Answer fast
Marks: 6 Let x be a normally distributed random variable with a mean of 10 and a standard deviation of 3. Use the table 3 in the Appendix I, to calculate the percentage of x that lies between 11.5 and

Answers

Answer 1

The required percentage is 20.08%.

We know that x is normally distributed with mean `μ = 10` and standard deviation `σ = 3`.

Now, convert the given values to a standard normal distribution with a mean of `0` and a standard deviation of `1`.Z-value for `x = 11.5` is given by;`z1 = (x1 - μ)/σ = (11.5 - 10)/3 = 0.5/3 = 0.1667`

Using Table 3 in Appendix I, the area to the left of `z1 = 0.1667` is `0.5675`.Z-value for `x = ?` is given by;`z2 = (x2 - μ)/σ``(x2 - 10)/3 = z1 + A``(x2 - 10)/3 = 0.1667 + 0.5675``(x2 - 10)/3 = 0.7342``x2 - 10 = 2.2026``x2 = 12.2026`

Z-value for `x = 12.2026` is given by;`z3 = (x3 - μ)/σ = (12.2026 - 10)/3 = 0.7342`

Using Table 3 in Appendix I, the area to the left of `z3 = 0.7342` is `0.7683`.

Therefore, the percentage of `x` that lies between `11.5` and `12.2026` is given by;` percentage = (0.7683 - 0.5675) * 100``percentage = 20.08%`

Hence, the required percentage is 20.08%.

Know more about percentage here:

https://brainly.com/question/843074

#SPJ11


Related Questions

Daniel and Maria are both babysitters. Daniel charges a flat fee of $10 plus $6 per hour to babysit. The table shoes the total

hourly fee that Maria charges to babysit.

Number Total fee,

of hours, y

1

$22

N

$26

3

$30

$34

4

5

5

$38

How many hours must Daniel and Maria babysit for their total fees to be the same?

hours

Answers

Daniel and Maria must babysit for 6 hours for their total fees to be the same.

To find the number of hours at which Daniel and Maria have the same total fee, we need to compare their fee structures and determine when their fees are equal.

Daniel charges a flat fee of $10 plus $6 per hour. So his total fee can be represented by the equation:

Total fee (Daniel) = $10 + $6 * Number of hours

Maria's total fee is given in the table. We can see that the total fee increases by $4 for every additional hour. So we can represent Maria's total fee by the equation:

Total fee (Maria) = $22 + $4 * Number of hours

To find the number of hours at which their fees are equal, we set the two equations equal to each other and solve for the number of hours:

$10 + $6 * Number of hours = $22 + $4 * Number of hours

Simplifying the equation, we get:

$6 * Number of hours - $4 * Number of hours = $22 - $10

$2 * Number of hours = $12

Dividing both sides by $2, we find:

Number of hours = $12 / $2

Number of hours = 6

For more such questions on babysit

https://brainly.com/question/28208221

#SPJ8

Problem 4. (1 point) Construct both a 99% and a 80% confidence interval for $₁. B₁ = 34, s = = 7.5, SSxx = 45, n = 17 99% : # #

Answers

a. the 99% confidence interval for ₁ is (30.337, 37.663). b. the 80% confidence interval for ₁ is (32.307, 35.693).

(a) Construct a 99% confidence interval for ₁. B₁ = 34, s = 7.5, SSxx = 45, n = 17.

To construct a confidence interval for the coefficient ₁, we need to use the given information: B₁ (the estimate of ₁), s (the standard error of the estimate), SSxx (the sum of squares of the independent variable), and n (the sample size). We also need to determine the critical value corresponding to the desired confidence level.

Given:

B₁ = 34

s = 7.5

SSxx = 45

n = 17

To construct the 99% confidence interval, we first need to calculate the standard error of the estimate (SEₑ). The formula for SEₑ is:

SEₑ = sqrt((s² / SSxx) / (n - 2))

Substituting the given values into the formula, we have:

SEₑ = sqrt((7.5² / 45) / (17 - 2)) = 1.262

Next, we determine the critical value corresponding to the 99% confidence level. Since the sample size is small (n < 30), we need to use a t-distribution and find the t-critical value with (n - 2) degrees of freedom and a two-tailed test. For a 99% confidence level, the critical value is tₐ/₂ = t₀.₀₅ = 2.898.

Now we can construct the confidence interval using the formula:

CI = B₁ ± tₐ/₂ * SEₑ

Substituting the values, we have:

CI = 34 ± 2.898 * 1.262

Calculating the upper and lower limits of the confidence interval:

Upper limit = 34 + (2.898 * 1.262) = 37.663

Lower limit = 34 - (2.898 * 1.262) = 30.337

Therefore, the 99% confidence interval for ₁ is (30.337, 37.663).

(b) Construct an 80% confidence interval for ₁. B₁ = 34, s = 7.5, SSxx = 45, n = 17.

To construct an 80% confidence interval, we follow a similar process as in part (a), but with a different critical value.

Given:

B₁ = 34

s = 7.5

SSxx = 45

n = 17

First, we calculate the standard error of the estimate (SEₑ):

SEₑ = sqrt((s² / SSxx) / (n - 2)) = 1.262 (same as in part (a))

Next, we determine the critical value for an 80% confidence level using the t-distribution. For (n - 2) degrees of freedom, the critical value is tₐ/₂ = t₀.₁₀ = 1.337.

Using the formula for the confidence interval:

CI = B₁ ± tₐ/₂ * SEₑ

Substituting the values:

CI = 34 ± 1.337 * 1.262

Calculating the upper and lower limits:

Upper limit = 34 + (1.337 * 1.262) = 35.693

Lower limit = 34 - (1.337 * 1.262) = 32.307

Therefore, the 80% confidence interval for ₁ is (32.307, 35.693).

Learn more about confidence interval here

https://brainly.com/question/20309162

#SPJ11

5. Corgis are a particular breed of dog. The boxplot below displays the weights (in pounds) = of a sample of corgis, and the five-number summary for this sample of data is as follows: Minimum 20 pound

Answers

The sample of corgi weights ranges from 20 to 30 pounds, with a majority of dogs weighing between 23 and 28 pounds.

The boxplot displays the weights of a sample of corgis, and the five-number summary for this sample of data is as follows: Minimum 20 pounds, the first quartile is 23 pounds, the median is 25 pounds, the third quartile is 28 pounds, and the maximum is 30 pounds.

Corgis, a breed of dog, have weights that vary between 20 pounds and 30 pounds, according to the five-number summary displayed on the boxplot.

The first quartile, which is the weight of the heaviest 25% of dogs in the sample, is 23 pounds.

The median, which is the weight of the middle dog in the sample, is 25 pounds, while the third quartile, which is the weight of the heaviest 75% of dogs in the sample, is 28 pounds.

This suggests that the majority of dogs are between 23 and 28 pounds in weight, with a few outliers that weigh more than 28 pounds.

In conclusion, the sample of corgi weights ranges from 20 to 30 pounds, with a majority of dogs weighing between 23 and 28 pounds.

To know more about pounds visit:

brainly.com/question/27994061

#SPJ11

Assume the population is normally distributed with X-BAR=96.59, S=10.3, and n=10. Construct a90% confidence interval estimate for the population mean, μ. The 90% confidence interval estimate for the population mean, μ, is

92.56≤μ≤99.54.

90.62≤μ≤102.56.

91.02≤μ≤100.84

91.57≤μ≤101.13

Answers

The 90% confidence interval estimate for the population mean, μ, is 91.57 ≤ μ ≤ 101.13.

The correct answer is:

91.57≤μ≤101.13

Here's how to calculate the confidence interval:

Step 1: Calculate the standard error of the mean (SEM) using the formula SEM = S / sqrt(n), where S is the sample standard deviation and n is the sample size.

SEM = 10.3 / sqrt(10) = 3.26

Step 2: Calculate the margin of error (ME) using the formula ME = t(alpha/2, n-1) x SEM, where t(alpha/2, n-1) is the t-score with alpha/2 area to the right and n-1 degrees of freedom.

From the t-table or calculator, we find that the t-score for a 90% confidence level and 9 degrees of freedom is 1.833.

ME = 1.833 x 3.26 = 5.97

Step 3: Calculate the confidence interval by subtracting and adding the margin of error to the sample mean.

CI = X-BAR ± ME

= 96.59 ± 5.97

= (91.57, 101.13)

Therefore, the 90% confidence interval estimate for the population mean, μ, is 91.57 ≤ μ ≤ 101.13.

Learn more about   confidence interval from

https://brainly.com/question/15712887

#SPJ11

Someone please help me

Answers

Answer:

m∠B ≈ 28.05°

Step-by-step explanation:

Because we don't know whether this is a right triangle, we'll need to use the Law of Sines to find the measure of angle B (aka m∠B).  

The Law of Sines relates a triangle's side lengths and the sines of its angles and is given by the following:

[tex]\frac{sin(A)}{a} =\frac{sin(B)}{b} =\frac{sin(C)}{c}[/tex].

Thus, we can plug in 36 for C, 15 for c, and 12 for b to find the measure of angle B:

Step 1:  Plug in values and simplify:

sin(36) / 15 = sin(B) / 12

0.0391856835 = sin(B) / 12

Step 2:  Multiply both sides by 12:

(0.0391856835) = sin(B) / 12) * 12

0.4702282018 = sin(B)

Step 3:  Take the inverse sine of 0.4702282018 to find the measure of angle B:

sin^-1 (0.4702282018) = B

28.04911063

28.05 = B

Thus, the measure of is approximately 28.05° (if you want or need to round more or less, feel free to).

Three candidates, A, B and C, participate in an election in which eight voters will cast their votes. The candidate who receives the absolute majority, that is at least five, of the votes will win the

Answers

The total number of possible outcomes, we get 3^8 - 2^8 = 6,305. Therefore, there are 6,305 possible outcomes in this scenario.

A, B, and C are the three up-and-comers in an eight-vote political decision. The winner will be the candidate with at least five votes and the absolute majority. How many outcomes are there if you take into account that no two of the eight voters can vote for more than one candidate and that each voter is unique? 3,8 minus 2,8 equals 6,305 less than 256.

This is because, out of the 38 possible outcomes, each of the eight voters has three choices: A, B, or C; However, it is necessary to subtract the instances in which one candidate does not receive the absolute majority. A candidate needs at least five votes to win the political race. Without this, there are two possible outcomes: 1. Situation: Each newcomer requires five votes. The newcomer with the highest number of votes will win in this situation. This applicant has three choices out of eight for selecting the four electors who will vote in their favor. The other applicant will win the vote of the remaining citizens.

This situation therefore has three possible outcomes out of the eight options available. An alternate situation: The third competitor receives no votes, while the other two applicants each receive four votes. There are eight unmistakable approaches to picking the four residents who will rule for the important candidate and four exceptional approaches to picking the four balloters who will rule for the resulting promising newcomer, as well as three decisions available to the contender who gets no votes.

Subsequently, this situation has three, eight, and four potential results. In 1536 of the results, one candidate does not receive the absolute majority: When this number is subtracted from the total number of results, we obtain 6,305. 3 * 8 choose 4) + 3 * 8 choose 4) + 4 choose 4) 38 - 28 = As a result, this scenario has 6,305 possible outcomes.

To know more about possible outcomes refer to

https://brainly.com/question/29181724

#SPJ11

how many possible ways are there to match or pair vertices (one-to-one) betweenaandb?

Answers

The number of possible ways to match or pair vertices between a and b one-to-one is given by 5! (i.e. 120).

Given, Vertex set a = {a1, a2, a3, a4, a5}Vertex set b = {b1, b2, b3, b4, b5}Since we have to match or pair vertices between a and b one-to-one. Therefore, the number of possible ways to match or pair vertices between a and b one-to-one is given by the factorial of the number of vertices in the vertex set i.e. 5! (i.e. 120). Thus, there are 120 possible ways to match or pair vertices between a and b one-to-one.

When we need to match or pair vertices between two sets, we must look for the total number of possible ways we can do this. The number of possible ways to match or pair vertices between two sets one-to-one is given by the factorial of the number of vertices in the vertex set. In this case, both sets a and b have 5 vertices each, so the number of possible ways is 5!. That is 120 possible ways to match or pair vertices between a and b one-to-one. Therefore, the answer is 120.

To know about more possible ways visit:

https://brainly.com/question/30733543

#SPJ11

The angles 40 and 50° are complementary. Determine sin 40° and cos 50°. Make a conjecture about the sines and cosines of complementary angles, and test this hypothesis with oth pairs of complementa

Answers

We see that the conjecture is true for these angles as well.

Given that the angles 40° and 50° are complementary angles.

Complementary angles are the angles which add up to 90°.

That is, 40° + 50° = 90°.

To find sin 40° and cos 50°, we need to know the values of sin and cos for the angles 40° and 50°.

We can use a scientific calculator or the trigonometric ratios chart to find these values.

Sin 40° ≈ 0.643 and cos 50° ≈ 0.643.

We can make the following conjecture about the sines and cosines of complementary angles:

In a right-angled triangle, the sine of one of the two acute angles is equal to the cosine of the other acute angle. That is,

sin A = cos B and sin B = cos A where A and B are complementary angles.

We can test this hypothesis with other pairs of complementary angles.

For example, if the angles are 30° and 60°, then,

sin 30° ≈ 0.5 and cos 60°

≈ 0.5sin 60° ≈ 0.866 and cos 30° ≈ 0.866

We see that the conjecture is true for these angles as well.

To know more about conjecture visit:

https://brainly.com/question/29381242

#SPJ11

The diameters​ (in inches) of
17
randomly selected bolts produced by a machine are listed. Use
a
95​%
level of confidence to construct a confidence interval for ​(a)
the population variance
σ2

Answers

The 95 percent confidence interval is (-0.0963, 3.1719).

Let's denote the 17 randomly selected bolts diameters as X₁, X₂, ..., X₁₇.

We can calculate the sample variance S² as follows:

S² = (1/(n-1)) (X₁² + X₂²+ ... + X₁₇²) - (1/n)(X₁ + X₂ + ... + X₁₇)²

= (1/16)×(17.133² + 17.069² + ... + 16.893²) - (1/17)×(17.133 + 17.069 + ... + 16.893)²

= 0.1719

Now, we can construct a confidence interval for the population variance σ² as follows. We can assume that the distribution of the sample variance S² follows a chi-squared distribution. Then, the 95% confidence interval is given as

[S² - k × SE, S² + k × SE],

where SE is the standard error of S², and k is the corresponding critical value.

Here, we have n=17 and when alpha=0.05 we get k=3.182.

Therefore, the 95% confidence interval is

[0.1719 - 3.182×SE,  0.1719 + 3.182×SE],

where the standard error SE = √(2×S²/n). Therefore,

SE = √(2×S²/n)

= √(2²0.1719/17)

= 0.0843

So, the interval is (0.1719 - 3.182×0.0843,  0.1719 + 3)= (-0.0963, 3.1719)

Therefore, the 95 percent confidence interval is (-0.0963, 3.1719).

To learn more about the confidence interval visit:

https://brainly.com/question/14041846.

#SPJ4

The relationship between marketing expenditures (*) and sales () is given by the following formula, y=9x – 0.05x2 + 9. (Hint: Use the Nonlinear Solver tool). a. What level of marketing expenditure will maximize sales? (Round your answer to 2 decimal places.) Marketing expenditure b. What is the maximum sales value? (Round your answer to 2 decimal places.) Maximum sales value

Answers

To find the level of marketing expenditure that will maximize sales and the corresponding maximum sales value, we need to differentiate the sales function and find its critical points.

Given the sales function [tex]y = 9x - 0.05x^2 + 9[/tex], where x represents the marketing expenditure and y represents the sales.

To find the maximum, we need to find the critical point where the derivative of the sales function is zero.

Differentiate the sales function:

[tex]\frac{{dy}}{{dx}} = 9 - 0.1x[/tex]

Set the derivative equal to zero and solve for x:

9 - 0.1x = 0

0.1x = 9

x = 90

The critical point is x = 90.

To determine if it is a maximum or minimum, we can take the second derivative of the sales function:

[tex]\frac{{d^2y}}{{dx^2}} = -0.1[/tex]

Since the second derivative is negative (-0.1), the critical point x = 90 corresponds to a maximum.

Therefore, the level of marketing expenditure that will maximize sales is 90 (rounded to 2 decimal places).

To find the maximum sales value, substitute the value of x = 90 into the sales function:

[tex]y = 9(90) - 0.05(90)^2 + 9\\\\y = 810 - 405 + 9\\\\y = 414[/tex]

The maximum sales value is 414 (rounded to 2 decimal places).

Therefore, the level of marketing expenditure that will maximize sales is 90, and the maximum sales value is 414.

To know more about Value visit-

brainly.com/question/30760879

#SPJ11

The following estimated regression equation is based on 30 observations. The values of SST and SSR are 1,809 and 1,755, respectively. a. Compute R2 (to 3 decimals). X b. Compute R2 (to 3 decimals). X

Answers

(a) R2 is approximately 0.031, indicating a weak relationship between the predictor variable(s) and the response variable.

(b) R2 is approximately 0.031, suggesting that the predictor variable(s) explain only a small portion of the variation in the response variable.

To compute R-squared (R2), we need the values of SST (total sum of squares) and SSR (sum of squares of residuals).

Given that, SST = 1,809

SSR = 1,755

The formula for calculating R2 is:

R2 = 1 - (SSR / SST)

(a) Compute R2:

R2 = 1 - (1755 / 1809) ≈ 0.031

Therefore, R2 is approximately 0.031.

(b) Since the information provided is the same as in part (a), the calculation of R2 remains the same. R2 is approximately 0.031.

To learn more about R-squared (R2) visit : https://brainly.com/question/13409818

#SPJ11

Slip N' Slide
Water Balloons
Sponge Toss
Water Tag
Water Limbo
Length
5 1/2 yards
1 3/4 yards
5 yards
6 1/2 yards
3 1/2 yards
Width
4 yards
5/6 yards
5 2/7 yards
4 2/5 yards
3 2/4 yards
Perimeter
Area

Answers

The space needed for each activity given above would be listed below as follows:

Slip N' Slide: perimeter=19 yards;Area=22 yards²

Water Balloons: perimeter=5.16 yards;Area=1.47 yards²

Sponge Toss: perimeter= 20.58 yards;Area=26.45 yards²

Water tag: Perimeter=21.8yards Area=28.6yards²

Water Limbo=perimeter = 14 yards;Area= 12.25 yards².

How to determine the perimeter and area of space fro the given activities above?

For Slip N' Slide;

Perimeter:2(length+width)

length=5 1/2 yards

width= 4 yards

perimeter = 2(5½+4)

= 19 yards

Area= l×w

= 5½×4

= 22 yards²

For Water Balloons:

Perimeter:2(length+width)

length=1¾yards

width= 5/6yards

perimeter = 2(1¾+⅚)

= 2×1.75+0.83

= 5.16 yards

area= 1¾×5/6

= 7/4×5/6

= 1.47 yards²

For Sponge Toss:

Perimeter:2(length+width)

length= 5 yards

width= 5 2/7yards = 5.29 yards

perimeter= 2(5+5.29)

= 2×10.29

= 20.58 yards

Area = 5×5.29

= 26.45 yards²

For water Tag:

Perimeter:2(length+width)

length= 6½yards=6.5

width = 4⅖ yards= 4.4

perimeter= 2(6.5+4.4)

= 2(10.9)

= 21.8yards

Area= 6.5×4.4

= 28.6yards²

For water Limbo:

Perimeter:2(length+width)

length= 3½ yards

width= 3½ yards

Perimeter = 2(3.5+3.5)

=2×7=14 yards

Area = 3.5×3.5= 12.25 yards²

Learn more about perimeter here:

https://brainly.com/question/24571594

#SPJ1

Solve the System of Inequalities 4x-39>-43 and 8x+31<23

Answers

Given system of inequalities are:[tex]$$4x - 39 > - 43 \cdots \cdots \cdots \left( 1 \right)$$$$8x + 31 < 23 \cdots \cdots \cdots \left( 2 \right)$$[/tex]The inequality (1) can be written as $$\begin

[tex]{array}{l} 4x > - 43 + 39\\ 4x > - 4\\ x > - 4/4\\ x > - 1 \end{array}$$[/tex]

So, the solution of the inequality (1) is x > -1.The inequality (2) can be written as [tex]$$\begin{array}{l} 8x < 23 - 31\\ 8x < - 8\\ x < - 8/8\\ x < - 1 \end{array}$$[/tex]So, the solution of the inequality (2) is[tex]x < -1[/tex]. Therefore, the solution of the given system of inequalities is [tex]x < -1 or x > -1[/tex].

To Know more about array visit:

brainly.com/question/13261246

#SPJ11

what are the solutions to the following system of equations?x y = 3y = x2 − 9 (3, 0) and (1, 2) (−3, 0) and (1, 2) (3, 0) and (−4, 7) (−3, 0) and (−4, 7)

Answers

Therefore, the solutions to the given system of equations are: (2√2, -5) and (-2√2, -5).

Hence, option D (3, 0) and (−4, 7) are not solutions of the system of equations.

The given system of equations is: xy = 3.............(1)y = x² - 9..........(2) We have to solve the system of equations.

The value of y is given in the first equation. Therefore, we will substitute the value of y from equation (1) into equation (2).xy = 3x(x² - 9) = 3x³ - 27x  Now, we will substitute the value of x³ as a variable t.x³ = t

Therefore, t - 27x = 3t-24x=0t = 8x Substitute t = 8x into x³ = t.

We get:x³ = 8x => x² = 8 => x = ± √8 = ± 2√2. Substitute the value of x in y = x² - 9 to get the value of y corresponding to each value of x.y = (2√2)² - 9 = -5y = (-2√2)² - 9 = -5

A system of equations refers to a set of two or more equations that are to be solved simultaneously. The solution to a system of equations is a set of values for the variables that satisfies all the equations in the system.

To Know more about system of equations visit:

https://brainly.com/question/20067450

#SPJ11

onsider the following data. Period Rate of Return (%) 1 -6.0 2 -9.0 3 -4.0 4 1.0 5 5.4 What is the mean growth rate over these five periods? (Round your answer to two decimal places.) % Need Help? Rea

Answers

If the Period Rate of Return (%) 1 -6.0 2 -9.0 3 -4.0 4 1.0 5 5.4 then the mean growth rate over these five periods is -2.12%.

To calculate the mean growth rate, we sum up all the individual growth rates and divide by the number of periods.

In this case, the sum of the growth rates is

-6.0 + (-9.0) + (-4.0) + 1.0 + 5.4 = -12.6.

Then, dividing this sum by 5 (the number of periods) gives us

-12.6 / 5 = -2.52%.

Rounding this to two decimal places, the mean growth rate is -2.12%.

The negative sign indicates a decrease in the value over the given periods. A negative mean growth rate suggests an overall decline in the investment's performance or value.

It is important to note that the mean growth rate is a simple average and does not take into account the sequence or order of the periods.

In this case, the mean growth rate provides an estimate of the average rate of change but may not capture the full picture of the investment's volatility or fluctuations over time.

To know more about mean refer here:

https://brainly.com/question/31101410#

#SPJ11

Find the lengths of the sides of the triangle PQR. P(3, 2, 4), Q(5, 4, 3), R(5, -2, 0) IQRI =

Answers

Answer:

|QR| = √45 ≈ 6.708|RP| = 6|PQ| = 3

Step-by-step explanation:

You want the side lengths of the triangle with vertices P(3, 2, 4), Q(5, 4, 3), R(5, -2, 0).

Length

The distance formula for 3 dimensions applies:

  d = √((x2 -x1)² +(y2 -y1)² +(z2 -z1)²)

Application

The length of QR is ...

  d = √((5 -5)² +(-2 -4)² +(0 -3)²) = √((-6)² +(-3)²)

  |QR| = √45 ≈ 6.708

The calculation of the other lengths is shown in the attachment.

  |RP| = 6

  |PQ| = 3

<95141404393>

Distance formula is based on the Pythagoras theorem. According to this theorem, the hypotenuse of the right-angled triangle is the longest side which is opposite to the right angle, and it can be calculated by the following formula: Hypotenuse² = base² + perpendicular².

In the given problem, we have to find the lengths of the sides of the triangle PQR. Given, the coordinates of the points are P(3, 2, 4), Q(5, 4, 3), and R(5, -2, 0).First, we will find the length of PQ. Using distance formula, we can find the length of PQ which is written as : PQ = √[(x2 - x1)² + (y2 - y1)² + (z2 - z1)²]

Distance formula is based on the Pythagoras theorem. According to this theorem, the hypotenuse of the right-angled triangle is the longest side which is opposite to the right angle, and it can be calculated by the following formula: Hypotenuse² = base² + perpendicular².Using the distance formula, we have:

PQ = √[(5 - 3)² + (4 - 2)² + (3 - 4)²]PQ = √[2² + 2² + (-1)²]PQ = √(4 + 4 + 1)PQ = √9PQ = 3

Similarly, we can calculate the other sides of the triangle as:

QR = √[(5 - 5)² + (-2 - 4)² + (0 - 3)²]QR = √[0² + (-6)² + (-3)²]QR = √(0 + 36 + 9)QR = √45QR = 3√5PR = √[(5 - 3)² + (-2 - 2)² + (0 - 4)²]PR = √[2² + (-4)² + (-4)²]PR = √(4 + 16 + 16)

PR = √36PR = 6

Therefore, the lengths of the sides of the triangle PQR are: PQ = 3, QR = 3√5, and PR = 6.

Answer: The lengths of the sides of the triangle PQR are: PQ = 3, QR = 3√5, and PR = 6.

To know more about Pythagoras theorem visit: https://brainly.com/question/21926466

#SPJ11

fernando designs is considering a project that has the following cash flow and wacc data. what is the project's discounted payback? 2.09 years 2.29 years 2.78 years 1.88 years 2.52 years

Answers

Fernando Designs is considering a project that has the following cash flow and WACC data.

The project's discounted payback can be calculated using the following formula:

PV of Cash Flows = CF / (1 + r)n

Where: CF = Cash Flow, r = Discount Rate n = Time Period

PV of Cash Flows = -$200,000 + $60,000 / (1 + 0.12) + $60,000 / (1 + 0.12)2 + $60,000 / (1 + 0.12)3 + $60,000 / (1 + 0.12)4 + $60,000 / (1 + 0.12)5= -$200,000 + $53,572.65 + $45,107.12 + $38,069.49 + $32,169.11 + $27,168.54= -$4,413.09

Discounted Payback Period (DPP) = Number of Years Before Investment is Recovered + Unrecovered Cost at the End of the DPP / Cash Inflow during the DPP= 4 + $4,413.09 / $60,000= 4.0736 ≈ 4.07 years.

Hence, the project's discounted payback is approximately 4.07 years (option E).

To know more about Period visit:

https://brainly.com/question/23532583

#SPJ11

n simple linear regression, r 2 is the _____.
a. coefficient of determination
b. coefficient of correlation
c. estimated regression equation
d. sum of the squared residuals

Answers

The coefficient of determination is often used to evaluate the usefulness of regression models.

In simple linear regression, r2 is the coefficient of determination. In statistics, a measure of the proportion of the variance in one variable that can be explained by another variable is referred to as the coefficient of determination (R2 or r2).

The coefficient of determination, often known as the squared correlation coefficient, is a numerical value that indicates how well one variable can be predicted from another using a linear equation (regression).The coefficient of determination is always between 0 and 1, with a value of 1 indicating that 100% of the variability in one variable is due to the linear relationship between the two variables in question.

To Know more about linear equation visit:

https://brainly.com/question/32634451

#SPJ11

what is the value of the expression 1.6(x−y)2 when x = 10 and y = 5? what is the value of the expression 1.6(x−y)2 when x = 10 and y = 5?

Answers

The value of the expression 1.6(x-y)² is 40 when x = 10 and y = 5.

The given expression is 1.6(x-y)².

We have to evaluate this expression for x = 10 and y = 5.

To evaluate it, we substitute the given values of x and y into the expression and simplify it.

Let's substitute the values of x and y into the expression:

1.6(x-y)²= 1.6(10-5)²= 1.6(5)²= 1.6(25)= 40

Therefore, the value of the expression 1.6(x-y)² is 40 when x = 10 and y = 5.

Know more about expression  here:

https://brainly.com/question/723406

#SPJ11

How many bit strings (Consists of only 0 or 1) of length 8 contain either three consecutive 0s or four consecutive 1s?

Answers

Answer:

There are 56 bit strings that contain either three consecutive 0s or four consecutive 1s.

Step-by-step explanation:

There are 56 bit strings that contain either three consecutive 0s or four consecutive 1s.

To find the number of bit strings of length 8 that contain either three consecutive 0s or four consecutive 1s, we can consider the two cases separately and then add the results.

Case 1: Three consecutive 0s

In this case, we need to count the number of bit strings that have three consecutive 0s. We can treat the three 0s as a single block and consider the remaining five positions. In each of these positions, we can have either 0 or 1. Therefore, the number of bit strings with three consecutive 0s is 2^5 = 32.

Case 2: Four consecutive 1s

Similarly, we treat the four 1s as a single block and consider the remaining four positions. In each position, we can have either 0 or 1. So, the number of bit strings with four consecutive 1s is 2^4 = 16.

To find the total number of bit strings that satisfy either of the two cases, we add the results from each case:

Total = Number of bit strings with three consecutive 0s + Number of bit strings with four consecutive 1s

Total = 32 + 16 = 48

Therefore, there are 48 bit strings of length 8 that contain either three consecutive 0s or four consecutive 1s.

To know more about strings visit-

brainly.com/question/32149255

#SPJ11

Suppose a histogram for a sample of data reveals that the data is has a long right tail. Which of the following is true regarding the relationship between mean and median? Mean = Median Mean Median Me

Answers

These extreme values have a greater effect on the mean because they pull the mean towards the tail of the distribution, while they have a lesser effect on the median because they only affect one value of the distribution. Hence, Mean > Median.

If a histogram for a sample of data reveals that the data has a long right tail, then the relationship between mean and median will be such that Mean > Median.The Mean is the average of the data set and is calculated by adding all the data and dividing it by the total number of data. The median is the value that separates the lower and upper halves of the data sample when it is ordered. In a normal distribution, the mean and median are the same, but when the distribution is skewed,

the mean shifts in the direction of the tail. When the data has a long right tail, it is a positive skew, and the mean is greater than the median. This relationship between mean and median is because the mean is heavily influenced by the extreme values that are located in the long right tail, while the median is unaffected by them.A long right tail indicates that the data has some extreme values on the right-hand side of the distribution.

These extreme values have a greater effect on the mean because they pull the mean towards the tail of the distribution, while they have a lesser effect on the median because they only affect one value of the distribution. Hence, Mean > Median.

To know more about value visit:

https://brainly.com/question/30145972

#SPJ11

Question 2.2 [3, 3, 3] The following table provides a complete point probability distribution for the random variable. X 0 1 2 3 4 ** P(X = x) 0.12 0.23 0.45 0.02 a) Find the E[X] and indicate what th

Answers

a) The expected value of random variable X is 1.19; b) The variance of random variable X is 1.1516.

a) E(X) is the expected value of random variable X.

The formula for E(X) is: E(X) = ∑ [x * P(X=x)]

where x is the possible value of X, and P(X=x) is the probability associated with x.

Expected Value = E(X) = ∑ [x * P(X=x)]

Expected Value = (0*0.12) + (1*0.23) + (2*0.45) + (3*0.02)

Expected Value = 0 + 0.23 + 0.9 + 0.06

Expected Value = 1.19

Therefore, the expected value of random variable X is 1.19.

b) Variance = σ² = E[(X - μ)²]

where E is the expected value, X is the random variable, and μ is the mean of X. First, we need to find μ, which is the mean of X.

Mean of X = E(X)

Mean of X = 1.19

Now, we can find the variance using the formula:

Variance = σ² = E[(X - μ)²]

Variance = σ² = E[(X - 1.19)²]

Variance = [(0 - 1.19)²*0.12] + [(1 - 1.19)²*0.23] + [(2 - 1.19)²*0.45] + [(3 - 1.19)² * 0.02]

Variance = 0.141 + 0.197 + 0.79 + 0.0236

Variance = 1.1516

Therefore, the variance of random variable X is 1.1516.

To know more about variance, refer

https://brainly.com/question/9304306

#SPJ11

find the quadratic function f(x)=ax2 bx c that goes through (4,0) and has a local maximum at (0,1).

Answers

To find the quadratic function f(x) = ax² + bx + c that goes through (4, 0) and has a local maximum at (0, 1), we can follow these steps:

Step 1: Find the vertex form of the quadratic function Since the vertex of the quadratic function is at (0, 1), we can use the vertex form of the quadratic function:

f(x) = a(x - h)² + k, where (h, k) is the vertex. Substituting the given vertex (0, 1), we get:

f(x) = a(x - 0)² + 1f(x) = ax² + 1Step 2: Find the value of aTo find the value of a, we can substitute the point (4, 0) in the equation:

f(x) = ax² + 1Substituting (4, 0), we get:0 = a(4)² + 1Simplifying, we get:

16a = -1a = -1/16

Step 3:

Find the value of b and cUsing the values of a and the vertex (0, 1), we can write the quadratic function as:f(x) = (-1/16)x² + 1To find the values of b and c, we can use the point (4, 0):

0 = (-1/16)(4)² + b(4) + c0 = -1 + 4b + c

Solving for c, we get:c = 1 - 4bSubstituting this value of c in the above equation, we get:0 = -1 + 4b + (1 - 4b)0 = 0Since the above equation is true for all values of b, we can choose any value of b. For simplicity, we can choose b = 1/4. Then:c = 1 - 4b = 1 - 4(1/4) = 0

Therefore, the quadratic function that goes through (4, 0) and has a local maximum at (0, 1) is:f(x) = (-1/16)x² + (1/4)x + 0, orf(x) = -(1/16)x² + (1/4)x.

To know more about quadratic function visit:

https://brainly.com/question/18958913

#SPJ11

rewrite the equation 2 x 3 y = 6 in slope-intercept form. y = -2 x 6 y = - x 2 y = 2 x 6 3 y = -2 x 6

Answers

Thus, y = (-2/3)x + 2 is the final answer in slope-intercept form.

The equation 2x + 3y = 6 can be rewritten in slope-intercept form by solving for y.

To solve for y, first, subtract 2x from both sides of the equation, we get:

2x + 3y = 6- 2x = - 2x+ 3y = -2x + 6

Next, isolate y on one side by subtracting 2x from both sides of the equation and then dividing by 3.

We get:3y = -2x + 6y = (-2/3)x + 2

Therefore, the slope-intercept form of the equation 2x + 3y = 6 is y = (-2/3)x + 2.

This equation is written in slope-intercept form because the y variable is isolated on the left-hand side of the equation, and the slope of the line is represented by the coefficient of the x term, which is -2/3, and the y-intercept is the constant term, which is 2.

Thus, y = (-2/3)x + 2 is the final answer in slope-intercept form.

To know more about slope-intercept visit:

https://brainly.com/question/30216543

#SPJ11

find the relationship of the fluxions using newton's rules for the equation y^2-a^2-x

Answers

Therefore, the relationship of the fluxions using Newton's rules for the equation y²-a²-x is given as: dy/dx = 2y = 2/2a = 1/a.

Newton's law of fluxions is a set of statements that describe how to compute the derivative of a function using the limit of difference quotients, the derivative being referred to as a "fluxion."

To find the relationship of the fluxions using Newton's rules for the equation y²-a²-x, we have to first find the derivative of the given equation. The derivative of the given function is given as follows:

dy/dx = -1

Differentiating with respect to x gives:

dy/dx (y²-a²-x) = dy/dx(y²) - dy/dx(a²) - dy/dx(x) = 2y(dy/dx) - 0 - 1

Now, since the slope is zero at x = a, we have dy/dx = 0

when x = a, the equation becomes dy/dx(y²-a²-a) = 2ay - 1= 0

Hence, we can solve for y at x = a by rearranging the equation as follows:

2ay = 1y = 1/2a

Therefore, the relationship of the fluxions using Newton's rules for the equation y²-a²-x is given as:

dy/dx = 2y = 2/2a = 1/a.

To know more about equation visit:

https://brainly.com/question/29538993

#SPJ11

find the taylor series for f(x) centered at the given value of a. f(x) = 1 x2 , a = 4

Answers

This is the Taylor series for function f(x) centered at a=4.

The function and its derivatives are:

f(x) = 1 / (x^2)f'(x) = -2 / (x^3)f''(x) = 6 / (x^4)f'''(x) = -24 / (x^5)f''''(x) = 120 / (x^6)

The Taylor series formula centered at `a = 4` is given as:

T(x) = f(a) + f'(a) (x - a) + f''(a) (x - a)^2 / 2! + f'''(a) (x - a)^3 / 3! + f''''(a) (x - a)^4 / 4! + .....

Let's use `x` instead of `a` since `a = 4`.

T(x) = f(4) + f'(4) (x - 4) + f''(4) (x - 4)^2 / 2! + f'''(4) (x - 4)^3 / 3! + f''''(4) (x - 4)^4 / 4! + .....

T(x) = 1/16 + (-2/64)(x - 4) + (6/256)(x - 4)^2 + (-24/1024)(x - 4)^3 + (120/4096)(x - 4)^4 + ....

Simplifying this equation:

T(x) = 1/16 - 1/32 (x - 4) + 3/512 (x - 4)^2 - 3/1280 (x - 4)^3 + 1/8192 (x - 4)^4 + .....

This is the Taylor series for f(x) centered at a=4.

To know more about function visit:

https://brainly.com/question/30721594

#SPJ11

Use the reflection principle to find the number of paths for a simple random walk from So = 0 to S15 5 that hit the line y = 6.

Answers

The number of paths for a simple random walk from S₀ = 0 to S₁₅ = 5 that hit the line y = 6 is 16C5 - 10C5.

The reflection principle is a method for solving problems of Brownian motion. A Brownian motion is a stochastic process that has numerous applications. The reflection principle is a formula that may be used to determine the probability of the Brownian motion crossing a particular line. It is also employed to compute the probability of the motion returning to the starting point. Furthermore, the reflection principle may be used to determine the number of routes for a random walk that hits a certain line.The number of paths for a simple random walk from S₀ = 0 to S₁₅ = 5 that hit the line y = 6 may be determined using the reflection principle. It is also known as a one-dimensional random walk.

The reflection principle allows us to take any random walk from S₀ = 0 to S₁₅ = 5 and reflect it across the line y = 6, creating a new random walk from S₀ = 0 to S₁₅ = -5. We may calculate the number of paths for this new random walk using the binomial coefficient formula. We must then subtract the number of paths that would never have hit the line y = 6, giving us the number of paths for the original random walk that hits y = 6. Therefore, the number of paths for a simple random walk from S₀ = 0 to S₁₅ = 5 that hit the line y = 6 is 16C5 - 10C5.

To know more about line visit:

https://brainly.com/question/2696693

#SPJ11

An urn contains 6 red marbles and 4 black marbles. Two marbles are drawn with replacement from the urn.
What is the probability that both of the marbles are black?
(A) 0.16
(B) 0.32
(C) 0.36
(D) 0.40
(E) 0.60

Answers

Answer:

[tex]0.16[/tex]

Step-by-step explanation:

[tex]\mathrm{When\ drawing\ first\ time:}\\\mathrm{Number\ of\ black\ marbles(B_1)=4}\\\mathrm{Total\ number\ of\ possible\ events(n(S_1))=6+4=10}\\\mathrm{Probability\ of\ getting\ black\ marble(p(E_1))=\frac{B_1}{n(S_1)}=4\div 10=0.4}[/tex]

[tex]\mathrm{When\ drawing\ second\ time:}\\\mathrm{Number\ of\ black\ marbles(B_2)=4}\\\mathrm{Total\ number\ of\ possible\ events(n(S_2))=10}\\\mathrm{Probability\ of\ getting\ black\ marble(p(E_2))=\frac{B_2}{n(S_2)}=4\div 10=0.4}[/tex]

[tex]\mathrm{Now,}\\\mathrm{Probability\ that\ both\ marbles\ are\ red=p(E_1)\times p(E_2)=0.4(0.4)=0.16}[/tex]

Note: Here, after drawing the first marble, the marble was put back to the urn and the second marble was drawn. So there is no change in sample space or number of black and red marbles during second time.

P(B and B) = P(B) × P(B) = 0.4 × 0.4 = 0.16Therefore, the probability that both marbles drawn are black is 0.16, or (A).

Let's assume that the probability of drawing a black marble is P(B), and the probability of drawing a red marble is P(R).We are told that there are 4 black marbles and 6 red marbles in the urn. Thus, we have:P(B) = 4/10 (the probability of drawing a black marble)P(R) = 6/10 (the probability of drawing a red marble)Because we are drawing two marbles from the urn, we can use the following formula to calculate the probability of both events happening: P(A and B) = P(A) × P(B), where P(A and B) is the probability of both events happening, and P(A) and P(B) are the probabilities of the individual events happening.To find the probability of both marbles being black, we can use this formula:P(B and B) = P(B) × P(B)First marble is black: P(B) = 4/10 = 0.4Second marble is black: P(B) = 4/10 = 0.4Using the formula above:P(B and B) = P(B) × P(B) = 0.4 × 0.4 = 0.16Therefore, the probability that both marbles drawn are black is 0.16, or (A).

To know more about probability Visit:

https://brainly.com/question/31828911

#SPJ11

Solve 6 sin(3x) = 4 for the two smallest positive solutions A and B, with A

Answers

The two smallest positive solutions A and B, with A < B, are:A = (1/3)sin⁻¹(2/3) + (2π/3) ≈ 0.515, andB = (π/3) - (1/3)sin⁻¹(2/3) + (2π/3) ≈ 1.199.There are an infinite number of solutions to the equation, but we only need to find the two smallest positive solutions.

To solve the equation 6 sin(3x) = 4 for the two smallest positive solutions A and B, with A < B, we can follow the steps below:Step 1: Divide each side of the equation by 6 to isolate sin(3x):sin(3x)

= 4/6

= 2/3 Step 2 : Use the inverse sine function to solve for

3x:3x

= sin⁻¹(2/3) + k(2π) or 3x

= π - sin⁻¹(2/3) + k(2π),

where k is an integer.Step 3: Divide each side by 3 to solve for

x:x

= (1/3)sin⁻¹(2/3) + (2kπ)/3 or x

= (π/3) - (1/3)sin⁻¹(2/3) + (2kπ)/3,

where k is an integer.The two smallest positive solutions A and B, with A < B, are:

A = (1/3)sin⁻¹(2/3) + (2π/3) ≈ 0.515, andB

= (π/3) - (1/3)sin⁻¹(2/3) + (2π/3) ≈ 1.199.

There are an infinite number of solutions to the equation, but we only need to find the two smallest positive solutions.

To know more about equation visit:

https://brainly.com/question/29657983

#SPJ11

A study compares the effectiveness of washing the hands with soap and rubbing the hands with alcohol in hospitals. One group of health care workers used hand rubbing, while a second group used hand washing to clean their hands. The bacterial count (number of colony-forming units) on the hand of each worker was recorded. The table below shows the descriptive statistics on the bacteria counts for the two groups. Complete parts a through c below. Standard Deviation Mean 36 62 Hand rubbing Hand washing 55 92 a. For hand rubbers, form an interval that contains about 95% of the bacterial counts. (Note: The bacterial count cannot be less than 0.) (Round to the nearest tenth as needed.) b. Repeat part a for hand washers. (Round to the nearest tenth as needed.)

Answers

A. For hand rubbers, the interval that contains about 95% of the bacterial counts is [0, 134].b. For hand washers, the interval that contains about 95% of the bacterial counts is [0, 202].

a) For hand rubbers, an interval that contains about 95% of the bacterial counts is given byLower limit=mean-2 standard deviation=62-2*36=62-72=-10 (since bacterial count cannot be negative, the lower limit is 0)

Upper limit=mean+2 standard deviation=62+2*36=62+72=134

The interval that contains about 95% of the bacterial counts for hand rubbers is [0, 134].

b) For hand washers, an interval that contains about 95% of the bacterial counts is given byLower limit=mean-2 standard deviation=92-2*55=92-110=-18 (since bacterial count cannot be negative, the lower limit is 0)

Upper limit=mean+2 standard deviation=92+2*55=92+110=202

The interval that contains about 95% of the bacterial counts for hand washers is [0, 202].

Hence, the answer to the given question is:

a. For hand rubbers, the interval that contains about 95% of the bacterial counts is [0, 134].b. For hand washers, the interval that contains about 95% of the bacterial counts is [0, 202].

Know more about  interval here,

https://brainly.com/question/11051767

#SPJ11

Other Questions
Select a situation or scenario in which data mining, statistical observations, or data analysis was used to help with decision making or problem solving. This can be a current article or news item that illustrates the "real life" applications of a key analytical concepts or strategies discussed in the Ragsdale text. Student will present a summary of the scenario and how it relates to specific concepts/theories presented in the course. The scenarios can be personal situations, a historical example of using data for decision making, how industry uses data to determine trends, or how a Fortune 500 company uses data analysis as part of their strategy, The required elements of presentation are:(a) An overview of the problem, challenge, or decision being made(b) What data was used, collected, or analyzed(c) What data modeling or analysis was applied to assist with the decision making process(d) How the outcomes of this data analysis benefitted the organization and/or provided competitive advantage the phrase darwin used to describe his broad theory of evolution is ''descent with blank.''target 1 of 7 2. all of life is related through common ancestry, accounting for the blank of 2 of 7 3. the blank of life arises from the adaptation of species to different habitats over long spans of time. the date on which cash dividends are paid is on the of payment. of declaration. of record. day of the fiscal year-end. There are four types of unemployment discussed in our textbook. Please define at least one type and provide an example of this type of unemployment. Please try to provide unique examples rather than just repeating an example of another student. Karen hires Madison, a college student, to baby sit her daughter, Amelia, when she goes out in the evenings Karen wants Amelia to go to bed by BPM and only eat healthy snacks Amelia, however, can be difficult when Madison tries to get her to go to bed at 8PM and whines until Madison gives her potato chips Amelia usually gives in and lets her stay up late eating unhealthy snacks As a result, Karen finds that it is difficult to get Amelia up in time to get her to daycare the next morning What kind of problem is this? Consider the purchase of an existing bond selling for $1,150. This bond has 28 years to maturity, pays a 12 percent annual coupon, and is callable in 8 years for $1,100. What is the bond's yield to call (YTC)? A) 10.05%. B) 9.26%. C) 10.34%. D) 10.55%. 20% of US adults say they are more thaly to make purchases during a sales tax hollday You randomly select 10 adus Find the probability that the number of adults who say they are more likely to make pu Susan has a $2,000,000 retirement account. Beginning today, Susan wishes to withdraw the first of twenty-five equal annual payments but still have $400,000 remaining after the final withdrawal. Assuming the retirement account will earn 7.5 percent per year, how much can she withdraw each period? Variable expenses 1914,000 Contribution margin 1,849,000 Fixed expensest Advertising, salaries, and other fixed out-of-pocket costs $ 781,000 Depreciation 583 000 Total fixed expenses 1,364,000 Net operating income $ 485,000 Click here to view Exibit 128-1 and Exhibit 12B-2. to determine the appropriate discount factor(s) using table. 15. Assume a postaudit showed that all estimates (including total sales) were exactly correct except for the variable expense ratio, which actually turned out to be 45%. What was the project's actual simple rate of retur? (Round your answer to 2 decimal places.) Simple rate of return % Find the points of horizontal tangency (if any) to the polar curve. r = 3 csc + 5 0 < 2? Question 2 (15 marks) (27 minutes)Tomboya CC has two production departments (F and G) and two service departments (Canteen and Maintenance). Labour hours are used as an allocation base in the two labour intensive production departments, they total 2000 and 1800 respectively.Total allocated and apportioned general overheads after the primary allocation for each department are as follows:F G Canteen MaintenanceN$125 000 N$80 000 N$20 000 N$40 000Canteen and Maintenance perform services for both production departments and to one another in the following proportions.F G Canteen Maintenance% of Canteen 60 25 - 15% of Maintenance 65 35 10 -Required:2.1 What are the overheads allocated to each production department if the secondary allocation is done according to the mathematical method? [9]2.2 What are the overheads allocated to each production if the secondary allocation is done according to the direct method? [4]2.3 calculate departmental absorption rates for F and G following the secondary allocation in 2.2 [2] N2(g) + O2(g) 2NO(g)as the concentration of N2(g) increases, the concentration of O2(g) will:a) decreaseb) increasec) remain the same Subject: Life and works of RizalPlease, Do not Handwritten the answer, Thank you1. What is your own interpretation of the death of Rizal?2. What are some short insights about the trial, retractions A monochromatic light source moves through a double slit apparatus and produces a diffraction pattern. The following data is observed: n=1 x = 0.0645 m /= 0.545 m d = 2.24 x 10 m Calculate theta. O a. 7 O b. 83 OC. 0.0002 O d. 0.86 A 60 kg astronaut in a full space suit (mass of 130 kg) presses down on a panel on the outside of her spacecraft with a force of 10 N for 1 second. The spaceship has a radius of 3 m and mass of 91000 kg. Unfortunately, the astronaut forgot to tie herself to the spacecraft. (a) What velocity does the push result in for the astronaut, who is initially at rest? Be sure to state any assumptions you might make in your calculation.(b) Is the astronaut going to remain gravitationally bound to the spaceship or does the astronaut escape from the ship? Explain with a calculation.(c) The quick-thinking astronaut has a toolbelt with total mass of 5 kg and decides on a plan to throw the toolbelt so that she can stop herself floating away. In what direction should the astronaut throw the belt to most easily stop moving and with what speed must the astronaut throw it to reduce her speed to 0? Be sure to explain why the method you used is valid.(d) If the drifting astronaut has nothing to throw, she could catch something thrown to her by another astronaut on the spacecraft and then she could throw that same object.Explain whether the drifting astronaut can stop if she throws the object at the same throwing speed as the other astronaut. the division of the cell's cytoplasm in a eukaryotic cell is known as: fargo corporation distributes property (basis of $1,458,400 and fair market value of $1,750,080) to a shareholder. fargo corporation has sufficient e & p for its distributions. You are testing the null hypothesis that there is no linearrelationship between two variables, X and Y. From your sample ofn=18, you determine that b1=3.6 and Sb1=1.7. Construct a95% confidence int If you hire the services of a consolidator to transport 100kg ofcargo, how much are you saving by engaging a consolidator and not acarrier directly? the financial system's primary concern is funneling money from