as you cool below a phase transformation temperature, the transformation rates for both nucleation and growth initially increase with decreasing temperature because... as you cool below a phase transformation temperature, the transformation rates for both nucleation and growth initially increase with decreasing temperature because... ...the entropy and enthalpy of the phase transformation are equal to one another. ...diffusivity decreases. ...the absolute difference in free energy between parent and product phases increases. ...diffusivity increases. ...the energy required to form an interface between the parent and product phase decreases.

Answers

Answer 1

The completed sentence is:


As you cool below a phase transformation temperature, the transformation rates for both nucleation and growth initially increase with decreasing temperature because "the absolute difference in free energy between parent and product phases increases" (Option C)

What is nucleation?

Nucleation is simply described as the initial random development of a separate thermodynamic new phase.

This is also called daughter phase or nucleus (an ensemble of atoms)) within the body of a metastable parent phase that has the capacity to irreversibly evolve into a bigger-sized nucleus.

Learn more about nucleation :
https://brainly.com/question/31651884
#SPJ4


Full Question:

as you cool below a phase transformation temperature, the transformation rates for both nucleation and growth initially increase with decreasing temperature because...

the entropy and enthalpy of the phase transformation are equal to one another. ...

diffusivity decreases. ...

the absolute difference in free energy between parent and product phases increases. ...

the energy required to form an interface between the parent and product phase decreases


Related Questions

a solution is made by mixing 7.25 g CaCl2 with enough water to make 150 mL of solution. what is the molarity

Answers

A solution is made by mixing 7.25 g CaCl[tex]_2[/tex] with enough water to make 150 mL of solution. 0.433M is the molarity.

The amount of a material in a solution expressed as a proportion of its volume is referred to as "molar concentration" in chemistry. Molarity, amount concentration, and substance concentration are other terms that can be used to describe it. The most common unit used in chemistry to express molarity is the number of moles per litre, which is represented by the unit signs mol/L and mol/dm³ in SI units. One mol/L is the definition of one molar, and 1 M, of a solution's concentration.

Molarity is calculated as follows: moles per litre of solution

number of moles = 7.25/ 110.98

                           = 0.065

150 mL/1000= 0.15L

Molarity =  0.065 /0.15

                =0.433M

To know more about molarity, here:

brainly.com/question/31545539

#SPJ1

Read more on Brainly.com - https://brainly.com/question/32360461#readmore

to what volume should you dilute 50 ml of a 12 m stock hno3 solution to obtain a 0.137 hno3 solution?

Answers

To obtain a 0.137 HNO3 solution from a 12 M stock solution, you need to dilute it to a certain volume.

The first step is to use the formula C1V1 = C2V2, where C1 is the initial concentration, V1 is the initial volume, C2 is the final concentration, and V2 is the final volume. Rearranging this formula, you can find the final volume needed:
V2 = (C1V1) / C2

Plugging in the values, you get:
V2 = (12 M x 50 ml) / 0.137 M
V2 = 4381.75 ml or 4.38175 L

Therefore, to obtain a 0.137 HNO3 solution from a 12 M stock solution, you need to dilute 50 ml of the stock solution to a final volume of 4.38175 L. This can be achieved by adding the appropriate amount of solvent, such as water, to the stock solution.

It is important to note that when diluting acids, you should always add the acid to the solvent slowly and with constant stirring to avoid splashing or spilling.

For more question on diluting acids

https://brainly.com/question/30438224

#SPJ11

To obtain a 0.137 HNO3 solution from a 12 M stock HNO3 solution, you will need to dilute the stock solution. The first step is to use the formula C1V1 = C2V2, where C1 is the concentration of the stock solution (12 M), V1 is the volume of the stock solution you will use, C2 is the desired concentration (0.137 M), and V2 is the final volume of the solution.

Therefore, the calculation is:

(12 M) (V1) = (0.137 M) (V2)

Solving for V2:

V2 = (12 M)(V1) / (0.137 M)

Now you need to substitute the values. You want to dilute 50 mL of the stock solution to obtain the desired concentration of 0.137 M.

So, V1 = 50 mL and C2 = 0.137 M.

V2 = (12 M)(50 mL) / (0.137 M)

V2 = 4380.29 mL or approximately 4.4 L

Therefore, you need to dilute 50 mL of the 12 M stock HNO3 solution to a final volume of approximately 4.4 L to obtain a 0.137 M HNO3 solution.

Stock solutions are commonly used in scientific research, pharmaceutical manufacturing, and various laboratory procedures. They provide a convenient way to accurately and consistently prepare solutions of desired concentrations by diluting the stock solution with a suitable solvent.

To create a stock solution, a known quantity of a solute (such as a solid or liquid) is dissolved in a solvent (usually a liquid) to achieve a high concentration. The concentration of the stock solution is often expressed in terms of molarity (moles of solute per liter of solution) or percentage (%).

When a lower concentration solution is needed, a specific volume of the stock solution is measured and diluted with additional solvent to achieve the desired concentration. This process is often performed using volumetric flasks or pipettes to ensure accurate measurements.

It is important to properly label and store stock solutions to maintain their stability and prevent contamination. The stability and shelf life of a stock solution depend on various factors, including the nature of the solute and solvent, storage conditions (temperature, light exposure, etc.), and any specific instructions provided by the manufacturer.

Overall, stock solutions play a crucial role in scientific and laboratory settings by providing a standardized and efficient way to prepare solutions of known concentrations for experimental and analytical purposes.

Learn more about stock solution click here:

https://brainly.in/question/17507550

#SPJ11

using any data you can find in the aleks data resource, calculate the equilibrium constant K at 25° C for the following reaction. N2 + O2 ---> 2NO
Round your answer to 2 signiicant digits.

Answers

The equilibrium constant (K) for the given reaction, N2 + O2 ⇌ 2NO, at 25°C.



To calculate the equilibrium constant, K, you need to know the concentrations (or partial pressures) of the reactants and products at equilibrium. The equilibrium constant expression for the reaction is written as:

K = [NO]^2 / ([N2] * [O2])

To determine the equilibrium constant, you would need experimental data, such as the concentrations or partial pressures of N2, O2, and NO at equilibrium. Once you have these values, substitute them into the equilibrium constant expression and calculate the value of K.

The equilibrium constant, K, is a dimensionless quantity that represents the ratio of the concentrations of products to reactants at equilibrium. It provides insight into the extent of the reaction and the relative concentrations of reactants and products in the equilibrium mixture.

To learn more about equilibrium:

https://brainly.com/question/30694482

#SPJ11

select all the ways in which a stress may be applied to a system at equilibrium.

Answers

Stress can be applied to a system at equilibrium by changing the concentration, temperature, or pressure of the system.

A system at equilibrium is one in which the forward and reverse reactions are occurring at the same rate, and the concentrations of reactants and products remain constant.

Any change in the conditions of the system can cause a shift in equilibrium, resulting in changes in concentrations of reactants and products. There are several ways in which stress may be applied to a system at equilibrium.
One way to apply stress is by changing the concentration of one of the reactants or products. This can be done by adding or removing one of the substances from the system. If a reactant is added, the equilibrium will shift towards the products to consume the excess reactant. Similarly, if a product is removed, the equilibrium will shift towards the reactants to replenish the lost product.
Another way to apply stress is by changing the temperature of the system. This can be done by heating or cooling the system. An increase in temperature will cause the equilibrium to shift in the direction of the endothermic reaction, while a decrease in temperature will cause the equilibrium to shift towards the exothermic reaction.
A third way to apply stress is by changing the pressure of the system. This can be done by changing the volume of the container or by adding or removing a gas. An increase in pressure will cause the equilibrium to shift towards the side with fewer moles of gas, while a decrease in pressure will cause the equilibrium to shift towards the side with more moles of gas.
In summary, stress can be applied to a system at equilibrium by changing the concentration, temperature, or pressure of the system.

learn more about concentration

https://brainly.com/question/11850086

#SPJ11

provide the reagent(s) necessary to carry out the following conversion. group of answer choices h2/ni all of these 1. lialh4 2. h2o nabh4/ch3oh fe/hcl

Answers

To carry out the conversion, the most suitable reagent is [tex]LiAlH_4[/tex] (lithium aluminum hydride), as it's a strong reducing agent (option b).

[tex]LiAlH_4[/tex] (lithium aluminum hydride) is the most appropriate reagent for this conversion because it is a powerful reducing agent capable of reducing various functional groups, such as carbonyl groups, carboxylic acids, and esters.

While other options like [tex]H_2[/tex]/Ni and [tex]NaBH_4[/tex]/CH3OH can also perform reductions, they are not as versatile or efficient as [tex]LiAlH_4[/tex]. [tex]H_2[/tex]/Ni is primarily used for reducing double bonds and [tex]NaBH_4[/tex]/[tex]CH_3OH[/tex] is a milder reducing agent for carbonyl groups.

Fe/HCl is not suitable for the conversion, as it is used for different purposes, like reducing nitro groups to amines.

Thus, the correct choice is (b) [tex]LiAlH_4[/tex]

For more such questions on lithium, click on:

https://brainly.com/question/28449914

#SPJ11

"nabh4/ch3oh".

The reagent "nabh4/ch3oh" is used for reducing carbonyl groups such as aldehydes and ketones to their corresponding alcohols.

This reaction is known as "reductive amination" and is used to synthesize secondary amines. The reagent mixture consists of sodium borohydride (nabh4) as the reducing agent and methanol (ch3oh) as the solvent. This reagent is preferred over other reducing agents because it is mild and selective, and it does not reduce other functional groups such as double bonds or aromatic rings. Additionally, it can be used in aqueous or organic solvents, making it a versatile reagent for many types of reactions.

Learn more about reactions here:

https://brainly.com/question/28984750

#SPJ11

e6a.5(a) write the equilibrium constant for the reaction p4(s) 6h2(g) ? 4ph3(g), with the gases treated as perfect.

Answers

Equilibrium constant for the reaction P[tex]_4[/tex](s) + 6H[tex]_2[/tex](g) → 4PH[tex]_3[/tex](g) with the gases treated as perfect is K = [tex][PH_3]^4 / [H_2]^6[/tex]

To write the equilibrium constant for the reaction P[tex]_4[/tex](s) + 6H[tex]_2[/tex](g) → 4PH[tex]_3[/tex](g) with the gases treated as perfect, we'll follow these steps:

1. Identify the balanced chemical equation: P[tex]_4[/tex](s) + 6H[tex]_2[/tex](g) → 4PH[tex]_3[/tex](g)
2. Recognize that the equilibrium constant (K) is the ratio of the concentrations of the products to the concentrations of the reactants, each raised to the power of their stoichiometric coefficients.
3. Write the equilibrium constant expression for this reaction: K = [tex][PH_3]^4 / ([P_4] * [H_2]^6)[/tex]

As P[tex]_4[/tex] is solid, its concentration remains constant and doesn't affect the equilibrium. Therefore, we can simplify the equilibrium constant expression to:

[tex][PH_3]^4 / [H_2]^6[/tex]

In this expression, K represents the equilibrium constant, [PH[tex]_3[/tex]] represents the concentration of PH[tex]_3[/tex] at equilibrium, and [H[tex]_2[/tex]] represents the concentration of H[tex]_2[/tex] at equilibrium. The gases are treated as perfect in this case, so the ideal gas law can be applied to calculate their concentrations if needed.

Learn more about equilibrium constant here:

https://brainly.com/question/31321186

#SPJ11

Consider the reaction:
Fe2O3(s) + 3H2(g) ⇄ 2Fe(s) + 3H2O(g)
Given: ΔH° = 100 kJ and ΔS° = 138 J/K, at what temperature would the equilibrium constant K = 1?

Answers

The equilibrium constant K will be equal to 1 at 724.64 K.

To solve this problem, we can use the equation;

ΔG° = -RTln(K)

where ΔG° is the standard Gibbs free energy change,

R is the gas constant,

T is the temperature in Kelvin, and

K is the equilibrium constant.

We can also use the equations ΔG° = ΔH° - TΔS° and ΔG° = 0 at equilibrium.

Setting these two equations equal to each other and solving for T, we get:

ΔH° - TΔS° = -RTln(K)
100,000 - T(138) = -(8.314)(ln(1))
100,000 - 138T = 0
T = 724.64 K

Therefore, at a temperature of 724.64 K (451.49°C), the equilibrium constant K would equal 1.

Learn more about equilibrium constant here:

https://brainly.com/question/31321186

#SPJ11

what stereochemical configuration do most amino acids take in vivo?

Answers

In vivo, most naturally occurring amino acids adopt the L-configuration or the L-stereoisomer. The L-configuration refers to the spatial arrangement of atoms around the central carbon atom (the α-carbon) in the amino acid molecule. In this configuration, the amino group (-NH2) is positioned to the left, and the carboxyl group (-COOH) is positioned to the right when the molecule is drawn in the Fischer projection.

The prevalence of the L-configuration in amino acids can be attributed to the evolutionary history of life on Earth. It is believed that early biochemical processes favored the production of L-amino acids, possibly due to the asymmetry created by certain enzymatic reactions. Over time, this bias toward L-amino acids became dominant in living organisms.

The stereoisomer D-configuration, on the other hand, is less common in naturally occurring amino acids. D-amino acids can be found in certain organisms, such as bacteria, and in special contexts, such as in the cell walls of some bacteria or in peptides produced by non-ribosomal peptide synthesis. However, they are generally rare in proteins found in living systems.

It is important to note that while L-amino acids are predominant in proteins, there are exceptions. For instance, the amino acid glycine lacks a chiral center and is achiral, meaning it does not have a specific L- or D-configuration. Additionally, some non-proteinogenic amino acids, which are not incorporated into proteins, may have different stereochemical configurations.

Overall, the L-configuration is the most commonly observed stereochemical configuration for amino acids in vivo, playing a crucial role in the structure, function, and chemistry of proteins in living organisms.

Learn more about Amino Acid Stereochemistry :

https://brainly.com/question/31588173

#SPJ11

rank the following ionic compounds by lattice energy. rank from highest to lowest lattice energy.

Answers

The order of ionic compounds by lattice energy from highest to lowest is CaO > AlCl₃ > MgO > NaCl. Lattice energy is a measure of the strength of the electrostatic forces holding the ions in an ionic compound together.

The greater the lattice energy, the stronger the ionic bond. The lattice energy depends on the charge and size of the ions in the compound. The smaller the size of the ions and the higher the charge, the greater the lattice energy.

The following ionic compounds are listed in order of increasing lattice energy:
1. NaCl (sodium chloride)
2. MgO (magnesium oxide)
3. AlCl₃ (aluminum chloride)
4. CaO (calcium oxide)

The highest lattice energy is found in CaO, followed by AlCl3, MgO, and NaCl.
CaO has the highest lattice energy due to the smaller size of its ions and the higher charge on the ions. Calcium ions (Ca⁺) are smaller than sodium ions (Na⁺) and magnesium ions (Mg²⁺), and oxygen ions (O²⁻) are smaller than chloride ions (Cl-). The higher charge on the ions in CaO also contributes to the higher lattice energy.

AlCl₃ has the second highest lattice energy due to the small size of the ions and the high charge on the aluminum ion (Al³⁺). MgO has the third highest lattice energy due to the smaller size of the ions compared to NaCl. NaCl has the lowest lattice energy due to the larger size of the ions and the lower charge on the ions.

In summary, the order of ionic compounds by lattice energy from highest to lowest is CaO > AlCl₃ > MgO > NaCl.

To know more about lattice energy, refer

https://brainly.com/question/13169815

#SPJ11

1. List at least 4 peaks you would expect to identify in an IR spectrum for Nylon 6,6. Create it in a table composed of: Peaks Position Observed (cm) and Assignment (functional group) 2. Briefly explain two differences between the preparation of Addition polymers and Step-growth polymers.

Answers

Unsaturated monomers are added to create a polymer chain without any byproducts being eliminated to create additional polymers. Polyethylene and polypropylene are a couple of examples of additional polymers.

Step-growth polymers, in contrast, are created by reacting two or more monomers, frequently with functional groups, to create a polymer chain by getting rid of tiny molecules like water or alcohol. Polymers with a step-growth pattern include nylon and polyester. Thus, step-growth polymerization involves the interaction of monomers with the elimination of small molecules to form a polymer, whereas addition polymerization involves the addition of monomers to build a polymer without the generation of by-products.

To know more about Unsaturated monomers, here

brainly.com/question/14466829

#SPJ4

--The complete Question is, Briefly explain two differences between the preparation of Addition polymers and Step-growth polymers. --

In order to be fully prepared prior to conducting a lab, the teacher should
A Have a written and tested procedure to follow.
B Practice the lab before the students do the activity.
C Think through any issues such as amount of equipment needed and possible areas of congestion.
D All of the above.

Answers

To be fully prepared prior to conducting a lab, the teacher should:

A. Have a written and tested procedure to follow.

How can teachers ensure they are adequately prepared for lab sessions?

Planning and organization are crucial for teachers to be fully prepared before conducting a lab. Firstly, teachers need to carefully plan the experiment by clearly defining the objectives, materials required, and step-by-step procedures. This ensures that the lab runs smoothly and efficiently, maximizing the learning opportunities for students.

Secondly, teachers should organize the necessary equipment and resources in advance. They must ensure that all the materials, chemicals, instruments, and safety measures are readily available and properly set up. This not only saves valuable time during the lab session but also ensures a safe and controlled environment for students.

Furthermore, thorough preparation involves familiarizing oneself with the experiment by conducting a trial run, anticipating potential challenges, and identifying any modifications or adjustments needed. This proactive approach allows the teacher to address any issues beforehand and provide clear instructions to students, enhancing the overall learning experience.

Learn more about prepared prior

brainly.com/question/13654980

#SPJ11

how many chlorine atoms are there in 12.5 g of CCl4

Answers

The number of atoms of chlorine present in the compound is 1.96 x 10²³ atoms.

What is the number of chlorine atom in CCl₄?

The number of chlorine atom present in CCl₄ is calculated as follows;

The molar mass of the given compound is calculated as follows;

CCl₄  = C (12g/mol) + Cl (35.5 g/mol) x 4

CCl₄  = 154 g/mol

The number of moles of the given compound is calculate as follows;

n = reactant mass / molar mass

n = ( 12.5 g ) / ( 154 g/mol)

n = 0.081 mole

The number of moles of chlorine present in the compound is calculated as follows;

Cl₄ = 4 x 0.081 mole = 0.325 mol

The number of atoms of chlorine present in the compound is calculated as follows;

1 mole = 6.022 x 10²³ atoms

0.325 mole = ?

= 0.325 x 6.022 x 10²³ atoms

= 1.96 x 10²³ atoms

Learn more about number of atoms here: https://brainly.com/question/6258301

#SPJ1

predict the molecular structure, bond angles, and polarity (dipole moment) for each of the following. formula molecular structure bond angles dipole moment if4 co2 krf4 xef2 brf5 pf5

Answers

IF4: Seesaw, bond angles 90 and 120; CO2: Linear, bond angles 180, KRF4: Square planar, bond angle 90, XeF2: linear, bond angle 80, BrF5: Square pyramidal, bond angles 90 and 120, PF5: Trigonal bipyramidal: Bond angles 90 and 120 in case of molecular structure.

IF4: The molecular structure of IF4 is seesaw (trigonal bipyramidal with one lone pair), with bond angles of approximately 90° and 120°. The molecule is polar due to the lone pair of electrons on the central atom, resulting in a dipole moment.

CO2: The molecular structure of CO2 is linear, with bond angles of 180°. The molecule is nonpolar due to the symmetrical arrangement of the two polar bonds, resulting in a zero dipole moment.

KRF4: The molecular structure of KRF4 is square planar, with bond angles of 90°. The molecule is nonpolar due to the symmetrical arrangement of the four polar bonds, resulting in a zero dipole moment.

XeF2: The molecular structure of XeF2 is linear, with bond angles of 180°. The molecule is polar due to the lone pair of electrons on the central atom, resulting in a dipole moment.

BrF5: The molecular structure of BrF5 is square pyramidal, with bond angles of approximately 90° and 120°. The molecule is polar due to the asymmetrical arrangement of the five polar bonds, resulting in a dipole moment.

PF5: The molecular structure of PF5 is trigonal bipyramidal, with bond angles of approximately 90° and 120°. The molecule is polar due to the asymmetrical arrangement of the five polar bonds, resulting in a dipole moment.

Learn more about molecular structure here:

https://brainly.com/question/29857692


#SPJ11

Modern drug discovery often starts with a large library of compounds. These library studies are important because a. Select one: cancerous tissue is much more difficult to target than foreign invaders. b. the search will definitely yield a new candidate drug. c. the search may yield a number of possible framework pieces to build into a good drug. d. old drugs will never be effective against new targets.

Answers

The answer to the question is c. The library studies may yield a number of possible framework pieces to build into a good drug.                                                                                                                                                                                              

Modern drug discovery is a complex and time-consuming process that involves screening large libraries of compounds to identify potential candidates for further development. While the ultimate goal is to find a new drug that is effective against a specific disease or condition, it is often the case that the initial screening process yields multiple compounds that may be useful in developing a new drug.
This process is essential for addressing evolving health challenges and improving therapeutic options. While not every search guarantees a new candidate drug, the possibility of finding multiple framework pieces makes these studies valuable in drug discovery.

Learn more about drug here:
https://brainly.com/question/29767316

#SPJ11

Calculate the ?G°rxn using the following information: 4HNO3 (g) + 5N2H4 (l) --> 7N2(g) + 12H2O (l) ?H= -133.9 50.6 -285.8 ?S= 266.9 121.2 191.6 70.0 ?H is in kJ/mol and ?S is in J/mol the answer needs to be in kJ I got -3298.2648 but that is wrong. Could someone please explain how to do this well please?

Answers

ΔG°rxn is calculated using the equation ΔG°rxn = ΔH°rxn - TΔS°rxn, where ΔH°rxn is the standard enthalpy change and ΔS°rxn is the standard entropy change.

How do you calculate the standard Gibbs free energy change (ΔG°rxn) for a given reaction?

To calculate the standard Gibbs free energy change (ΔG°rxn) for the given reaction, we use the equation:

ΔG°rxn = ΔH°rxn - TΔS°rxn

where ΔH°rxn is the standard enthalpy change and ΔS°rxn is the standard entropy change.

Given:

ΔH°rxn = -133.9 kJ/mol + 50.6 kJ/mol - 285.8 kJ/mol = -368.7 kJ/mol

ΔS°rxn = 266.9 J/mol + 121.2 J/mol + 191.6 J/mol - 70.0 J/mol = 509.7 J/mol

To convert ΔS°rxn to kJ/mol, divide by 1000:

ΔS°rxn = 0.5097 kJ/mol

Assuming a temperature of 298 K, we can now calculate ΔG°rxn:

ΔG°rxn = -368.7 kJ/mol - (298 K * 0.5097 kJ/mol) = -368.7 kJ/mol - 152.0026 kJ/mol = -520.7026 kJ/mol

Therefore, the correct value of ΔG°rxn is -520.7026 kJ/mol. It appears that your calculated value of -3298.2648 kJ/mol is incorrect, likely due to an error in the calculation.

Learn more about ΔG°rxn

brainly.com/question/31745388

#SPJ11

Which of the following statements is (are) true about ring opening of epoxides with nucleophiles?
A. All nucleophiles ring-open epoxides with backside attack.
B. Ring-opening of epoxides always follows an SN1 mechanism.
C. Nucleophilic attack always occurs at the less substituted carbon atom.
D. Both A and C.

Answers

Option D is true, which means that all nucleophiles ring-open epoxides with backside attack, and nucleophilic attack always occurs at the less substituted carbon atom.

This is because epoxides are strained cyclic compounds that have a considerable amount of ring strain. This makes them very reactive and susceptible to ring-opening reactions. When a nucleophile attacks an epoxide, it usually does so from the backside of the molecule because this minimizes the steric hindrance that would be caused by the oxygen atom and the substituent on the more substituted carbon atom. This backside attack results in the formation of a new bond between the nucleophile and the less substituted carbon atom, leading to the opening of the ring. This process usually follows an SN2 mechanism because it involves the simultaneous breaking of one bond and the formation of another. Therefore, option B is false because ring-opening of epoxides typically follows an SN2 mechanism, not SN1. In summary, nucleophilic ring-opening of epoxides occurs with backside attack and usually involves the less substituted carbon atom, making option D the correct answer.

learn more about atom

https://brainly.com/question/1566330

#SPJ11

A radioactive isotope initially has an activity of 400,000 Bq.Two days after the sample is collected,its activity is observed to be 170,000 Bq.What is the half-life of this isotope

Answers

The half-life of the radioactive isotope is approximately 1.42 days.


1. First, let's determine the decay constant (k) using the initial activity (A₀ = 400,000 Bq) and the observed activity after two days (A = 170,000 Bq).
2. Use the radioactive decay formula: A = A₀ * e^(-kt), where A is the observed activity, A₀ is the initial activity, k is the decay constant, and t is the time elapsed (in this case, 2 days).
3. Rearrange the formula to find k: k = -(1/t) * ln(A/A₀) = -(1/2) * ln(170,000/400,000).
4. Calculate k: k ≈ 0.4866.
5. Now, we can find the half-life (T) using the decay constant (k) and the formula T = ln(2)/k.
6. Calculate the half-life: T ≈ 1.42 days.

The half-life of the radioactive isotope is approximately 1.42 days, given the initial activity of 400,000 Bq and the observed activity of 170,000 Bq after two days.

To know more about half-life, visit;

https://brainly.com/question/1160651

#SPJ11

use the periodic table to determine the number of 3p electrons in si .

Answers

Silicon (Si) has 4 electrons in its 3p subshell.


1. Locate Silicon (Si) on the periodic table. You will find that its atomic number is 14, which means it has 14 electrons in total.
2. To determine the electron configuration, we can use the Aufbau principle, which states that electrons occupy the lowest energy levels available.
3. The electron configuration of Si can be written as 1s² 2s² 2p⁶ 3s² 3p².
4. Focus on the 3p subshell, as indicated by the "3p" term in the electron configuration. The superscript (²) tells us there are 4 electrons in the 3p subshell.

Using the periodic table and the Aufbau principle, we determined that Silicon (Si) has 4 electrons in its 3p subshell.

To know more about subshell, visit;

https://brainly.com/question/28765634

#SPJ11

select all reagents that are capable of reducing aldehydes to 1° alcohols. multiple select question. lialh4 k2cr2o7, h2so4, h2o nabh4

Answers

Out of the given options, only two reagents are capable of reducing aldehydes to 1° alcohols, namely LiAlH4 and NaBH4. LiAlH4 is a powerful reducing agent that can reduce almost all carbonyl compounds to the corresponding alcohols.

On the other hand, NaBH4 is milder and selective in reducing only aldehydes and ketones to their respective alcohols. K2Cr2O7 is an oxidizing agent, not a reducing agent, and therefore cannot be used for this purpose. H2SO4 and H2O are not reducing agents but are commonly used as solvents and reagents in other types of chemical reactions. In summary, if the task is to reduce aldehydes to 1° alcohols, LiAlH4 or NaBH4 are the reagents of choice, depending on the level of selectivity and strength required.

To know more about Reagents  visit :

https://brainly.com/question/31228572

#SPJ11

A gas contains 4.63 g N2 in a 2.20 L container at 38 °C. What is the pressure of this sample? O a. 0.234 atm O b.191 Torr Oc. 1504 atm O d. 0.234 Torr O e. 1.91 atm

Answers

To calculate the pressure of the gas sample, we need to use the Ideal Gas Law equation: PV = nRT, where P is pressure, V is volume, n is the number of moles, R is the gas constant, and T is temperature.                                                          

First, we need to convert the mass of N2 to moles by dividing by its molar mass (28 g/mol): 4.63 g N2 / 28 g/mol = 0.165 moles. We also need to convert the temperature to Kelvin by adding 273.15: 38 °C + 273.15 = 311.15 K. Plugging in the values, we get: P x 2.20 L = 0.165 moles x 0.08206 L.atm/mol.K x 311.15 K. Solving for P, we get P = 1.91 atm. Therefore, the answer is e. 1.91 atm.
Convert the temperature to Kelvin: 38°C + 273.15 ≈ 311.15 K. Now, plug in the values: P * 2.20 L = 0.165 mol * 0.0821 L atm / (mol K) * 311.15 K. Solving for P, we get P ≈ 0.234 atm. Therefore, the pressure of this sample is 0.234 atm (Option a).

Learn more about Ideal Gas Law here:
https://brainly.com/question/12624936

#SPJ11

what is the major product of the following reaction? nh3 nabr4

Answers

The major product of the reaction between NH[tex]_{3}[/tex] (ammonia) and NaBH[tex]^{4}[/tex] (sodium borohydride) is N2H[tex]^{4}[/tex] (hydrazine) and NaBr (sodium bromide).

The reaction proceeds as a reduction, with NaBH[tex]^{4}[/tex] acting as a reducing agent and NH3 as the substrate. Redox reactions involving organic substances include organic reductions, organic oxidations, and organic redox reactions. Because many redox reactions go by the nomenclature of "oxidations" and "reductions" but do not really entail the transfer of electrons, they differ from standard redox reactions in organic chemistry. Instead, gain in oxygen and/or loss in hydrogen are the pertinent criteria for organic oxidation. Ordering simple functional groups according to increasing oxidation state is possible. The oxidation percentages are simply estimates.

More on redox reactions: https://brainly.com/question/28300253

#SPJ11

place the steps involved in the reaction of a carbonyl compound with a halogen under basic conditions in the correct order, starting with the first step at the top of the list.

Answers

The steps involved in the reaction of a carbonyl compound with a halogen under basic conditions, in the correct order, are as follows: A, C, D, B.

In the first step, a base abstracts a proton from the carbonyl compound, resulting in the formation of a negatively charged species called the enolate ion. This deprotonation step increases the nucleophilicity of the carbonyl carbon.

In the second step, the enolate ion, acting as a nucleophile, attacks the halogen atom, which leads to the formation of a carbon-halogen bond. This step is an example of nucleophilic substitution.

Depending on the specific carbonyl compound and reaction conditions, a rearrangement step may occur if there is a possibility for a more stable carbocation intermediate to form. Rearrangement can lead to the formation of different constitutional isomers halogenation.

Finally, after the halogen has been attached to the carbonyl compound, the reaction is complete, and the resulting product is the halogenated carbonyl compound.

It is important to note that the exact mechanism and conditions may vary depending on the specific carbonyl compound and halogen used in the reaction.

Learn more about halogenation here

https://brainly.com/question/31756809

#SPJ11

The Complete question is

Place the steps involved in the reaction of a carbonyl compound with a halogen under basic conditions in the correct order, starting with the first step at the top of the list.

A. Formation of an enolate ion.

B. Deprotonation of the carbonyl compound by a base.

C. Rearrangement (if necessary) and formation of the halogenated carbonyl compound.

D. Attack of the halogen on the enolate ion.

a sealed glass container contains 0.2 mol of o2 gas and 0.3 mol of n2 gas. if the total pressure inside the container is 0.75 atm what is the partial pressure of o2 in the glass container?

Answers

The partial pressure of O₂ in the glass container is 0.3 atm when the total pressure inside the container is 0.75 atm

To determine the partial pressure of O₂ gas in the glass container, we need to use Dalton's Law of Partial Pressures. According to this law, the total pressure of a mixture of gases is equal to the sum of the partial pressures of each individual gas.

Total pressure (P_total) = 0.75 atm

Moles of O₂ gas (n_O₂) = 0.2 mol

Moles of N₂ gas (n_N₂) = 0.3 mol

To find the partial pressure of O₂ gas (P_O₂), we can use the formula:

[tex]P_O2 =\frac{n_O2}{n_O2 + n_N2} x P total[/tex]

Substituting the given values:

[tex]P_O2 =\frac{0.2 mol}{0.2 mol + 0.3 mol} x 0.75 atm[/tex]

[tex]P_O2 =\frac{0.2}{0.5} x 0.75 atm[/tex]

PO₂ = 0.4 x 0.75 atm

PO₂ = 0.3 atm

Therefore, the partial pressure of O₂ gas is 0.3 atm.

Learn more about Dalton's Law of Partial Pressures here:

https://brainly.com/question/14119417

#SPJ11

In a chemistry lab-Calorimetry and heat of reaction we used coffee cups and thermometers to measure the heat of reactions of 3 different solutions (also using Hess' Law)
1. KCl + H2O
2. NaOH+HCl
3. Acetic acid + NaOH
in all three calculations for q=mc(delta)T, we assumed that the final solutios all had the same density and heat capsity as pure water and in the post lab it asks:
Comment on the validity of asuming that the final solutions in all three reactions had the same specific heat and density as pure water. Be sure to consider the complete composition of the solutions you start with and what you end up with.
I have no idea why we just assumed they had the same specific heat and density of water... why can we do that?

Answers

Assuming same density and heat capacity for final solutions as water in calorimetry is valid in certain cases.

When performing calorimetry experiments, it is common to assume that the final solutions have the same specific heat and density as pure water.

This is based on the fact that water is a common solvent and is often used as a reference point in such experiments.

In some cases, this assumption may be valid, especially if the solutes in the initial solutions are relatively small and do not significantly alter the properties of the solvent.

However, it is important to consider the composition of the initial solutions and any changes that occur during the reaction.

If there are significant changes in the properties of the solution, such as the addition of large molecules or changes in pH, then the assumption of identical properties to water may not be valid.

For more such questions on density, click on:

https://brainly.com/question/26364788

#SPJ11

The specific heat and density of a solution are dependent on its composition. However, in this experiment, we assumed that the final solutions of all three reactions had the same specific heat and density as pure water. This assumption is valid if the composition of the final solutions is close to that of pure water.

The validity of this assumption can be assessed by considering the complete composition of the solutions before and after the reactions. For instance, KCl and NaOH are both salts that dissolve in water to produce aqueous solutions. Acetic acid is a weak acid that also dissolves in water. When these substances dissolve in water, they form ions that are surrounded by water molecules, which affects the heat capacity and density of the solution.
Therefore, if the final solutions after the reactions were significantly different from pure water in terms of their composition, our assumption would not be valid. In such a case, we would have to measure the specific heat and density of the final solutions accurately. However, for these particular reactions, the assumption is reasonable since the final solutions are similar in composition to pure water.

learn more about specific heat Refer: https://brainly.com/question/11297584

#SPJ11

the separation of the rotational lines in the p and r branches of 127i 35cl is 0.2284 cm−1 . calculate the bondlength.

Answers

The correct answer is 1.995 Å

The bond length in the P and R branches of a diatomic molecule is given by the following formula:

Δν = 2B - 4D

where Δν is the separation between the lines, B is the rotational constant, and D is the centrifugal distortion constant.

For the 127I35Cl molecule, we have:

Δν = 0.2284 cm^-1

We can assume that the molecule is in its ground electronic state, so the rotational constant can be related to the moment of inertia (I) and the bond length (r) as follows:

B = h / (8π^2cI) = h / (8π^2cμr^2)

where h is Planck's constant, c is the speed of light, and μ is the reduced mass of the molecule.

Substituting this expression for B into the formula for Δν and solving for r, we get:

r = √[h/(8π^2cμB)] = √[h/(8π^2cμ(Δν/2 + 2D))]

We are given that the separation between the lines in the P and R branches is Δν = 0.2284 cm^-1.

We can assume that the centrifugal distortion constants in the P and R branches are approximately equal and cancel out,

r ≈ √[h/(8π^2cμΔν)]

Plugging in the relevant constants for the I-Cl bond, we get:

μ = (127 amu)(35 amu) / (127 amu + 35 amu) = 27.28 amu

Substituting this and the other constants into the formula for r, we get:

r ≈ √[(6.626 x 10^-34 J s) / (8π^2 x 2.998 x 10^10 cm/s x 27.28 amu x 0.2284 cm^-1)] = 1.995 x 10^-10 m

Therefore, the bond length of the I-Cl bond in 127I35Cl is approximately 1.995 Å (angstroms).

To know more about bond length, refer here

https://brainly.com/question/31625763#

#SPJ11

does selling air bottles help the air quality?

Answers

Selling air bottles alone does not directly improve air quality.

Air bottles typically contain compressed or purified air, which is often marketed as a novelty or a source of fresh air in polluted areas. While inhaling clean air from such bottles may provide temporary relief or a sense of well-being, it does not address the underlying causes of air pollution or contribute to long-term improvements in air quality. Improving air quality requires comprehensive efforts at a larger scale, such as reducing emissions from industries, promoting cleaner energy sources, implementing effective environmental policies, and raising awareness about the importance of sustainable practices. These actions can have a meaningful impact on air quality by addressing pollution sources and promoting cleaner air for everyone. While selling air bottles may have niche applications in certain circumstances, it is crucial to prioritize and support broader initiatives that aim to tackle the root causes of air pollution and promote sustainable environmental practices for the benefit of both human health and the planet.

for more questions on air
https://brainly.com/question/568323
#SPJ11

A solid metal sphere has a radius of 3.53 cm and a mass of 1.796 kg. What is the density of the metal in g/cm^3? (The volume of sphere is V = 4/3 pi r^3.) a) 34.4 g/cm^3 b) 0.103 g/cm^3 c) 121 g/cm^3 d) 9.75 g/cm^3

Answers

The density of the metal sphere is 9.75 g/cm³ (Option D).

To find the density of the metal sphere, we can use the formula for density, which is density = mass/volume. First, we need to find the volume of the sphere using the given formula V = 4/3 π r³, where r is the radius of the sphere. Then, we can convert the mass of the sphere to grams and use the formula to find the density.

Given radius (r) = 3.53 cm and mass = 1.796 kg.

1. Calculate the volume of the sphere:
V = (4/3) * π * (3.53)³
V ≈ 184.3 cm³

2. Convert the mass to grams:
1 kg = 1000 g
Mass = 1.796 kg * 1000
Mass = 1796 g

3. Calculate the density:
Density = Mass/Volume
Density = 1796 g / 184.3 cm³
Density ≈ 9.75 g/cm³

Therefore, the density of the metal in the sphere is approximately 9.75 g/cm³.

Know more about Density of metal here:

https://brainly.com/question/14599570

#SPJ11

vinyl bromide draw the molecule on the canvas by choosing buttons from the tools (for bonds and charges), atoms, and templates toolbars.

Answers


Vinyl bromide, also known as bromoethene or bromoethylene, has a chemical formula of C2H3Br.

It consists of two carbon atoms (C2) connected by a double bond (represented by a straight line), with one hydrogen atom (H) attached to each carbon atom. Additionally, one bromine atom (Br) is attached to one of the carbon atoms.

Here's a simplified text representation of the molecule:
```
 H   Br
  \ /
   C=C
   | |
   H H
```

The actual bond angles and molecular geometry may differ.

To learn more about molecules:

https://brainly.com/question/30694482

#SPJ11

For the following reactions, predict whether they will tend to be spontaneous at high, low, all temperatures, or non-spontaneous at any temperature. 2A(g) + 3B(g) → C(g) + D(1) AHCOV [ Select ] Spontaneous at all temperatures. Spontaneous at high temperatures A(1) + B(l) —— C(I) + D(s) AH> 0 Not spontaneous at any temperature Spontaneous at low temperature Als) + B(I) — 2C(I) AH < 0 [ Select ] 2A(s) - B(s) + C(I) ΔΗ > Ο [Select]

Answers

2A(g) + 3B(g) → C(g) + D(g): It is not possible to predict the spontaneity of a reaction based solely on its chemical equation. The spontaneity of a reaction depends on several factors, including the temperature, pressure, and concentrations of the reactants and products. Therefore, we cannot confidently select any of the options given.

A(l) + B(g) → C(I) + D(s), ΔH > 0: This reaction is non-spontaneous at all temperatures because it has a positive enthalpy change (ΔH > 0).

Al(s) + B(l) → 2C(I), ΔH < 0: This reaction is spontaneous at low temperatures because it has a negative enthalpy change (ΔH < 0).

2A(s) - B(s) + C(I), ΔH > 0: It is not possible to determine the spontaneity of this reaction based solely on the chemical equation. Additional information, such as the temperature and other conditions, is needed to make a prediction.

For more question on chemical equation click on

https://brainly.com/question/11904811

#SPJ11

For the reactions mentioned:

1. 2A(g) + 3B(g) → C(g) + D(1) (AHCOV)

  The spontaneity of this reaction depends on the sign of the enthalpy change (AH) and the entropy change (AS). Since the information about the entropy change is not provided, we cannot determine the spontaneity of this reaction.

2. A(1) + B(l) → C(I) + D(s) (AH > 0)

  This reaction is not spontaneous at any temperature. The positive enthalpy change indicates that the reaction requires an input of energy to proceed, making it non-spontaneous.

3. Al(s) + B(I) → 2C(I) (AH < 0)

  This reaction is spontaneous at all temperatures. The negative enthalpy change indicates that the reaction releases energy, making it favorable in terms of spontaneity.

4. 2A(s) - B(s) + C(I) (ΔΗ > Ο)

  The spontaneity of this reaction cannot be determined solely based on the given information. The enthalpy change alone does not provide sufficient information about the entropy change or the temperature dependence.

Therefore, the correct answers are:

1. Spontaneous at all temperatures: Not determinable.

2. Not spontaneous at any temperature: Not determinable.

3. Spontaneous at low temperature: Not determinable.

4. ΔΗ > Ο: Not determinable.

Learn more about spontaneous and non-spontaneous click here:

brainly.com/question/3924319

#SPJ11

Which of the following is a hydrocarbon? (Concept 4.2)
A) C6H12O6
B) H2CO3
C) CO2
D) CCl2F2
E) C3H8

Answers

Of the following compounds given E) [tex]C_3H_8[/tex] is the only hydrocarbon.

[tex]C_3H_8[/tex] is a hydrocarbon. It is a chemical formula representing propane, which is a saturated hydrocarbon belonging to the alkane family. Hydrocarbons are organic compounds composed solely of hydrogen and carbon atoms. They can exist as gases, liquids, or solids and are an essential component of fossil fuels and many other organic compounds.

Option A ([tex]C_6H_12O_6[/tex]) represents glucose, a carbohydrate, which contains oxygen in addition to carbon and hydrogen atoms. Option B ([tex]H_2CO_3[/tex]) represents carbonic acid, which is an inorganic compound containing carbon, hydrogen, and oxygen atoms. Option C ([tex]CO_2[/tex]) represents carbon dioxide, an inorganic compound composed of carbon and oxygen atoms. Option D ([tex]CCl_2F_2[/tex]) represents dichlorodifluoromethane, which is a chlorofluorocarbon (CFC) and not a hydrocarbon.

Learn more about hydrocarbon here:

https://brainly.com/question/5214674

#SPJ11

Other Questions
A disk of radius 80.0 cm makes 4.0 revolutions in 2.50 s. If the disk starts from rest what is it's angular speed at 2.5 s. 8.40 rad/s 17.6 rad/s 13.2 rad/s 20.1 rad/s in the first grade, scouts teacher had the trouble of understanding the problems of the ___. maxwell has a very high metabolic rate, is skinny, and has protruding eyes. these are symptoms of what condition? **Excerpt taken from The Historic Rise of Old Hickory by Suzanne B. Williams**Four major candidates ran in the 1824 election, all under the "Democratic-Republican" name. One of the candidates, Andrew Jackson, was already famous. In the 1780s, he earned the right to practice law and served in various offices of the state government, including senator. He earned the nickname "Old Hickory" for his toughness as a general during the War of 1812 and First Seminole War. Jackson supported slavery and "Indian removal." This earned him support from voters in southern and frontier states. The other three candidates were John Quincy Adams of Massachusetts, Henry Clay of Kentucky, and William Crawford of Georgia.U.S. presidents are elected through the Electoral College. The Founding Fathers worried that Americans were too spread out to learn enough about the candidates. Under the Electoral College, Americans cast their ballot for the popular vote, which chooses the electors for each state. The number of electoral votes each state equals the number of representatives and senators combined. The candidates must win an absolute majority of electoral votes to win the election.In 1824, Andrew Jackson won the popular vote, but he did not win it in each state. Jackson and Adams both won many electoral votes. Jackson won the most with 99. However, a candidate needs an absolute majority of electoral votes to win. In 1824, Jackson needed 131 to win. When there is not majority winner, the election goes to the House of Representatives. This has only happened twice in U.S. history.Even though he won the popular vote and many electoral votes, Andrew Jackson lost the presidency in 1824. John Quincy Adams was the Secretary of State at this time. Henry Clay was the Speaker of the House of Representatives. Henry Clay, receiving the least, was left out. However, as a leader in the House of Representatives, he had influence over the other members. Clay openly hated Jackson and there were rumors that Clay made a deal with Adams in exchange for his support. The House election declared John Quincy Adams president. Soon, he chose Henry Clay to fill the seat he left vacant, Secretary of State. Jackson was shocked and enraged. Although there was no inquiry of possible wrongdoing, Jackson accused Adams and Clay of making a "corrupt bargain."John Quincy Adams was a disappointment as president. Many of his goals created divisions like federal funds for internal improvement. Some states thought that taking federal funds would force them to follow certain rules. They felt this reduced their rights as independent states. Jackson took advantage of issues like this one to gather more support. More Jackson supporters found their way to seats in Congress. He was as a man of the people and said Adams could never understand the common mans concerns.John Quincy Adams ran against Andrew Jackson in the 1828 election. Personal attacks grew even more vicious, but Andrew Jackson appealed to many. He believed government was for the common man. He believed in strict reading of the law and limited internal improvements. He also believed in states rights.Andrew Jackson easily won the 1828 election, winning both the popular vote and a majority of electoral votes. Historians note the sectional nature of the voting. Support for Jackson was concentrated in South while Adams support was mostly in the North. Jackson was so popular because he brought changes to the government. He also wanted to make sure the government was responsible for its actions. Jackson pushed settlement into the frontier. He supported the Indian Removal act. He also defended the spread of slavery. Though his support was heavier in the South, he was determined to keep a unified nation. The rise and presidency of Old Hickory is memorable to Americans today.**Which of the following did Andrew Jackson not support?**A) A limited national governmentB) Spreading of slavery to the frontierC) Federal funds for internal improvementsD) A strict interpretation of the U.S. Constitution write a second degree maclaurin polynomial for f(x)= 1 2x. simplify coefficients how did you handle the differing perspectives in order to reach a conclusion? comm 102 today, chris works for a technology company. previously, he had a government job that had a formal organizational culture. when he started working for the tech company, he used written memos and e-mails for all of his workplace communication, but he was met with resistance from coworkers who preferred face-to-face communication. what component of organizational culture does chris find challenging? airplanes are normally the most expensive mode of transport, so they are usually reserved for transporting expensive heavy equipment over long distances to make it cost effective.T/F when deciding on differences in pay, which employee is most likely to receive more pay for doing the same job? solve the time independent schrodinger equation for a particle of mass m and eneegy e>v0 incident from the left T/F organizations that can use off-the-shelf, industry-standard software may reduce their support costs because support services and related products are widely available for best-selling software. which compound should be coupled with 3-bromotoluene to synthesize this compound, using the suzuki coupling reaction? a person who, intending to shoplift less than $950 worth of goods, enters a store during business hours group of answer choices is not guilty of burglary, since the store is open for business. is not guilty of burglary, because the intended theft is less than $950 in value. is not guilty of burglary, because there is no breaking and entering. is guilty of burglary. The snowshoe hare (a member of the rabbit family) is the primary prey for the Canadian lynx. The Canadian lynx is a wild feline that is slightly larger than a bobcat. Scientists plan to investigate the relative sizes of the hare and the lynx populations over a 3-year period.Based on predator-prey dynamics, which of the following identifies the hypothesis most likely to be supported by the study?AA decrease in the lynx population size will lead to a decrease in the hare population size.BA decrease in the hare population size will lead to an increase in the lynx population size.CAn increase in the lynx population size will lead to a decrease in the hare population size.DAn increase in the hare population size will lead to a decrease in the lynx population size. the standardized process described in the scor model that includes the selection of raw material suppliers is productivity growth can be calculated by: group of answer choices A. outputs minus inputs. B. inputs divided by the outputs. C. outputs divided by the inputs. D. input plus output divided by two.E. ((Current Productivity - Previous Productivity) : (Previous Productivity)) x 100 Between them, Zillow and Trulia have a very large share of the market for online real estate listings. Real estate brokers who want to advertise their services next to online listings of houses for sale have few other choices. Zillow and Trulia have considered merging. The two firms argue that real estate agents have many ways to advertise their services beyond online listings, including mailing out advertising or placing ads in local newspapers. The CEO of Zillow was quoted in an article in the Wall Street Journal as arguing that the advertising market is "incredibly fragmented." He also said that "agents have a lot of choice in terms of where to advertise listings."Why did the CEO of Zillow avoid emphasizing the effectiveness of advertising on his site and focus instead on other ways of advertising?Because the merger would be more likely to be approved if federal regulatorsA.used a definition of the real estate advertising market that included mailing out advertising and placing ads in newspapers.B.used a definition of the real estate advertising market that focused only on mailing out advertising and placing ads in newspapers.C.determined that mailing out advertising and placing ads in newspapers are close complements for online advertisements.D.determined that mailing out advertising and placing ads in newspapers are distant substitutes for online advertisements.To evaluate a merger between Zillow and Trulia, federal regulators wouldA.interview all the parties, calculate the Herfindahl-Hirschman Index, and apply the merger standards.B.define the market, calculate the price elasticity of demand, and apply the merger standards.C.interview all the parties, calculate the price elasticity of demand, and apply the merger standards.D.define the market, calculate the Herfindahl-Hirschman Index, and apply the merger standards. the primary cause of gastroesophageal reflux and constipation during pregnancy is TRUE OR FALSE mill argues that the government is almost never justified in silencing individuals expression of their opinions. Which Enlightenment philosopher believed that if the people did not like their government they had the right overthrow it? A. Hobbes B. Locke C. Rousseau