pressure and A is the area.
P = 1.01 x 10^5 Pa
Force = 1.01 x10^5 x 0.052 = 5252 N
The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (8.20 mm) sin(4.00πx - 430πt) y2(x, t) = (8.20 mm) sin(4.00πx + 430πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?
Answer:
Explanation:
From the information given:
The angular frequency ω = 430 π rad/s
The wavenumber k = 4.00π which can be expressed by the equation:
k = ω/v
∴
4.00 = 430 /v
v = 430/4.00
v = 107.5 m/s
Similarly: k = ω/v = 2πf/fλ
We can say that:
k = 2π/λ
4.00 π = 2π/λ
wavelength λ = 2π/4.00 π
wavelength λ = 0.5 m
frequency of the wave can now be calculated by using the formula:
f = v/λ
f = 107.5/0.5
f = 215 Hz
Also, the Period(T) = 1/215 secs
The time at which particle proceeds from point A to its maximum upward displacement and to its maximum downward displacement can be computed as t = T/2;
Thus, the distance(x) covered by each wave during this time interval(T/2) will be:
x = v * t
x = v * T/2
x = λ/2
x = 0.5/2
x = 0.25 m
A system gains 1500J of heat and 2200J of work is done by the system on its surroundings. Determine the change in internal energy of the system
Answer:
-700
formula is heat gained - work done
The change in internal energy if A system gains 1500J of heat and 2200J of work is done by the system on its surroundings, is 700 joules.
What is Energy?Energy is the ability to perform work in physics. It could exist in several different forms, such as potential, kinetic, thermal, electrical, chemical, radioactive, etc.
Additionally, there is heat and work, which is energy being transferred from one body to another. Energy is always assigned based on its nature once it has been transmitted. Thus, heat transmitted may manifest as thermal energy while work performed may result in mechanical energy.
Given:
A system gains 1500J of heat and 2200J of work is done by the system on its surroundings,
Calculate the change in internal energy as shown below,
The change in internal energy = heat gained - work done
The change in internal energy = 1500 - 2200
The change in internal energy = -700 J
Thus, the change in internal energy is 700 joules.
To know more about Energy:
https://brainly.com/question/8630757
#SPJ5
b) Two skaters collide and grab on to each other on a frictionless ice. One of them, of mass 80 kg, is moving to the right at 5.0 m/s, while the other of mass 70 kg is moving to the left at 2.0 m/s. What are the magnitude and direction of the two skaters just after they collide
Answer:
The two skaters move with a speed of 1.73 m/s after the collision in the right direction.
Explanation:
Given that,
The mas of skater 1, m₁ = 80 kg
The speed of skater 1, u₁ = 5 m/s (right)
The mass of skater 2, m₂ = 70 kg
The speed of skater 2, u₂ = -2 m/s (left)
Let v is the magnitude of the two skaters just after they collide. They must have a common speed. So, using the conservation of momentum as follows :
[tex]m_1u_1+m_2u_2=(m_1+m_2)v\\\\v=\dfrac{m_1u_1+m_2u_2}{(m_1+m_2)}[/tex]
Put all the values,
[tex]v=\dfrac{80(5)+70(-2)}{(80+70)}\\\\=1.73m /s[/tex]
So, the two skaters move with a speed of 1.73 m/s after the collision in the right direction.
A television tube can accelerate electrons to 2.00 · 104 ev. Calculate the wavelength of emitted X-rays with the highest energy.
λ = _____ m
9.9 x 10 -30
6.2 x 10 -11
1.6 x 10 10
7.1 x 10 -57
Answer:
6.2 × 10^-11 m
Explanation:
1 eV = 1.602 × 10-19 joule
2.00 × 104 ev. = 2.00 × 10^4 eV × 1.602 × 10^-19 joule/1eV
= 3.2 × 10^-15 J
From;
E= hc/λ
λ = hc/E
λ = 6.6 × 10^-34 × 3 × 10^8/3.2 × 10^-15
λ = 6.2 × 10^-11 m